
http://www.cambridge.org/9780521519861

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

ii

This page intentionally left blank

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

A Compendium of Partial Differential Equation Models:
Method of Lines Analysis with Matlab

The mathematical modeling of physical and chemical systems is used ex-
tensively throughout science, engineering, and applied mathematics. In
order to make use of mathematical models, it is necessary to have solu-
tions to the model equations. Generally, this requires numerical methods
because of the complexity and number of equations.

A Compendium of Partial Differential Equation Models presents nu-
merical methods and associated computer codes in Matlab for the solu-
tion of a spectrum of models expressed as partial differential equations
(PDEs), one of the most widely used forms of mathematics in science and
engineering. The authors focus on the method of lines (MOL), a well-
established numerical procedure for all major classes of PDEs in which
the boundary-value partial derivatives are approximated algebraically by
finite differences. This reduces the PDEs to ordinary differential equa-
tions (ODEs) and thus makes the computer code easy to understand, im-
plement, and modify. Also, the ODEs (via MOL) can be combined with
any other ODEs that are part of the model (so that MOL naturally ac-
commodates ODE/PDE models).

This book uniquely includes a detailed, line-by-line discussion of com-
puter code as related to the associated equations of the PDE model.

William E. Schiesser is the Emeritus R. L. McCann Professor of Chem-
ical Engineering and a Professor of Mathematics at Lehigh University.
He is also a visiting professor at the University of Pennsylvania and the
coauthor of the Cambridge book Computational Transport Phenomena.

Graham W. Griffiths is a visiting professor in the School of Engineering
and Mathematical Sciences of City University, London, and a principal
consultant with Honeywell Systems. He is also a founder of Special Anal-
ysis and Simulation Technology Ltd. and has worked extensively in the
field of dynamic simulation of chemical processes.

i

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

ii

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

A COMPENDIUM OF
PARTIAL DIFFERENTIAL
EQUATION MODELS

Method of Lines Analysis
with Matlab

William E. Schiesser
Lehigh University, Bethlehem, PA, USA

Graham W. Griffiths
City University, London, UK

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-51986-1

ISBN-13 978-0-511-50134-0

© William E. Schiesser and Graham W. Griffiths 2009

2009

Information on this title: www.cambridge.org/9780521519861

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

hardback

http://www.cambridge.org/9780521519861
http://www.cambridge.org

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

To Dolores and Patricia for their patience and support

v

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

vi

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

Contents

Preface page ix

1 An Introduction to the Method of Lines 1

2 A One-Dimensional, Linear Partial Differential Equation 18

3 Green’s Function Analysis . 36

4 Two Nonlinear, Variable-Coeffcient, Inhomogeneous Partial
Differential Equations . 70

5 Euler, Navier Stokes, and Burgers Equations 90

6 The Cubic Schrödinger Equation 114

7 The Korteweg–deVries Equation 141

8 The Linear Wave Equation . 171

9 Maxwell’s Equations . 203

10 Elliptic Partial Differential Equations: Laplace’s Equation 229

11 Three-Dimensional Partial Differential Equation 261

12 Partial Differential Equation with a Mixed Partial Derivative 291

13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential
Equations in Cylindrical Coordinates 306

14 Diffusion Equation in Spherical Coordinates 342

Appendix 1 Partial Differential Equations from Conservation Principles:
The Anisotropic Diffusion Equation 381

vii

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

viii Contents

Appendix 2 Order Conditions for Finite-Difference Approximations 398

Appendix 3 Analytical Solution of Nonlinear, Traveling Wave
Partial Differential Equations . 414

Appendix 4 Implementation of Time-Varying Boundary Conditions 420

Appendix 5 The Differentiation in Space Subroutines Library 441

Appendix 6 Animating Simulation Results 445

Index 469

Color plates follow page 474

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

Preface

In the analysis and the quest for an understanding of a physical system, generally,
the formulation and use of a mathematical model that is thought to describe the
system is an essential step. That is, a mathematical model is formulated (as a system
of equations) that is thought to quantitatively define the interrelationships between
phenomena that define the characteristics of the physical system. The mathematical
model is usually tested against observations of the physical system, and if the agree-
ment is considered acceptable, the model is then taken as a representation of the
physical system, at least until improvements in the observations lead to refinements
and extensions of the model. Often the model serves as a guide to new observations.
Ideally, this process of refinement of the observations and model leads to improve-
ments of the model and thus enhanced understanding of the physical system.

However, this process of comparing observations with a proposed model is not
possible until the model equations are solved to give a solution that is then the basis
for the comparison with observations. The solution of the model equations is often
a challenge. Typically in science and engineering this involves the integration of
systems of ordinary and partial differential equations (ODE/PDEs). The intent of
this volume is to assist scientists and engineers in the process of solving differential
equation models by explaining some numerical, computer-based methods that have
generally been proved to be effective for the solution of a spectrum of ODE/PDE
system problems.

For PDE models, we have focused on the method of lines (MOL), a well-
established numerical procedure in which the PDE spatial (boundary-value) partial
derivatives are approximated algebraically, in our case, by finite differences (FDs).
The resulting differential equations have only one independent variable remaining,
an initial-value variable, typically time in a physical application. Thus, the MOL ap-
proximation replaces a PDE system with an initial-value ODE system. This ODE
system is then integrated using a standard routine, which, for the Matlab analysis
used in the example applications, is one of the Matlab library integrators. In this
way, we can take advantage of the recent progress in ODE numerical integrators.

However, while we have presented our MOL solutions in terms of Matlab code,
it is not our intention to provide optimized Matlab code but, rather, to provide code

ix

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

x Preface

that will be readily understood and that can be easily converted to other computer
languages. This approach has been adopted in view of our experience that there
is considerable interest in numerical solutions written in other computer languages
such as Fortran, C, C++, and Java. Nevertheless, discussion of specific Matlab pro-
prietary routines is included where this is thought to be of benefit to the reader.

Important variations on the MOL are possible. For example, the PDE spatial
derivatives can be approximated by finite elements, finite volumes, weighted resid-
ual methods, and spectral methods. All of these approaches have been used and are
described in the numerical analysis literature. For our purposes, and to keep the
discussion to a reasonable length, we have focused on FDs. Specifically, we provide
library routines for FDs of orders 2–10.

Our approach to describing the numerical methods is by example. Each chapter
has a common format consisting of:

� An initial statement of the concepts in mathematics and computation discussed
in the chapter.

� A statement of the equations to be solved numerically. These equations are a
mathematical model that can originate from the analysis of a physical system.
However, we have broadened the usual definition of a mathematical model for
a physical system to also include equations that test a numerical method or algo-
rithm, and in this sense, they are a model for the algorithm.

Parenthetically, the selected PDE applications include some of the classical
(we might even say “famous”) PDEs. For example, we discuss the Euler and
Navier Stokes equations of fluid dynamics with the Burgers equation as a special
case, the Maxwell equations of electromagnetic field theory with the wave equa-
tion as a special case, and the Korteweg–deVries equation to illustrate some ba-
sic properties of solitons (as illustrated on the cover). The versatility of the MOL
analysis is illustrated by linear and nonlinear PDEs in one dimension (1D), 2D,
and 3D with a variety of boundary conditions, for example, Dirichlet, Neumann,
and third type.

� A listing of a complete, commented computer program or code, written in Mat-
lab, to solve the model equations. Thus, the programming is all in one place, and
therefore a back-and-forth study of the chapter and programming located else-
where (e.g., on a CD or in a Web link) is not required (although all of the Matlab
routines are available from the Web site http://www.pdecomp.net).

� A step-by-step explanation of the code, with emphasis on the associated mathe-
matics and computational algorithms at each step.

� A discussion of the output from the code, both numerically tabulated and plot-
ted. In particular, the details of the solution that demonstrate features of the
model equations and characteristics of the numerical algorithm are highlighted.
The graphical output is typically in 2D and 3D, and in some applications includes
movies/animations.

� The output is also evaluated with respect to accuracy, either by comparison with
an analytical (exact) solution when available or by inference from changes in the
approximations used in the numerical algorithms.

� A summary at the end of the chapter to reiterate (a) the general features and
limitations of the numerical algorithm, and (b) the class of problems that the
numerical algorithm can address.

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

Preface xi

All of the models in this volume are based on PDEs. However, because of the
use of the MOL (again, in which the PDEs are replaced by systems of approximating
ODEs), both ODEs and PDEs are covered along with associated algorithms. Our
expectation is that the different types of models, covering all of the major classes of
PDEs (parabolic, hyperbolic, elliptic), will provide a starting point for the numerical
study of the ODE/PDE system of interest. This might be a straightforward modifi-
cation of a computer code or extend to the development of a new code based on the
ideas presented in one or more examples.

To this end, the chapters are essentially self-contained; they do not require read-
ing the preceding chapters. Rather, we have tried to explain all of the relevant
ideas within each chapter, which in some instances requires some repetition between
chapters. Also, other chapters are occasionally mentioned for additional details, but
it is not necessary to read those chapters. Six appendices are also included to cover
concepts that are relevant to more than a single chapter.

We hope this format of self-contained chapters, rather than a chapter-to-chapter
format, will be helpful in minimizing the reading and studying required to start the
solution to the ODE/PDE system of interest. We welcome your comments about
this organization, and your questions about any of the concepts and details pre-
sented, as reflected in the following lists of topics. We think these lists, along with
the table of contents and the concluding index, will point to the chapters and pages
relevant to the problem of interest.

