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Preface

This book had its origin in a graduate course in statistical mechanics given by
Professor W. C. Schieve in the Ilya Prigogine Center for Statistical Mechanics at
the University of Texas in Austin.

The emphasis is quantum non-equilibrium statistical mechanics, which makes
the content rather unique and advanced in comparison to other texts. This was
motivated by work taking place at the Austin Center, particularly the interaction
with Radu Balescu of the Free University of Brussels (where Professor Schieve
spent a good deal of time on various occasions). Two Ph.D. candidate theses at
Austin, those of Kenneth Hawker and John Middleton, are basic to Chapters 3
and 4, where the master equations and quantum kinetic equations are discussed.
The theme there is the dominant and fundamental one of quantum irreversibil-
ity. The particular emphasis throughout this book is that of open systems, i.e.
quantum systems in interaction with reservoirs and not isolated. A particularly
influential work is the book of Professor A. McLennan of Lehigh University,
under whose influence Professor Schieve first learned non-equilibrium statistical
mechanics.

An account of relatively recent developments, based on the addition in the
Schrödinger equation of stochastic fluctuations of the wave function, is given in
Chapter 13. These methods have been developed to account for the collapse of the
wave function in the process of measurement, but they are deeply connected as
well with models for irreversible evolution.

The first six chapters of the present work set forth the theme of our book, par-
ticularly extending the entropy principle that was first introduced by Boltzmann,
classically. These, with equilibrium quantum applications (Chapters 7, 8, 9 and
possibly also Chapters 14 and 15), represent a one-semester advanced course on
the subject.

xi



xii Preface

As frequently pointed out in the text, quantum mechanics introduces special
problems to statistical mechanics. Even in Chapter 1, written by the coauthor of this
work, Professor Lawrence P. Horwitz of Tel Aviv, the idea of a density operator is
required which is not a probability distribution, as in the classical case. The idea of
the density operator lies at the very foundations of the quantum theory, providing
a description of a quantum state in the most general way. Statistical mechanics
requires this full generality. We give a proof of the Gleason theorem, stating that
in a Hilbert space of three or more real dimensions, a general quantum state has a
representation as a density operator, based on an elegant construction of C. Piron.
This structure gives the quantum H theorem, a content which is essentially different
from the classical one. This makes the subject surely interesting and important, but
difficult.

Quantum entanglements are quite like magic, so to speak. It is necessary and
important to see these modern developments; they are described in Chapter 15.
This is one chapter that might be used in the extension of the course to a second
semester. One- and two-time Green’s functions, introduced by Kadanoff and Baym,
might be included in the extended treatment, since they are popular but difficult.
This is included in Chapter 16 with an application in Chapter 19.

An extension to special relativity is described in Chapter 10. This is a new deriva-
tion of a many-body covariant kinetic theory. The Boltzmann-like kinetic equation
outlined here was derived in collaboration by the authors. The covariant picture is
an event dynamics controlled by an abstract time variable first introduced by both
Feynman and Stueckelberg and obtains a covariant scalar many-body wave func-
tion parameterized by the new time variable. The results of this event picture are
outlined in Chapter 10.

Another arena of activity utilizing quantum kinetic equations for open systems
is the extensive development in quantum optics. This has been a personal interest
of one of the authors (WCS). This interest was a result of a Humboldt Founda-
tion grant to the Max Planck Institute in Munich and later to Ulm, under the
direction of Professors Herbert Walther, Marlon Scully and Wolfgang Schleich.
The particular area of interest is described in the results outlined in Chapter 11.
This material can be included as an introduction to quantum optics in an extended
two-semester course.

The idea of spontaneous decay in a quantum system goes back to Gamov
in quantum mechanics. This irreversible process seems intrinsic, introducing the
notion of the Gel’fand triplet and rigged Hilbert spaces states. The coauthor (LPH)
has made personal contributions to this fundamental change in the wave function
picture. It is very appropriate to include an extensive discussion of this, which is
the content of Chapter 17, describing, among other things, the Wigner–Weisskopf
method and the Lax–Phillips approach to enlarging the scope of quantum wave



Preface xiii

functions. All of this requires a more advanced mathematical approach than the
earlier discussions in this book. However, it is necessary that a well-grounded
student of quantum mechanics know these things, as well as acquire the mathe-
matical tools, and therefore it is very appropriate here in a discussion of quantum
statistical mechanics.