Topic Chapter

Burgers equation 5
Characteristics of hyperbolic PDEs 8
Complex PDEs 6
Conservation principles 13
Continuation methods 11
Coordinate-free operators 5, 9, 14
Cylindrical coordinates 13
Cubic Schrodinger equation 6
D’Alembert solution 8
Differential-algebraic equations (DAEs) 12
Differential operators 5, 9
Dirichlet boundary conditions 2, 5, 11
Discontinuous solutions 5, 8
Euler equations 5
Exact (analytical) solutions 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Finite-difference library routines 1, 2, 3, 5, 9, 14
Finite differences (FDs) 1, 2
Front sharpening 5
Green’s function analysis 3
h- and p-refinement 5, 9, 11
Helmholtz’s equation 10
Higher-order FDs 1, 4
Implicit ODEs 12
Infinite spatial domains 6, 7, 8

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

xii Preface

Topic Chapter

Inhomogeneous PDEs 4, 11
Integral invariants 3, 7
Jacobian matrix 7, 9
Korteweg–deVries equation 7
Laplace’s equation 10, 11
Linear PDEs 2
Maxwell’s equations 9
Method of lines (MOL) 1
Mixed boundary conditions 11, 13
Mixed (hyperbolic–parabolic) PDEs 9, 13
Mixed partial derivatives 12
Navier Stokes equations 5
Neumann boundary conditions 2, 5, 11, 13, 14
Nonlinear PDEs 4, 5, 6, 7, 13
Numerical quadrature 3, 7
Numerical solution accuracy 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
PDE derivations 5, 13
PDE simplification 5, 9
PDE test problems 9
Poisson’s equation 10
Robin boundary conditions 11, 13
Second-order PDEs 8, 9
Shock formation 5
Simultaneous PDEs 4, 6, 13
Singularities 13, 14
Solitons 7
Source terms 11, 13, 14
Sparse matrix integration 6, 7, 9
Spatial convergence 5, 9
Spherical coordinates 14
Stagewise differentiation 3, 5, 12
Tensors 5
Third-type boundary conditions 11, 13
Three-dimensional PDEs 11
Traveling wave solutions 5, 6, 7, 8
Two-dimensional PDEs 10, 13, 14
Units in PDEs 13
Variable-coefficient PDEs 4, 13, 14
Vector operators 5, 9
Wave equation 8, 9

This list contains primarily mathematical topics. The programming in each of the
chapters is also a major topic.

The six appendices cover the following topics:

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

Preface xiii

Topic Appendix

Algebraic grid points 4
Analytical solutions 3
Anisotropic diffusion 1
Cartesian coordinates 1
Conservation principles 1
Cylindrical coordinates 1
Differential grid points 4
Differential operators 1
Dirichlet boundary conditions 4
Finite-difference order conditions 2
Finite-difference test problems 2
Finite differences (FDs) 2, 5
Library FD routines 5
Movies/animations 6
PDE derivations 1
Spherical coordinates 1
Tensors 1
Time-varying boundary conditions 4
Traveling waves 3
Truncation error 2
Vector operators 1

We have assumed a background of basic calculus and ODEs. Since the central
algorithm is the MOL, we begin with a MOL introduction in Chapter 1. Then the
chapters progress through example applications of increasing complexity and diver-
sity. The preceding list serves as a guide for specific topics.

We have not included exercises at the end of the chapters since we think vari-
ations in the applications and the associated Matlab codes provide ample oppor-
tunities for exploration and further study. References are provided at the end of
the chapters and appendices when we think they would provide useful additional
background, but we have not attempted a comprehensive list of references on any
particular topic.

Our intent for this volume is to present mathematical and computational meth-
ods that can be applied to a broad spectrum of ODE/PDE models. In particular, we
are attempting to assist engineers and scientists who have an ODE/PDE problem
of interest and who wish to produce an accurate numerical solution with reasonable
computational effort without having to first delve into the myriad details of numeri-
cal methods and computer programming. We hope this book is of assistance toward
meeting this objective.

William E. Schiesser
Bethlehem, PA, USA

Graham W. Griffiths
Nayland, Suffolk, UK
August 1, 2008

P1: XXX

cuus488-fm CUUS488/Griffiths 978 0 521 51986 1 February 10, 2009 9:58

xiv

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

1

An Introduction to the Method of Lines1

The chapters in this book pertain particularly to mathematical models expressed
as partial differential equations (PDEs). The computer-based numerical solution
of the PDE models is implemented primarily through the method of lines (MOL).
We therefore start with this chapter, which is an introduction to the MOL. Although
the reader may be familiar with the MOL, we suggest reading this chapter since it
describes some aspects and details of our use of the MOL that appear in the subse-
quent chapters. We start with some basic features of PDEs.

SOME PDE BASICS

Our physical world is most generally described in scientific and engineering terms
with respect to three-dimensional (3D) space and time, which we abbreviate as
spacetime. PDEs provide a mathematical description of physical spacetime, and they
are therefore among the most widely used forms of mathematics. As a consequence,
methods for the solution of PDEs, such as the MOL, are of broad interest in science
and engineering.

As a basic illustrative example of a PDE, we consider

∂u
∂t

= D
∂2u
∂x2

(1.1)

where

u dependent variable (dependent on x and t)
t independent variable representing time
x independent variable representing one dimension of 3D space
D constant explained next

Note that Eq. (1.1) has two independent variables, x and t, which is the reason it
is classified as a PDE (any differential equation with more than one independent

1 This chapter is based on an article that originally appeared in the online encyclopedia Scholarpedia [1].

1

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

2 A Compendium of Partial Differential Equation Models

variable is a PDE). A differential equation with only one independent variable is
generally termed an ordinary differential equation (ODE); we will consider ODEs
later as part of the MOL.

Equation (1.1) is termed the diffusion equation. When applied to heat transfer, it
is Fourier’s second law; the dependent variable u is temperature and D is the thermal
diffusivity. When Eq. (1.1) is applied to mass diffusion, it is Fick’s second law; u is
mass concentration and D is the coefficient of diffusion or the diffusivity.

∂u/∂t is a partial derivative of u with respect to t (x is held constant when tak-
ing this partial derivative, which is why partial is used to describe this derivative).
Equation (1.1) is first order in t since the highest-order partial derivative in t is first
order; it is second order in x since the highest-order derivative in x is second order.
Equation (1.1) is linear or first degree since all of the terms are to the first power
(note that order and degree can easily be confused).

INITIAL AND BOUNDARY CONDITIONS

Before we consider a solution to Eq. (1.1), we must specify some auxiliary conditions
to complete the statement of the PDE problem. The number of required auxiliary
conditions is determined by the highest-order derivative in each independent vari-
able. Since Eq. (1.1) is first order in t and second order in x, it requires one auxiliary
condition in t and two auxiliary conditions in x. To have a complete, well-posed prob-
lem, some additional conditions may have to be included, for example, that specify
valid ranges for coefficients. However, this is a more advanced topic and will not be
developed further here.

t is termed an initial-value variable and therefore requires one initial condition
(IC). It is an initial-value variable since it starts at an initial value, t0, and moves
forward over a finite interval t0 ≤ t ≤ tf or a semi-infinite interval t0 ≤ t ≤ ∞ without
any additional conditions being imposed. Typically in a PDE application, the initial-
value variable is time, as in the case of Eq. (1.1).

x is termed a boundary-value variable and therefore requires two boundary
conditions (BCs). It is a boundary-value variable since it varies over a finite in-
terval x0 ≤ x ≤ xf , a semi-infinite interval x0 ≤ x ≤ ∞, or a fully infinite interval
−∞ ≤ x ≤ ∞, and at two different values of x, conditions are imposed on u in
Eq. (1.1). Typically, the two values of x correspond to boundaries of a physical sys-
tem, and hence the name boundary conditions.

As examples of auxiliary conditions for Eq. (1.1),

� An IC could be

u(x, t = 0) = u0 (1.2)

where u0 is a given function of x (typically a constant) for x0 ≤ x ≤ xf .
� Two BCs could be

u(x = x0, t) = ub (1.3a)

∂u(x = xf , t)
∂x

= 0 (1.3b)

where ub is a given boundary (constant) value of u for all t.

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 3

� Another common possibility is where the IC is given as earlier and the BCs are
u(x = x0, t) = f0(t) and ux(x = xf , t) = f b(t).

An important consideration is the possibility of discontinuities at the boundaries,
produced, for example, by differences in ICs and BCs at the boundaries, which can
cause computational difficulties, particularly for hyperbolic PDEs (such as the clas-
sic linear wave equation ∂2u/∂t2 = ∂2u/∂x2).

BCs can be of three types:

1. If the dependent variable is specified, as in BC (1.3a), the BC is termed Dirich-
let.

2. If the derivative of the dependent variable is specified, as in BC (1.3b), the
BC is termed Neumann.

3. If both the dependent variable and its derivative appear in the BC, it is termed
a BC of the third type or a Robin BC.

TYPES OF PDE SOLUTIONS

Equations (1.1)–(1.3) constitute a complete (well-posed) PDE problem and we can
now consider what we mean by a solution to this problem. Briefly, the solution of
a PDE problem is a function that defines the dependent variable as a function of the
independent variables – in this case, u(x, t). In other words, we seek a function that
when substituted in the PDE and all of its auxiliary conditions satisfies simultane-
ously all of these equations.

The solution can be of two types:

1. If the solution is an actual mathematical function, it is termed an analytical
solution. While analytical solutions are the “gold standard” for PDE solu-
tions in the sense that they are exact, they are also generally difficult to derive
mathematically for all but the simplest PDE problems (in much the same way
that solutions to nonlinear algebraic equations generally cannot be derived
mathematically except for certain classes of nonlinear equations).

2. If the solution is in numerical form, for example, u(x, t) tabulated numerically
as a function of x and t, it is termed a numerical solution. Ideally, the numer-
ical solution is simply a numerical evaluation of the analytical solution. But
since an analytical solution is generally unavailable for realistic PDE prob-
lems in science and engineering, the numerical solution is an approximation to
the analytical solution, and our expectation is that it represents the analytical
solution with good accuracy. However, numerical solutions can be computed
with modern-day computers for very complex problems, and they will gener-
ally have good accuracy (even though this cannot be established directly by
comparison with the analytical solution since the latter is usually unknown).

The focus of the MOL is the calculation of accurate numerical solutions.

PDE SUBSCRIPT NOTATION

Before we go on to the general classes of PDEs that the MOL can handle, we briefly
discuss an alternative notation for PDEs. Instead of writing the partial derivatives

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

4 A Compendium of Partial Differential Equation Models

as in Eq. (1.1), we adopt a subscript notation that is easier to state and bears a closer
resemblance to the associated computer coding. For example, we can write Eq. (1.1)
as

ut = Duxx (1.4)

where, for example, ut is subscript notation for ∂u/∂t. In other words, a partial
derivative is represented as the dependent variable with a subscript that defines the
independent variable. For a derivative that is of order n, the independent variable
is repeated n times; for example, for Eq. (1.1), uxx represents ∂2u/∂x2.

A GENERAL PDE SYSTEM

Using the subscript notation, we can now consider some general PDEs. For exam-
ple, a general PDE first order in t can be considered:

ut = f (x, t, u, ux, uxx, . . .) (1.5)

where an overbar (overline) denotes a vector. For example, u denotes a vector of n
dependent variables

u = (u1, u2, . . . , un)T

that is, a system of n simultaneous PDEs. Similarly, f denotes an n vector of deriva-
tive functions

f = (f 1, f 2, . . . , f n)T

where T denotes a transpose (here a row vector is transposed to a column vector).
Note also that x is a vector of spatial coordinates, so that, for example, in Carte-
sian coordinates x = (x, y, z)T, while in cylindrical coordinates x = (r, θ, z)T. Thus,
Eq. (1.5) can represent PDEs in one, two, and three spatial dimensions.

Since Eq. (1.5) is first order in t, it requires one IC

u(x, t = 0) = u0(x, u, ux, uxx, . . .) (1.6)

where u0 is an n vector of IC functions

u0 = (u10, u20, . . . , un0)T

The derivative vector f of Eq. (1.5) includes functions of various spatial deriva-
tives, (u, ux, uxx, . . .), and therefore we cannot state a priori the required number of
BCs. For example, if the highest-order derivative in x in all of the derivative func-
tions is second order, then we require 2 × d × n BCs, where d is the number of spa-
tial dimensions. Thus, for Eq. (1.4), the number of required BCs is 2 (second order
in x) ×1 (one dimensional) ×1 (one PDE) = 2.

We state the general BC requirement of Eq. (1.5) as

f b(xb, u, ux, uxx, . . .) = 0 (1.7)

where the subscript b denotes boundary. The vector of BC functions, f b, has a length
(number of functions) determined by the highest-order derivative in x in each PDE
(in Eq. (1.5)), as discussed previously.

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 5

PDE GEOMETRIC CLASSIFICATION

Equations (1.5)–(1.7) constitute a general PDE system to which the MOL can be
applied. Before proceeding to the details of how this might be done, we need to
discuss the three basic forms of the PDEs as classified geometrically. This geometric
classification can be done rigorously if certain mathematical forms of the functions in
Eqs. (1.5)–(1.7) are assumed. However, we will adopt a somewhat more descriptive
(less rigorous but more general) form of these functions for the specification of the
three geometric classes.

If the derivative functions in Eq. (1.5) contain only first-order derivatives in x,
the PDEs are classified as first-order hyperbolic. As an example, the equation

ut + vux = 0 (1.8)

is generally called the linear advection equation; in physical applications, v is a linear
or flow velocity. Although Eq. (1.8) is possibly the simplest PDE, this simplicity is
deceptive in the sense that it can be very difficult to integrate numerically since it
propagates discontinuities, a distinctive feature of first-order hyperbolic PDEs.

Equation (1.8) is termed a conservation law since it typically expresses conserva-
tion of mass, energy, or momentum under the conditions for which it is derived, that
is, the assumptions on which the equation is based. Conservation laws are a bedrock
of PDE mathematical models in science and engineering, and an extensive literature
pertaining to their solution, both analytical and numerical, has evolved over many
years.

An example of a first-order hyperbolic system (using the notation u1 ⇒ u,

u2 ⇒ v) is

ut = vx (1.9a)

vt = ux (1.9b)

Equations (1.9a) and (1.9b) constitute a system of two linear, constant-coefficient,
first-order hyperbolic PDEs.

Differentiation and algebraic substitution can occasionally be used to eliminate
some dependent variables in systems of PDEs. For example, if Eq. (1.9a) is differ-
entiated with respect to t and Eq. (1.9b) is differentiated with respect to x

utt = vxt

vtx = uxx

we can then eliminate the mixed partial derivative between these two equations
(assuming vxt in the first equation equals vtx in the second equation) to obtain

utt = uxx (1.10)

Equation (1.10) is the second-order hyperbolic wave equation.
If the derivative functions in Eq. (1.5) contain only second-order derivatives in x,

the PDEs are classified as parabolic. Equation (1.1) is an example of a parabolic
PDE.

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

6 A Compendium of Partial Differential Equation Models

Finally, if a PDE contains no derivatives in t (e.g., the LHS of Eq. (1.5) is zero),
it is classified as elliptic. As an example,

uxx + uyy = 0 (1.11)

is Laplace’s equation, where x and y are spatial independent variables in Cartesian
coordinates. Note that with no derivatives in t, elliptic PDEs require no ICs; that is,
they are entirely boundary-value PDEs.

PDEs with mixed geometric characteristics are possible and, in fact, are quite
common in applications. For example, the PDE

ut = −ux + uxx (1.12)

is hyperbolic–parabolic. Since it frequently models convection (hyperbolic) through
the term ux and diffusion (parabolic) through the term uxx, it is generally termed a
convection–diffusion equation. If additionally, it includes a function of the depen-
dent variable u such as

ut = −ux + uxx + f (u) (1.13)

then it might be termed a convection–diffusion–reaction equation since f (u) typi-
cally models the rate of a chemical reaction. If the function is only for the indepen-
dent variables, that is,

ut = −ux + uxx + g(x, t) (1.14)

the equation could be labeled an inhomogeneous PDE.
This discussion clearly indicates that PDE problems come in a very wide variety,

depending, for example, on linearity, types of coefficients (constant, variable), co-
ordinate system, geometric classification (hyperbolic, elliptic, parabolic), number of
dependent variables (number of simultaneous PDEs), number of independent vari-
ables (number of dimensions), types of BCs, smoothness of the IC, and so on, so it
might seem impossible to formulate numerical procedures with any generality that
can address a relatively broad spectrum of PDEs. But in fact, the MOL provides a
surprising degree of generality, although the success in applying it to a new PDE
problem depends to some extent on the experience and inventiveness of the ana-
lyst; that is, MOL is not a single, straightforward, clearly defined approach to PDE
problems, but rather is a general concept (or philosophy) that requires specification
of details for each new PDE problem. We now proceed to illustrate the formula-
tion of a MOL numerical algorithm, with the caveat that this will not be a general
discussion of MOL as it is applied to any conceivable PDE problem.

ELEMENTS OF THE MOL

The basic idea of the MOL is to replace the spatial (boundary-value) derivatives in
the PDE with algebraic approximations. Once this is done, the spatial derivatives
are no longer stated explicitly in terms of the spatial independent variables. Thus,
in effect, only the initial-value variable, typically time in a physical problem, remains.
In other words, with only one remaining independent variable, we have a system of
ODEs that approximate the original PDE. The challenge, then, is to formulate the
approximating system of ODEs. Once this is done, we can apply any integration

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 7

algorithm for initial-value ODEs to compute an approximate numerical solution to
the PDE. Thus, one of the salient features of the MOL is the use of existing, and
generally well-established, numerical methods for ODEs.

To illustrate this procedure, we consider the MOL solution of Eq. (1.8). First
we need to replace the spatial derivative ux with an algebraic approximation. In this
case we will use a finite difference (FD), such as

ux ≈ ui − ui−1

�x
(1.15)

where i is an index designating a position along a grid in x and �x is the spacing in
x along the grid. Thus, for the left-end value of x, i = 1, and for the right-end value
of x, i = M; that is, the grid in x has M points. Then the MOL approximation of
Eq. (1.8) is

dui

dt
= −v

ui − ui−1

�x
, 1 ≤ i ≤ M (1.16)

Note that Eq. (1.16) is written as an ODE since there is now only one independent
variable, t. Note also that Eq. (1.16) represents a system of M ODEs.

This transformation of a PDE, Eq. (1.8), to a system of ODEs, Eq. (1.16), illus-
trates the essence of the MOL, namely, the replacement of the spatial derivatives, in
this case ux, so that a system of ODEs approximates the original PDE. Then, to com-
pute the solution of the PDE, we compute a solution to the approximating system of
ODEs. But before considering this integration in t, we have to complete the speci-
fication of the PDE problem. Since Eq. (1.8) is first order in t and first order in x, it
requires one IC and one BC. These will be taken as

u(x, t = 0) = f (x) (1.17a)

u(x = 0, t) = g(t) (1.17b)

Since Eq. (1.16) constitutes M first-order, initial-value ODEs, M initial condi-
tions are required, and from Eq. (1.17a), these are

u(xi, t = 0) = f (xi), 1 ≤ i ≤ M (1.18a)

Also, application of BC (1.17b) gives for grid point i = 1

u(x1, t) = g(t) (1.18b)

Equations (1.16) and (1.18) now constitute the complete MOL approximation of
Eq. (1.8) subject to Eqs. (1.17a) and (1.17b). The solution of this ODE system gives
the M functions

u1(t), u2(t), . . . , uM−1(t), uM(t) (1.19)

that is, an approximation to u(x, t) at the grid points i = 1, 2, . . . , M.
Before we go on to consider the numerical integration of the approximating

ODEs, in this case Eq. (1.16), we briefly consider further the FD approximation
of Eq. (1.15), which can be written as

ux ≈ ui − ui−1

�x
+ O(�x) (1.20)

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

8 A Compendium of Partial Differential Equation Models

where O(�x) denotes of order �x; that is, the truncation error of the approximation
of Eq. (1.16) is proportional to �x to the first power (varies linearly with �x); thus,
Eq. (1.20) is also termed a first-order FD (since �x is to the first power in the order
or truncation error term). The term truncation error reflects the fact that the FD of
Eq. (1.15) comes from a truncated Taylor series.