Chapter 18 is in many ways an extension of Chapter 17. It is an outline of what
has been called extended statistical mechanics. Ilya Prigogine and his colleagues
in Brussels and Austin, in the past few years, have attempted to formulate many-
body dynamics which is intrinsically irreversible. In the classical case this may
be termed the complex Liouville eigenvalue method. As an example, the Pauli
equation is derived again by these nonperturbative methods. This is not an open-
system dynamics but rather, like the previous Chapter 17 discussion, one of closed
isolated dynamics. This effort is not finished, and the interested student may look
upon this as an introductory challenge.

The final chapter of this book is in many ways a diversion, a topic for personal
pleasure. The remarkable objects of our universe known as black holes apparently
exist in abundance. These super macroscopic objects obey a simple equilibrium
thermodynamics, as first pointed out by Bekenstein and Hawking. Remarkably,
the area of a black hole has a similarity to thermodynamic entropy. More remark-
able, the S-matrix quantum field theoretic calculation of Hawking showed that the
baryon emission of a black hole follows a Planck formula. Hawking introduced a
superscattering operator which is analogous to the extended dynamical theory of
Chapter 18.

To complete these comments, we would like to thank Florence Schieve for sup-
port and encouragement over these last years of effort on this work. She not only
gave passive help but also typed into the computer several drafts of the book as well
as communicating with the coauthor and the editorial staff of the publisher. The
second coauthor wishes also to thank his wife Ruth for her patience, understanding,
and support during the writing of some difficult chapters.

We also acknowledge the help of Annie Harding of the Center here in Austin.
Three colleagues at the University of Texas—Tomio Petrosky, George Sudarshan
and Arno Bohm—also made valuable technical comments. WCS also thanks the
graduate students who, over many years of graduate classes, made enlightened
comments on early manuscripts.

We recognize the singular role of Ilya Prigogine in creating an environment in
Brussels and Austin in which the study of non-equilibrium statistical mechanics
was our primary goal and enthusiasm.

Finally, WCS thanks the Alexander von Humboldt Foundation for making pos-
sible extended visits to the Max Planck Institute of Quantum Optics in Garching
and later in Ulm. LPH thanks the Center for Statistical Mechanics and Complex
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Systems at the University of Texas at Austin for making possible many visits over
the years that formed the basis for his collaboration with Professor Schieve, and the
Institute for Advanced Study at Princeton, particularly Professor Stephen L. Adler,
for hospitality during a series of visits in which, among other things, he learned of
the theory of stochastic evolution, and which brought him into proximity with the
University of Texas at Austin.



1

Foundations of quantum statistical mechanics

1.1 The density operator and probability

Statistical mechanics is concerned with the construction of methods for computing
the expected value of observables important for characterizing the properties of
physical systems, generally containing many degrees of freedom. Starting with a
formally complete detailed description for these many degrees of freedom, proba-
bility theory is used to obtain effective procedures. Quantum statistical mechanics
makes use of two types of probability theory. One of these is the set of natural
probabilities associated with the quantum theory which emerges from its structure
as a Hilbert space. For example, the Born probability is associated with the square
of a wave function. The second is the essentially classical probability associated
with an ensemble of separate systems, each with an a priori probability assigned
by the frequency of occurrence in the ensemble. The quantity which describes both
types of probability in an efficient, convenient way is the density operator.

As an example which illustrates many of the basic ideas, consider a beam of
particles with spin 1

2 . We shall repeat the resulting definitions later in complete
generality.

The spin states of these particles are represented by two-dimensional spinors
which we denote by the Dirac kets |σ z〉 for σ z = ±1, corresponding to the z
component of the spin σ of the particle. If we perform a filtering measurement to
select a particle of spin σ ′ with spin σ ′z = ±1 in the z direction, the outcome of the
measurement on a beam of particles with spin σ z is

∣∣〈σ ′z | σ z
〉∣∣2 = δσ ′z ,σ z .

This result can be written as

∣∣〈σ ′z | σ z
〉∣∣2 = TrPz

(
σ ′

)
Pz (σ ) ,

1
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where the projection operator Pz (σ ) = |σ z 〉〈 σ z| represents the state of the
beam of particles with spin σ of definite value σ z, and the projection opera-
tor Pz

(
σ ′

)
represents the experimental question of which value, ±1, this set of

particles has.
If we measure instead a different component of spin and, for example, ask for the

fraction of particles in the ensemble with spin in the±x direction, the measurement
is represented by a projection operator Px (σ ) = |σ x 〉〈 σ x |, with σ x = ±1. In terms
of the eigenvectors of σ z ,

|σ x = ±1〉 = 1√
2
(|+1〉 ± |−1〉) .