Note that the numerator of Eq. (1.15), ui − ui−1, is a difference in two values
of u. Also, the denominator �x remains finite (nonzero). Hence the name finite
difference (and it is an approximation because of the truncated Taylor series, so
a more complete description is first-order FD approximation). In fact, in the limit
�x → 0, the approximation of Eq. (1.15) becomes exactly the derivative. However,
in a practical computer-based calculation, �x remains finite, so Eq. (1.15) remains
an approximation.

Also, Eq. (1.8) typically describes the flow of a physical quantity such as con-
centration of a chemical species or temperature, represented by u, from left to right
with respect to x with velocity v. Then, using the FD approximation of Eq. (1.20) at
i involves ui and ui−1. In a flowing system, ui−1 is to the left (in x) of ui or is upstream
or upwind of ui (to use a nautical analogy). Thus, Eq. (1.20) is termed a first-order
upwind FD approximation. Generally, for strongly convective systems such as that
modeled by Eq. (1.8), some form of upwinding is required in the numerical solution
of the descriptive PDEs; we will look at this requirement further in the subsequent
discussion.

ODE INTEGRATION WITHIN THE MOL

We now consider briefly the numerical integration of the M ODEs of Eq. (1.16). If
the derivative dui/dt is approximated by a first-order FD

dui

dt
≈ un+1

i − un
i

�t
+ O(�t) (1.21)

where n is an index for the variable t (t moves forward in steps denoted or indexed
by n), then an FD approximation of Eq. (1.16) is

un+1
i − un

i

�t
= −v

un
i − un

i−1

�x

or solving for un+1
i ,

un+1
i = un

i − (v�t/�x)(un
i − un

i−1), i = 1, 2, . . . , M (1.22)

Equation (1.22) has the important characteristic that it gives un+1
i explicitly; that

is, we can solve for the solution at the advanced point in t, n + 1, from the solution
at the base point n. In other words, explicit numerical integration of Eq. (1.16) is by
the forward FD of Eq. (1.21), and this procedure is generally termed the forward
Euler method, which is the most basic form of ODE integration.

While the explicit form of Eq. (1.22) is computationally convenient, it has a
possible limitation. If the time step �t is above a critical value, the calculation be-
comes unstable, which is manifest by successive changes in the dependent vari-
able, �u = un+1

i − un
i , becoming larger and eventually unbounded as the calculation

moves forward in t (for increasing n). In fact, for the solution of Eq. (1.8) by the

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 9

method of Eq. (1.22) to remain stable, the dimensionless group (v�t/�x), which is
called the Courant-Friedricks-Lewy or CFL number, must remain below a critical
value – in this case, unity. Note that this stability limit places an upper limit on �t
for a given v and �x; if one attempts to increase the accuracy of Eq. (1.22) by using
a smaller �x (larger number of grid points in x by increasing M), a smaller value
of �t is required to keep the CFL number below its critical value. Thus, there is a
conflicting requirement of improving accuracy while maintaining stability.

The stability limit of the explicit Euler method as implemented via the forward
FD of Eq. (1.21) can be circumvented by using a backward FD for the derivative
in t

dui

dt
≈ un

i − un−1
i

�t
+ O(�t) (1.23)

so that the FD approximation of Eq. (1.16) becomes

un
i − un−1

i

�t
= −v

un
i − un

i−1

�x

or after rearrangement (with (v�t/�x) = α),

(1 + α)un
i − αun

i−1 = un−1
i , i = 1, 2, . . . , M (1.24)

Note that we cannot now solve Eq. (1.24) explicitly for the solution at the advanced
point un

i in terms of the solution at the base point un−1
i . Rather, Eq. (1.24) is implicit

in un
i because un

i−1 is also unknown; that is, we must solve Eq. (1.24) written for each
grid point i = 1, 2, . . . , M as a simultaneous system of bidiagonal equations (bidiag-
onal because each of Eq. (1.24) has two unknowns so that simultaneous solution of
the full set of approximating algebraic equations is required to obtain the complete
numerical solution un

1, un
2, . . . , un

M). Thus, the solution of Eq. (1.24) is termed the
implicit Euler method.

We could then naturally ask why use Eq. (1.24) when Eq. (1.22) is so much eas-
ier to use (explicit calculation of the solution at the next step in t of Eq. (1.22) vs.
the implicit calculation of Eq. (1.24)). The answer is that the implicit calculation
of Eq. (1.24) is often worthwhile because the implicit Euler method has no stabil-
ity limit (is unconditionally stable in comparison with the explicit method, with the
stability limit stated in terms of the CFL condition). However, there is a price to
pay for the improved stability of the implicit Euler method; that is, we must solve a
system of simultaneous algebraic equations; Eq. (1.24) is an example. Furthermore,
if the original ODE system approximating the PDE is nonlinear, we have to solve a
system of nonlinear algebraic equations. (Equation (1.24) is linear, so the solution is
much easier.) The system of nonlinear equations is typically solved by a variant of
Newton’s method that can become very demanding computationally if the number
of ODEs is large (due to the use of a large number of spatial grid points in the MOL
approximation of the PDE, especially when we attempt the solution of 2D and 3D
PDEs). If you have had some experience with Newton’s method, you may appreci-
ate that the Jacobian matrix of the nonlinear algebraic system can become very large
and sparse as the number of spatial grid points increases.

Additionally, although there is no limit for �t with regard to stability for the im-
plicit method, there is a limit with regard to accuracy. In fact, the first-order upwind

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

10 A Compendium of Partial Differential Equation Models

approximation of ux in Eq. (1.8), Eq. (1.20), and the first-order approximation of ut

in Eq. (1.8), Eq. (1.21) or (1.23), taken together limit the accuracy of the resulting
FD approximation of Eq. (1.8). One way around this accuracy limitation is to use
higher-order FD approximations for the derivatives in Eq. (1.8).

For example, if we consider the second-order approximation of ux at i

ux ≈ ui+1 − ui−1

2�x
+ O(�x2) (1.25)

substitution in Eq. (1.8) gives the MOL approximation of Eq. (1.8)

dui

dt
= −v

ui+1 − ui−1

2�x
, 1 ≤ i ≤ M (1.26)

We could then reason that if the integration in t is performed by the explicit Euler
method, that is, we use the approximation of Eq. (1.21) for ut = dui/dt, the resulting
numerical solution should be more accurate than the solution from Eq. (1.22). In
fact, the MOL approximation based on this idea

un+1
i = un

i − v�t
2�x

(un
i+1 − un

i−1), i = 1, 2, . . . , M (1.27)

is unconditionally unstable; this conclusion can be demonstrated by a von Neumann
stability analysis that we will not cover here. This surprising result demonstrates
that replacing the derivatives in PDEs with higher-order approximations does not
necessarily guarantee more accurate solutions, or even stable solutions.

NUMERICAL DIFFUSION AND OSCILLATION

Even if the implicit Euler method is used for the integration in t of Eq. (1.26) to
achieve stability (or a more sophisticated explicit integrator in t is used that au-
tomatically adjusts �t to achieve a prescribed accuracy), we would find that the
solution oscillates unrealistically. This numerical distortion is one of two generally
observed forms of numerical error. The other numerical distortion is diffusion that
would be manifest in the solution from Eq. (1.22). Briefly, the solution would exhibit
excessive smoothing or rounding at points in x where the solution changes rapidly.
This overall observation that a first-order approximation of ux produces numerical
diffusion, while higher-order approximations of ux produce numerical oscillation is
predicted by the Godunov order barrier theorem for the Riemann problem [2]. To ex-
plain briefly, the order barrier is first order and any linear FD approximation above
first order will be oscillatory. Equation (1.8) is an example of the Riemann problem
[2] if IC Eq. (1.17a) is discontinuous; for example, u(x, t = 0) = h(t), where h(t) is
the Heaviside unit step function. The (exact) analytical solution is the IC function
f (x) of Eq. (1.17a) moving left to right with velocity v (from Eq. (1.8)) and without
distortion, that is, u(x, t) = f (x − vt); however, the numerical solution will oscillate
if ux in Eq. (1.8) is replaced with a linear approximation of second or higher order.

We should also mention one point of terminology for FD approximations. The
RHS of Eq. (1.25) is an example of a centered approximation since the two points
at i + 1 and i − 1 are centered around the point i. Equation (1.20) is an example of
a noncentered, one-sided, or upwind approximation since the points i and i − 1 are
not centered with respect to i.

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 11

Finally, to conclude the discussion of first-order hyperbolic PDEs such as
Eq. (1.8), since the Godunov theorem indicates that FD approximations above first
order will produce numerical oscillations in the solution, the question remains if
there are approximations above first order that are nonoscillatory. To answer this
question we note first that the Godunov theorem applies to linear approximations;
for example, Eq. (1.25) is a linear approximation since u on the RHS is to the first
power. If, however, we consider nonlinear approximations of ux, we can in fact de-
velop approximations that are nonoscillatory. The details of such nonlinear approx-
imations are beyond the scope of this discussion, so we will merely mention that
they are termed high-resolution methods that seek a total variation diminishing solu-
tion. Such methods, which include flux limiter and weighted essentially nonoscillatory
methods, seek to avoid nonreal oscillations when shocks or discontinuities occur in
the solution (such as in the Riemann problem) [3].

So far we have considered only the MOL solution of first-order PDEs, for ex-
ample, Eq. (1.8). We conclude this discussion of the MOL by considering a second-
order PDE, the parabolic Eq. (1.1). To begin, we need an approximation for the sec-
ond derivative uxx. A commonly used second-order, central approximation is (again,
derived from the Taylor series, so the term O(�x2) represents the truncation error)

uxx ≈ ui+1 − 2ui + ui−1

�x2
+ O(�x2) (1.28)

Substitution of Eq. (1.28) in Eq. (1.8) gives a system of approximating ODEs

dui

dt
= D

ui+1 − 2ui + ui−1

�x2
, i = 1, 2, . . . , M (1.29)

Equation (1.29) is then integrated subject to IC (1.2) and BCs (1.3a) and (1.3b).
This integration in t can be by the explicit Euler method, the implicit Euler method,
or any other higher-order integrator for initial-value ODEs. Generally stability is
not as much of a concern as with the previous hyperbolic PDEs (a characteristic
of parabolic PDEs that tend to smooth solutions rather than hyperbolic PDEs that
tend to propagate nonsmooth conditions). However, stability constraints do exist
for explicit methods. For example, for the explicit Euler method with a step �t in t,
the stability constraint is D�t/�x2 < constant (so that as �x is reduced to achieve
better spatial accuracy in x, �t must also be reduced to maintain stability).

Before proceeding with the integration of Eq. (1.29), we must include BCs (1.3a)
and (1.3b). The Dirichlet BC at x = x0, Eq. (1.3a), is merely

u1 = ub (1.30)

and therefore the ODE of Eq. (1.29) for i = 1 is not required and the ODE for i = 2
becomes

du2

dt
= D

u3 − 2u2 + ub

�x2
(1.31)

DIFFERENTIAL ALGEBRAIC EQUATIONS

Equation (1.30) is algebraic, and therefore in combination with the ODEs of
Eq. (1.29), we have a differential algebraic (DAE) system.

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

12 A Compendium of Partial Differential Equation Models

At i = M, we have Eq. (1.29)

duM

dt
= D

uM+1 − 2uM + uM−1

�x2
(1.32)

Note that uM+1 is outside the grid in x; that is, M + 1 is a fictitious point. But we must
assign a value to uM+1 if Eq. (1.32) is to be integrated. Since this requirement occurs
at the boundary point i = M, we obtain this value by approximating BC (1.3b) using
the centered FD approximation of Eq. (1.25)

ux ≈ uM+1 − uM−1

2�x
= 0

or

uM+1 = uM−1 (1.33)

We can add Eq. (1.33) as an algebraic equation to our system of equations, that
is, continue to use the DAE format, or we can substitute uM+1 from Eq. (1.33) into
the Eq. (1.32)

duM

dt
= D

uM−1 − 2uM + uM−1

�x2
(1.34)

and arrive at an ODE system (Eq. (1.29) for i = 3, . . . , M − 1, Eq. (1.31) for i = 2,
and Eq. (1.34) for i = M). Both approaches, either an ODE system or a DAE
system, have been used in MOL studies. Either way, we now have a complete
formulation of the MOL ODE or DAE system, including the BCs at i = 1, M in
Eq. (1.29). The integration of these equations then gives the numerical solution
u1(t), u2(t), . . . , uM(t). The preceding discussion is based on a relatively basic DAE
system, but it indicates that integrators designed for DAE systems can play an im-
portant role in MOL analysis.

If the implicit Euler method is applied to Eq. (1.29), we have

un+1
i − un

i

�t
= D

un+1
i+1 − 2un+1

i + un+1
i−1

�x2
, i = 1, 2, . . . , M

or (with α = D�t/�x2),

un+1
i+1 − (1/α + 2)un+1

i + un+1
i−1 = (1/α)un

i , i = 1, 2, . . . , M

which is a tridiagonal system of algebraic equations (three unknowns in each equa-
tion). Since such banded systems (the nonzero elements are banded around the main
diagonal) are common in the numerical solution of PDE systems, special algorithms
have been developed to take advantage of the banded structure, typically by not
storing and using the zero elements outside the band. These special algorithms that
take advantage of the structure of the problem equations can result in major savings
in computation time. In the case of tridiagonal equations, the special algorithm is
generally called Thomas’ method. If the coefficient matrix of the algebraic system
does not have a well-defined structure, such as bidiagonal or tridiagonal, but con-
sists of mostly zeros with a relatively small number of nonzero elements, which is
often the case in the numerical solution of PDEs, the coefficient matrix is said to
be sparse; special algorithms and associated software for sparse systems have been

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 13

developed that can result in very substantial savings in the storage and numerical
manipulation of sparse matrices.

Generally when applying the MOL, the integration of the approximating
ODE/DAEs (e.g., Eqs. (1.21) and (1.29)) is accomplished by using library routines
for initial-value ODE/DAEs. In other words, the explicit programming of the
ODE/DAE integration (such as the explicit or implicit Euler method) is avoided;
rather, an established integrator is used. This has the advantage that (1) the detailed
programming of the integration can be avoided, particularly the linear algebra (solu-
tion of simultaneous equations) required by an implicit integrator, so that the MOL
analysis is substantially simplified, and (2) library routines (usually written by ex-
perts) include features that make these routines especially effective (robust) and ef-
ficient such as automatic integration step size adjustment and the use of higher-order
integration methods (beyond the first-order accuracy of the Euler methods); also,
generally, they have been thoroughly tested. Thus, the use of quality ODE/DAE
library routines is usually an essential part of MOL analysis. We therefore list at the
end of this chapter some public domain sources of such library routines.

HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS

To conclude this discussion of the MOL solution of PDEs, we cover two additional
points. First, we have considered PDEs in only Cartesian coordinates, and in fact,
just one Cartesian coordinate, x. But MOL analysis can in principle be carried out
in any coordinate system. Thus, Eq. (1.1) can be generalized to

∂u
∂t

= D∇2u (1.35)

where ∇2 is the coordinate independent Laplacian operator that can then be ex-
pressed in terms of a particular coordinate system. For example, in cylindrical co-
ordinates, Eq. (1.35) is

∂u
∂t

= D
(

∂2u
∂r2

+ 1
r

∂u
∂r

+ 1
r2

∂2u
∂θ2

+ ∂2u
∂z2

)
(1.36)

and in spherical coordinates, Eq. (1.35) is

∂u
∂t

= D
[
∂2u
∂r2

+ 2
r

∂u
∂r

+ 1
r2

(
∂2u
∂θ2

+ cos θ

sin θ

∂u
∂θ

)
+ 1

r2 sin2 θ

∂2u
∂φ2

]
(1.37)

The challenge then in applying the MOL to PDEs such as Eqs. (1.36) and (1.37)
is the algebraic approximation of the RHS (∇2u) using, for example, FDs, finite el-
ements or finite volumes; all of these approximations have been used in MOL anal-
ysis, as well as Galerkin, least squares, spectral, and other methods. A particularly
demanding step is regularization of singularities such as at r = 0 (note the number
of divisions by r in the RHS of Eqs. (1.36) and (1.37)) and at θ = 0, π/2 (note the
divisions by sin(θ) in Eq. (1.37)). Thus the application of the MOL typically requires
analysis based on the experience and creativity of the analyst (i.e., it is generally not
a mechanical procedure from beginning to end).

The complexity of the numerical solution of higher-dimensional PDEs in vari-
ous coordinate systems prompts the question of why a particular coordinate system

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

14 A Compendium of Partial Differential Equation Models

would be selected over others. The mathematical answer is that the judicious choice
of a coordinate system facilitates the implementation of the BCs in the numerical so-
lution. The answer based on physical considerations is that the coordinate system
is selected to reflect the geometry of the problem system. For example, if the physi-
cal system has the shape of a cylinder, cylindrical coordinates would be used. This
choice then facilitates the implementation of the BC at the exterior surface of the
physical system (exterior surface of the cylinder). However, this can also lead to
complications such as the r = 0 singularities in Eq. (1.36) (due to the variable 1/r
and 1/r2 coefficients). The resolution of these complications is generally worth the
effort rather than the use of a coordinate system that does not naturally conform to
the geometry of the physical system. If the physical system is not shaped in accor-
dance with a particular coordinate system, that is, has an irregular geometry, then
an approximation to the physical geometry is used, generally termed body-fitted
coordinates.

h- AND p-REFINEMENT

Increasing or decreasing the grid spacing over parts or all of the problem domain is
termed h-refinement. The name comes from the common convention in the numer-
ical analysis literature of using h as the symbol for the grid spacing.

Modifying the order of the derivative approximation is termed p-refinement. The
name comes from the convention of using the symbol p for the order of the approx-
imation (e.g., O(�x)2 for a second-order approximation with p = 2).

h-refinement seeks to refine the grid spacing using local truncation error esti-
mates or other refinement parameters in order to improve the accuracy of the solu-
tion. Similarly, p-refinement seeks to refine the order of derivative approximations
(using the same refinement parameters). Generally there is no unique, general, best
combination of h- and p-refinement and the solution of large problems usually re-
quires some trial and error for a trade-off between accuracy and computational ef-
fort; the goal is to reach a prespecified bound on the global error with a minimal
amount of work [4]. We will not discuss this aspect further here, but refer to [4–6]
for further discussion.

ORIGIN OF THE NAME “METHOD OF LINES”

As a concluding point, we might consider the origin of the name method of lines.
If we consider Eq. (1.29), integration of this ODE system produces the solution
u2(t), u3(t), . . . , uM(t). (Note: u1(t) = ub, a constant, from BC (1.30).) We could then
plot these functions in an x–u(x, t) plane as a vertical line at each x (i = 2, 3, . . . , M),
with the height of each line equal to u(xi, t). In other words, the plot of the solution
would be a set of vertical parallel lines suggesting the name method of lines [7].

To illustrate this interpretation, consider the diffusion equation problem of
Eq. (1.1) with

� Diffusion coefficient D = 1
� Dirichlet BC at the left end, u(x = −5, t) = 0

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 15

Figure 1.1. MOL solution of Eq. (1.1) illustrating the origin of the method of lines

� Neumann BC at the right end, ux(x = 5, t) = 0 (spatial domain −5 ≤ x ≤ 5)
� Time domain 0 ≤ t ≤ 1
� Initial condition u(x, t = 0) = (1/2)e−(x−1)2 + e−(x+2)2

The MOL solution for the problem is shown in Figure (1.1). This numerical
solution was obtained using Matlab and the MOL library routine dss044 [7] with
the number of grid points M = 41 (so that the grid spacing is [5 − (−5)]/(41 − 1) =
0.25).

The result of Figure 1.1 matches very well the infinite-domain analytical solution

u(x, t) = 1

2
√

4Dt + 1

(
e

3(2x+1)
4Dt+1 + 2

)
e− (x+2)2

4Dt+1 (1.38)

This agreement is illustrated in Figure 1.2 where the analytical result has been super-
imposed on the MOL solution. This comparison illustrates an important distinction
between the analytical and numerical (MOL) solutions. The analytical solution is
for an infinite domain, −∞ ≤ x ≤ ∞, while the MOL solution is computed on a fi-
nite domain (as required by a computer), −5 ≤ x ≤ 5 [1]. The agreement between
the analytical and numerical solutions reflects the property that both solutions re-
main at essentially zero for u(x = −5, t) and u(x = 5, t) for t ≤ 1 as indicated in Fig-
ure 1.2.2

2 The exact analytical solution for the finite-domain problem is considerably more complicated than
Eq. (1.38) but could be derived by a finite Fourier sine transform ([8], pp. 405–415) or a Green’s
function ([9], pp. 48, 58).

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

16 A Compendium of Partial Differential Equation Models

Figure 1.2. Superposition of the MOL solution of Eq. (1.1) and the analytical solution of
Eq. (1.38)

SOURCES OF ODE/DAE INTEGRATORS

One of the very useful aspects of MOL is that it enables tried-and-tested ODE/DAE
numerical routines to be used, many of which are in the public domain. The follow-
ing sources are a good starting point for these routines. For example, the LSODE
and VODE series of ODE/DAE integrators [2s], DASSL for DAEs [2s], and
the SUNDIALS library [5s] are widely used in MOL analysis; test problems for
ODE/DAE routines are also available [6s]. Additionally, routines that can be called
from MOL codes are available to perform a variety of complementary computa-
tions (e.g., functional approximation by interpolation, evaluation of integrals, max-
imization and minimization in optimization associated with the solution of PDEs)
[1s, 3s, 4s].

[1s] http://www.netlib.org/
[2s] http://www.netlib.org/ode/index.html (emphasis on ODE/DAE software that
can be used in MOL analysis)
[3s] http://gams.nist.gov/
[4s] http://www.acm.org/toms/
[5s] http://www.llnl.gov/CASC/software.html
[6s] http://www.dm.uniba.it/∼testset/

REFERENCES

[1] Hamdi, S., W. E. Schiesser, and G. W. Griffiths (2007), Method of Lines, Scholar-
pedia, 2(7):2859; available online at http://www.scholarpedia.org/article/method of
lines

[2] Wesseling, P. (2001), Principles of Computational Fluid Dynamics, Springer, Berlin
[3] Shu, C.-W. (1998), Essentially Non-Oscillatory and Weighted Essential Non-Oscillatory

Schemes for Hyperbolic Conservation Laws, In: B. Cockburn, C. Johnson, C.-W. Shu,

P1: PHB

chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 17

and E. Tadmor (Eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic
Equations, Lecture Notes in Mathematics, vol. 1697, Springer, Berlin, pp. 325–432

[4] de Sterck, H., T. A. Manteuffel, S. F. McCormick, J. Nolting, J. Ruge, and L. Tang
(2008), Efficiency-Based h- and hp-Refinement Strategies for Finite Element Methods,
Num. Linear Algebr. Appl., 15: 89–114.

[5] Aftosmis, M. J. and M. J. Berger (2002), Multilevel Error Estimation and Adaptive
h-Refinement for Cartesian Meshes with Embedded Boundaries, In: AIAA Paper 2002-
0863, 40th AIAA Aerospace Sciences Meeting and Exhibit, January 14–17, 2002, Reno,
NV

[6] Dong, S. and G. E. Karniadakis (May 9, 2003), p-Refinement and p-Threads, Comput.
Methods Appl. Mech. Eng., 192(19): 2191–2201

[7] Schiesser, W. E. (1991), Numerical Method of Lines Integration of Partial Differential
Equations, Academic Press, San Diego, CA

[8] Schiesser, W. E. (1994), Computational Mathematics in Engineering and Applied Sci-
ence: ODEs, DAEs, and PDEs, CRC Press, Boca Raton, FL

[9] Polyanin, A. (2002), Handbook of Linear Partial Differential Equations for Engineers
and Scientists, Chapman & Hall/CRC, Boca Raton, FL

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

2

A One-Dimensional, Linear Partial
Differential Equation

This partial differential equation (PDE) problem is considered for the following
reasons:

1. The PDE has an exact solution that can be used to assess the accuracy of the
numerical method of lines (MOL) solution.

2. Both Dirichlet and Neumann boundary conditions (BCs) are included in the
analysis.

3. The use of library routines for the finite-difference (FD) approximation of
the spatial (boundary-value) derivative is illustrated.

4. The explicit programming of the FD approximations is included for compari-
son with the use of the library routines.

5. Some basic methods for assessing the accuracy of the MOL solution are pre-
sented.

The PDE is the one-dimensional (1D) heat conduction equation in Cartesian co-
ordinates:

ut = uxx (2.1)

Here we have used subscript notation for partial derivatives, so

ut ↔ ∂u
∂t

uxx ↔ ∂2u
∂x2

The initial condition (IC) is

u(x, t = 0) = sin(πx/2) (2.2)

A Dirichlet BC is specified at x = 0,

u(x = 0, t) = 0 (2.3)

and a Neumann BC is specified at x = 1,

ux(x = 1, t) = 0 (2.4)

18

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 19

The analytical solution to Eqs. (2.1)–(2.4) is

u(x, t) = e−(π2/4)t sin(πx/2) (2.5)

A main program in Matlab for the MOL solution of Eqs. (2.1)–(2.4) with the
analytical solution, Eq. (2.5), included for comparison with the MOL solution, is
given in Listing 2.1.

%
% Clear previous files
clear all
clc

%
% Parameters shared with the ODE routine
global ncall ndss

%
% Initial condition
n=21;
for i=1:n

u0(i)=sin((pi/2.0)*(i-1)/(n-1));
end

%
% Independent variable for ODE integration
t0=0.0;
tf=2.5;
tout=linspace(t0,tf,n);
nout=n;
ncall=0;

%
% ODE integration
mf=1;
reltol=1.0e-04; abstol=1.0e-04;
options=odeset(’RelTol’,reltol,’AbsTol’,abstol);
if(mf==1) % explicit FDs

[t,u]=ode15s(@pde_1,tout,u0,options); end
if(mf==2) ndss=4; % ndss = 2, 4, 6, 8 or 10 required

[t,u]=ode15s(@pde_2,tout,u0,options); end
if(mf==3) ndss=44; % ndss = 42, 44, 46, 48 or 50 required

[t,u]=ode15s(@pde_3,tout,u0,options); end
%
% Store numerical and analytical solutions, errors at x = 1/2
n2=(n-1)/2.0+1;
sine=sin(pi/2.0*0.5);
for i=1:nout

u_plot(i)=u(i,n2);
u_anal(i)=exp(-pi^2/4.0*t(i))*sine;
err_plot(i)=u_plot(i)-u_anal(i);

end

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

20 A Compendium of Partial Differential Equation Models

%
% Display selected output
fprintf(’\n mf = %2d abstol = %8.1e reltol = %8.1e\n’, ...

mf,abstol,reltol);
fprintf(’\n t u(0.5,t) u_anal(0.5,t)

err u(0.5,t)\n’);
for i=1:5:nout
fprintf(’%6.3f%15.6f%15.6f%15.7f\n’, ...

t(i),u_plot(i),u_anal(i),err_plot(i));
end
fprintf(’\n ncall = %4d\n’,ncall);

%
% Plot numerical solution and errors at x = 1/2
figure(1);
subplot(1,2,1)
plot(t,u_plot); axis tight
title(’u(0.5,t) vs t’); xlabel(’t’); ylabel(’u(0.5,t)’)
subplot(1,2,2)
plot(t,err_plot); axis tight
title(’Err u(0.5,t) vs t’); xlabel(’t’);

ylabel(’Err u(0.5,t)’);
print -deps pde.eps; print -dps pde.ps; print -dpng pde.png

%
% Plot numerical solution in 3D perspective
figure(2);
colormap(’Gray’);
C=ones(n);
g=linspace(0,1,n); % For distance x
h1=waterfall(t,g,u’,C);
axis(’tight’);
grid off
xlabel(’t, time’)
ylabel(’x, distance’)
zlabel(’u(x,t)’)
s1=sprintf(’Diffusion Equation - MOL Solution’);
sTmp=sprintf(’u(x,0) = sin(\\pi x/2)’);
s2=sprintf(’Initial condition: %s’,sTmp);
title([{s1}, {s2}],’fontsize’,12);
v=[0.8616 -0.5076 0.0000 -0.1770

0.3712 0.6301 0.6820 -0.8417
0.3462 0.5876 -0.7313 8.5590

0 0 0 1.0000];
view(v);
rotate3d on;

Listing 2.1. Main program pde 1 main

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 21

We can note the following points about the main program given in Listing 2.1:

1. After declaring some parameters global so that they can be shared with other
routines called via this main program, IC (2.2) is computed over a 21-point
grid in x.

%
% Clear previous files
clear all
clc

%
% Parameters shared with the ODE routine
global ncall ndss

%
% Initial condition
n=21;
for i=1:n

u0(i)=sin((pi/2.0)*(i-1)/(n-1));
end

2. The independent variable t is defined over the interval 0 ≤ t ≤ 2.5; again, a
21-point grid is used.

%
% Independent variable for ODE integration
t0=0.0;
tf=2.5;
tout=linspace(t0,tf,n);
nout=n;
ncall=0;

3. The 21 ordinary differential equations (ODEs) are then integrated by a call
to the Matlab integrator ode15s.

%
% ODE integration
mf=1;
reltol=1.0e-04; abstol=1.0e-04;
options=odeset(’RelTol’,reltol,’AbsTol’,abstol);
if(mf==1) % explicit FDs

[t,u]=ode15s(@pde_1,tout,u0,options); end

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

22 A Compendium of Partial Differential Equation Models

if(mf==2) ndss=4; % ndss = 2, 4, 6, 8 or 10 required
[t,u]=ode15s(@pde_2,tout,u0,options); end

if(mf==3) ndss=44; % ndss = 42, 44, 46, 48 or 50 required
[t,u]=ode15s(@pde_3,tout,u0,options); end

Three cases are programmed corresponding to mf=1,2,3, for which three
different ODE routines, pde 1, pde 2, and pde 3, are called (these routines
are discussed subsequently). The variable ndss refers to a library of differ-
entiation routines for use in the MOL solution of PDEs; the use of ndss is
illustrated in the subsequent discussion. Note that a stiff integrator, ode15s,
was selected because the 21 ODEs are sufficiently stiff that a nonstiff integra-
tor results in a large number of calls to the ODE routine.

4. Selected numerical results are stored for subsequent tabular and plotted out-
put.

%
% Store numerical and analytical solutions, errors at x = 1/2
n2=(n-1)/2.0+1;
sine=sin(pi/2.0*0.5);
for i=1:nout
u_plot(i)=u(i,n2);
u_anal(i)=exp(-pi^2/4.0*t(i))*sine;
err_plot(i)=u_plot(i)-u_anal(i);

end

5. Selected tabular numerical output is displayed.

%
% Display selected output
fprintf(’\n mf = %2d abstol = %8.1e reltol = %8.1e\n’,...

mf,abstol,reltol);
fprintf(’\n t u(0.5,t) u_anal(0.5,t) err u(0.5,t)\n’);
for i=1:5:nout
fprintf(’%6.3f%15.6f%15.6f%15.7f\n’,...

t(i),u_plot(i),u_anal(i),err_plot(i));
end
fprintf(’\n ncall = %4d\n’,ncall);

The output from this code is given in Table 2.1.

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 23

Table 2.1. Output for mf=1 from pde 1 main and pde 1

mf = 1 abstol = 1.0e-004 reltol = 1.0e-004

t u(0.5,t) u_anal(0.5,t) err u(0.5,t)

0.000 0.707107 0.707107 0.0000000

0.625 0.151387 0.151268 0.0001182

1.250 0.032370 0.032360 0.0000093

1.875 0.006894 0.006923 -0.0000283

2.500 0.001472 0.001481 -0.0000091

ncall = 85

The output displayed in Table 2.1 indicates that the MOL solution agrees
with the analytical solution to at least three significant figures. Also, ode15s
calls the derivative routine only 85 times (in contrast with the nonstiff integra-
tor ode45, which requires approximately 5,000–10,000 calls, clearly indicating
the advantage of a stiff integrator for this problem).

6. The MOL solution and its error (computed from the analytical solution) are
plotted.

%
% Plot numerical solution and errors at x = 1/2
figure(1);
subplot(1,2,1)
plot(t,u_plot); axis tight
title(’u(0.5,t) vs t’); xlabel(’t’); ylabel(’u(0.5,t)’)
subplot(1,2,2)
plot(t,err_plot); axis tight
title(’Err u(0.5,t) vs t’); xlabel(’t’); ...

ylabel(’Err u(0.5,t)’)
print -deps pde.eps; print -dps pde.ps; print -dpng pde.png

The plotted error output shown in Figure 2.1 indicates that the error in
the MOL solution varied between approximately −3 × 10−5 and 16 × 10−5,
which is not quite within the error range specified in the program

reltol=1.0e-04; abstol=1.0e-04;

The fact that the error tolerances illustrated in Figure 2.1 were not sat-
isfied does not necessarily mean that ode15s failed to adjust the integration

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

24 A Compendium of Partial Differential Equation Models

0 0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u(0.5, t) vs. t Err u(0.5, t) vs. t

t

u
(0

.5
, t

)

E
rr

 u
(0

.5
, t

)

0 0.5 1 1.5 2 2.5

−2

0

2

4

6

8

10

12

14

16

t

x105

Figure 2.1. Two-dimensional graphical output from pde 1 main; mf=1

interval to meet these error tolerances. Rather, the error of approximately
1.6 × 10−4 is due to the limited accuracy of the second-order FD approxima-
tion of ∂2u/∂x2 programmed in pde 1. This conclusion is confirmed when the
main program calls pde 2 (for mf=2) or pde 3 (for mf=3), as discussed subse-
quently; these two routines have FD approximations that are more accurate
than in pde 1, so the errors fall below the specified tolerances.

This analysis indicates that two sources of errors result from the MOL
solution of PDEs such as Eq. (2.1): (1) errors due to the integration in t
(by ode15s) and (b) errors due to the approximation of the spatial deriva-
tives such as ∂2u/∂x2 programmed in the derivative routine such as pde 1. In
other words, we have to be attentive to integration errors in the initial- and
boundary-value independent variables.

In summary, a comparison of the numerical and analytical solutions indi-
cates that 21 grid points in x were not sufficient when using the second-order
FDs in pde 1. However, in general, we will not have an analytical solution
such as Eq. (2.5) to determine if the number of spatial grid points is adequate.
In this case, some experimentation with the number of grid points, and the ob-
servation of the resulting solutions to infer the degree of accuracy or spatial
convergence, may be required.

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 25

7. A 3D plot is also produced.

%
% Plot numerical solution in 3D perspective
figure(2);
colormap(’Gray’);
C=ones(n);
g=linspace(0,1,n); % For distance x
h1=waterfall(t,g,u’,C);
axis(’tight’);
grid off
xlabel(’t, time’)
ylabel(’x, distance’)
zlabel(’u(x,t)’)
s1=sprintf(’Diffusion Equation - MOL Solution’);
sTmp=sprintf(’u(x,0) = sin(\\pi x/2)’);
s2=sprintf(’Initial condition: %s’,sTmp);
title([{s1}, {s2}],’fontsize’,12);
v=[0.8616 -0.5076 0.0000 -0.1770

0.3712 0.6301 0.6820 -0.8417
0.3462 0.5876 -0.7313 8.5590

0 0 0 1.0000];
view(v);
rotate3d on;

The plotted output shown in Figure 2.2 clearly indicates the origin of the
lines in the method of lines (also discussed in Chapter 1).

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Time, t

Diffusion equation – MOL solution
Initial condition: u(x, 0) = sin(π x/2)

Distance, x

u
(x

, t
)

Figure 2.2. Three-dimensional graphical output from pde 1 main; mf=1

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

26 A Compendium of Partial Differential Equation Models

The programming of the approximating MOL/ODEs is in one of the three rou-
tines called by ode15s. We now consider each of these routines. For mf=1, ode15s
calls function pde 1 (see Listing 2.2).

function ut=pde_1(t,u)
%
% Problem parameters
global ncall
xl=0.0;
xu=1.0;

%
% PDE
n=length(u);
dx2=((xu-xl)/(n-1))^2;
for i=1:n
if(i==1) ut(i)=0.0;
elseif(i==n) ut(i)=2.0*(u(i-1)-u(i))/dx2;
else ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dx2;
end

end
ut=ut’;

%
% Increment calls to pde_1
ncall=ncall+1;

Listing 2.2. Routine pde 1

We can note the following points about pde 1:

1. After the call definition of the function, some problem parameters are de-
fined.

function ut=pde_1(t,u)
%
% Problem parameters
global ncall
xl=0.0;
xu=1.0;

xl and xu could have also been set in the main program and passed to pde 1
as global variables. The defining statement at the beginning of pde 1 indicates

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 27

that the independent variable t and dependent variable vector u are inputs to
pde 1, while the output is the vector of t derivatives, ut; in other words, all of
the n ODE derivatives in t must be defined in pde 1.

2. The FD approximation of Eq. (2.1) is then programmed.

%
% PDE
n=length(u);
dx2=((xu-xl)/(n-1))^2;
for i=1:n

if(i==1) ut(i)=0.0;
elseif(i==n) ut(i)=2.0*(u(i-1)-u(i))/dx2;
else ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dx2;

end
end
ut=ut’;

The number of ODEs (21) is determined by the length command
n=length(u); so that the programming is general (the number of ODEs can
easily be changed in the main program). The square of the FD interval, dx2,
is then computed.

3. The MOL programming of the 21 ODEs is done in the for loop. For BC (2.3),
the coding is

if(i==1) ut(i)=0.0;

since the value of u(x = 0, t) = 0 does not change after being set as an IC in
the main program (and therefore its time derivative is zero).

4. For BC (2.4), the coding is

elseif(i==n) ut(i)=2.0*(u(i-1)-u(i))/dx2;

which follows directly from the FD approximation of BC (2.4),

ux ≈ u(i + 1) − u(i − 1)
�x

= 0

or with i = n,

u(n + 1) = u(n − 1)

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

28 A Compendium of Partial Differential Equation Models

Note that the fictitious value u(n + 1) can then be replaced in the ODE at
i = n by u(n − 1).

5. For the remaining interior points, the programming is

else ut(i)=(u(i+1)-2.0*u(i)+u(i-1))/dx2;

which follows from the FD approximation of the second derivative

uxx ≈ (u(i + 1) − 2u(i) + u(i − 1))
�x2

6. Since the Matlab ODE integrators require a column vector of derivatives, a
final transpose of ut is required.

ut=ut’;
%
% Increment calls to pde_1
ncall=ncall+1;

Finally, the number of calls to pde 1 is incremented so that at the end
of the solution, the value of ncall displayed by the main program gives an
indication of the computational effort required to produce the entire solu-
tion. The numerical and graphical output for this case (mf=1) was discussed
previously.

For mf=2, function pde 2 is called by ode15s (see Listing 2.3).

function ut=pde_2(t,u)
%
% Problem parameters
global ncall ndss
xl=0.0;
xu=1.0;

%
% BC at x = 0 (Dirichlet)
u(1)=0.0;

%
% Calculate ux
n=length(u);
if (ndss== 2) ux=dss002(xl,xu,n,u); % second order
elseif(ndss== 4) ux=dss004(xl,xu,n,u); % fourth order

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 29

elseif(ndss== 6) ux=dss006(xl,xu,n,u); % sixth order
elseif(ndss== 8) ux=dss008(xl,xu,n,u); % eighth order
elseif(ndss==10) ux=dss010(xl,xu,n,u); % tenth order
end

%
% BC at x = 1 (Neumann)
ux(n)=0.0;

%
% Calculate uxx
if (ndss== 2) uxx=dss002(xl,xu,n,ux); % second order
elseif(ndss== 4) uxx=dss004(xl,xu,n,ux); % fourth order
elseif(ndss== 6) uxx=dss006(xl,xu,n,ux); % sixth order
elseif(ndss== 8) uxx=dss008(xl,xu,n,ux); % eighth order
elseif(ndss==10) uxx=dss010(xl,xu,n,ux); % tenth order
end

%
% PDE
ut=uxx’;
ut(1)=0.0;

%
% Increment calls to pde_2
ncall=ncall+1;

Listing 2.3. Routine pde 2

We can note the following points about pde 2:

1. The initial statements are the same as in pde 1. Then the Dirichlet BC at x = 0
is programmed.

%
% BC at x = 0 (Dirichlet)
u(1)=0.0;

Actually, the statement u(1)=0.0; has no effect since the dependent vari-
ables can only be changed through their derivatives, that is, ut(1), in the
ODE derivative routine. This code was included just to serve as a reminder
of the BC at x = 0, which is programmed subsequently.

2. The first-order spatial derivative ∂u/∂x = ux is then computed.

%
% Calculate ux
n=length(u);

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

30 A Compendium of Partial Differential Equation Models

if (ndss==2) ux=dss002(xl,xu,n,u); % second order
elseif(ndss== 4) ux=dss004(xl,xu,n,u); % fourth order
elseif(ndss== 6) ux=dss006(xl,xu,n,u); % sixth order
elseif(ndss== 8) ux=dss008(xl,xu,n,u); % eighth order
elseif(ndss==10) ux=dss010(xl,xu,n,u); % tenth order
end

Five library routines, dss002 to dss010, are programmed that use second-
order to tenth-order FD approximations, respectively. Since ndss=4 is speci-
fied in the main program, dss004 is used in the calculation of ux.

3. BC (2.4) is then applied, followed by the calculation of the second-order spa-
tial derivative from the first-order spatial derivative.

%
% BC at x = 1 (Neumann)
ux(n)=0.0;

%
% Calculate uxx
if (ndss== 2) uxx=dss002(xl,xu,n,ux); % second order
elseif(ndss== 4) uxx=dss004(xl,xu,n,ux); % fourth order
elseif(ndss== 6) uxx=dss006(xl,xu,n,ux); % sixth order
elseif(ndss== 8) uxx=dss008(xl,xu,n,ux); % eighth order
elseif(ndss==10) uxx=dss010(xl,xu,n,ux); % tenth order
end

Again, dss004 is called, which is the usual procedure (the order of the FD ap-
proximation is generally not changed in computing higher-order derivatives
from lower-order derivatives, a process termed stagewise differentiation).

4. Finally, Eq. (2.1) is programmed and the Dirichlet BC at x = 0 (Eq. (2.3)) is
applied.

%
% PDE
ut=uxx’;
ut(1)=0.0;

%
% Increment calls to pde_2
ncall=ncall+1;

Note the similarity of the code to the PDE (Eq. (2.1)), and also the transpose
required by ode15s.

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 31

Table 2.2. Output for mf=2 from pde 1 main and pde 2

mf = 2 abstol = 1.0e-004 reltol = 1.0e-004

t u(0.5,t) u_anal(0.5,t) err u(0.5,t)

0.000 0.707107 0.707107 0.0000000

0.625 0.151267 0.151268 -0.0000013

1.250 0.032318 0.032360 -0.0000418

1.875 0.006878 0.006923 -0.0000446

2.500 0.001467 0.001481 -0.0000138

ncall = 62

The numerical output for this case (mf=2) is provided in Table 2.2. The plotted
error output given in Figure 2.3 indicates that the error in the MOL solution varied
between approximately −5 × 10−5 and 3.2 × 10−5, which is within the error range
specified in the program

reltol=1.0e-04; abstol=1.0e-04;

Thus, switching from the second-order FDs in pde 1 to fourth-order FDs in pde 2
reduced the spatial truncation error so that the MOL solution met the specified error
tolerances.

For mf=3, function pde 3 is called by ode15s, as given in Listing 2.4.

function ut=pde_3(t,u)
%
% Problem parameters
global ncall ndss
xl=0.0;
xu=1.0;

%
% BC at x = 0
u(1)=0.0;

%
% BC at x = 1
n=length(u);
ux(n)=0.0;

%
% Calculate uxx
nl=1; % Dirichlet
nu=2; % Neumann

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

32 A Compendium of Partial Differential Equation Models

0 0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5

−4

−3

−2

−1

0

1

2

3

u(0.5, t) vs. t Err u(0.5, t) vs. t

t

u
(0

.5
, t

)

E
rr

 u
(0

.5
, t

)

x105

t

Figure 2.3. Two-dimensional graphical output from pde 1 main; mf=2

if (ndss==42) uxx=dss042(xl,xu,n,u,ux,nl,nu);
% second order

elseif(ndss==44) uxx=dss044(xl,xu,n,u,ux,nl,nu);
% fourth order

elseif(ndss==46) uxx=dss046(xl,xu,n,u,ux,nl,nu);
% sixth order

elseif(ndss==48) uxx=dss048(xl,xu,n,u,ux,nl,nu);
% eighth order

elseif(ndss==50) uxx=dss050(xl,xu,n,u,ux,nl,nu);
% tenth order

end
%
% PDE
ut=uxx’;
ut(1)=0.0;

%
% Increment calls to pde_3
ncall=ncall+1;

Listing 2.4. Routine pde 3

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

A One-Dimensional, Linear Partial Differential Equation 33

We can note the following points about pde 3:

1. The initial statements are the same as in pde 1. Then the Dirichlet BC at x = 0
and the Neumann BC at x = 1 are programmed.

function ut=pde_3(t,u)
%
% Problem parameters
global ncall ndss
xl=0.0;
xu=1.0;

%
% BC at x = 0
u(1)=0.0;

%
% BC at x = 1
n=length(u);
ux(n)=0.0;

Again, the statement u(1)=0.0; has no effect (since the dependent vari-
ables can only be changed through their derivatives, i.e., ut(1), in the ODE
derivative routine). This code was included just to serve as a reminder of the
BC at x = 0, which is programmed subsequently.

2. The second-order spatial derivative ∂2u/∂x2 = uxx is then computed.

%
% Calculate uxx

nl=1; % Dirichlet
nu=2; % Neumann
if (ndss==42) uxx=dss042(xl,xu,n,u,ux,nl,nu); % second order
elseif(ndss==44) uxx=dss044(xl,xu,n,u,ux,nl,nu); % fourth order
elseif(ndss==46) uxx=dss046(xl,xu,n,u,ux,nl,nu); % sixth order
elseif(ndss==48) uxx=dss048(xl,xu,n,u,ux,nl,nu); % eighth order
elseif(ndss==50) uxx=dss050(xl,xu,n,u,ux,nl,nu); % tenth order
end

Five library routines, dss042 to dss050, are programmed that use second-
order to tenth-order FD approximations, respectively, for a second deriva-
tive. Since ndss=44 is specified in the main program, dss044 is used in the
calculation of uxx. Also, these differentiation routines have two parame-
ters that specify the type of BCs: (a) nl=1 or 2 specifies a Dirichlet or a

P1: PHB

chap2 CUUS488/Griffiths 978 0 521 51986 1 December 29, 2008 7:14

34 A Compendium of Partial Differential Equation Models

Table 2.3. Output for mf=3 from pde 1 main and pde 3

mf = 3 abstol = 1.0e-004 reltol = 1.0e-004

t u(0.5,t) u_anal(0.5,t) err u(0.5,t)

0.000 0.707107 0.707107 0.0000000

0.625 0.151267 0.151268 -0.0000017

1.250 0.032318 0.032360 -0.0000420

1.875 0.006878 0.006923 -0.0000447

2.500 0.001467 0.001481 -0.0000138

ncall = 62

Neumann BC, respectively, at the lower boundary value of x = xl(= 0); in this
case, BC (2.3) is Dirichlet, so nl=1; and (b) nu=1 or 2 specifies a Dirichlet or
a Neumann BC, respectively, at the upper boundary value of x = xu(= 1); in
this case, BC (2.4) is Neumann, so nu=2.

3. Finally, Eq. (2.1) is programmed and the Dirichlet BC at x = 0 (Eq. (2.3)) is
applied.

%
% PDE
ut=uxx’;
ut(1)=0.0;

%
% Increment calls to pde_3
ncall=ncall+1;

Again, the transpose is required by ode15s.

The numerical output for this case (mf=3) is given in Table 2.3. The plotted
error output shown in Figure 2.4 indicates that the error in the MOL solution varied
between approximately −4.8 × 10−5 and 3.2 × 10−5, which is within the error range
specified in the program

reltol=1.0e-04; abstol=1.0e-04;

We conclude the example given in Figure 2.4 with the following observation: As
the solution approaches steady state, t → ∞, ut → 0, and from Eq. (2.1), uxx → 0.