It is true (for any of the values of σ x and σ z) that

|〈σ x | σ z〉|2 = 1

2
.

We can write this result as

|〈σ x | σ z〉|2 = Tr (Px (σ ) Pz (σ )) .

Let us now consider a beam of spin 1
2 particles with a fraction γ+ with spin up

and γ− with spin down in the z direction
(
γ+ + γ− = 1

)
. The probability to find

spin up as the outcome of the experiment is

P+ =
∣∣〈σ ′z = +1 | σ z = +1

〉∣∣2
γ+ +

∣∣〈σ ′z = +1 | σ z = −1
〉∣∣2

γ−
= γ+,

since the second term vanishes. If γ+ = 1
2 , the result is indistinguishable from the

probability to find a spin ± 1
2 in the x direction in a beam of particles with definite

spin in the z direction.
We can write the result of the second example as

P+ = γ+Tr
(
P

(
σ ′z = +1

)
P (σ z = +1)

)+ γ−Tr
(
P

(
σ ′z = +1

)
P (σ z = −1)

)
= Tr

(
ρP

(
σ ′z = +1

))
for

ρ ≡ γ+P (σ z = +1)+ γ−P (σ z = −1) .

The operator ρ is called the density operator, representing a state consisting of a
mixture of components with spin up and spin down in the ensemble of possibilities.
We see that, with a slight generalization of the procedure used above with ρz → ρ0,
no matter what direction 0 we test in the experiment, the outcome P0 (a linear
combination of γ+, γ− with coefficients less than unity) can never reach unity if
γ+ or γ− is not unity. In the first example, where we have a beam with definite
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σ z , the state is represented by a vector, and the measurement of the spin in the z-
direction can yield probability one. For a general choice of γ±, there is no vector
that can represent the state. In the first case the state is called pure, and it can
be represented by a projection into a one-dimensional subspace (in the previous
example, Pσ z = |σ z 〉〈 σ z|). This is equivalent to specifying the vector, up to a
phase, corresponding to the one-dimensional subspace. In the second case, it is
called mixed and does not correspond to a vector in the Hilbert space.

It is clear from the discussion of these examples that the a priori probabilities γ±
are essentially classical, reflecting the composition of the beam that was prepared
in the macroscopic laboratory.

Although a density operator ρ of the type that we have defined in this exam-
ple appears to be a somewhat artificial construction, it is actually a fundamental
structure in quantum statistical mechanics (Dirac, 1958). It enables one to study a
complex system in the framework of an ensemble and in fact occurs on the most
fundamental level of the axioms of the quantum theory.

It was shown by Birkhoff and von Neumann (1936) that both quantum mechan-
ics and classical mechanics can be formulated as the description of a set of
questions for which the answer, as a result of experiment, is “yes” or “no.” Such a
set, which includes the empty set φ (questions that are absurd, e.g. the statement
that the system does not exist) and the trivial set I (the set of all sets, e.g. the state-
ment that the system exists), and is closed with respect to intersections and unions,
is called a lattice. A lattice that satisfies the distributive law

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) ,

where ∪ represents the union and ∩ the intersection, is called Boolean. These oper-
ations have the physical meaning of “or” (the symbol ∪), in which one or the other
of the propositions is true, and “and” (the symbol ∩), for which both must be true
for the answer of the compound measurement to be “yes.” An example of such a
lattice may be constructed in terms of two-dimensional closed regions on a piece
of paper. This is discussed again in the appendix to this chapter.

Both classical and quantum theories may be associated with lattices in terms,
respectively, of the occupancy of cells in phase space or states in the subspaces of
the Hilbert space. The questions a correspond, in the first case, to the phase space
cells (with answer corresponding to occupancy) and in the second to the projec-
tion operators Pα associated with a subspace Mα, with the answer corresponding
to the values ±1 which a projection operator can have. These values correspond
to evaluating the projection operator on vectors which lie within or outside the
subspace.

Birkhoff and von Neumann asserted that the fundamental difference between
classical and quantum mechanics is that the lattices corresponding to classical
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mechanics are Boolean, and those corresponding to quantum mechanics are not.
The non-Boolean structure of the quantum lattice is associated with the lack of
commutativity of the projection operators associated with different subspaces:

a ∩ (b ∪ c) �= (a ∩ b) ∪ (a ∩ c) . (1.1)

This is a fundamental difference between classical and quantum statistics.
Let us illustrate this point by a simple example, again using the spin 1

2 system.
Each of the Pauli spin matrices has eigenvalues±1 and is therefore associated with
a set of projection operators of the form

Pi = 1

2
(1± σ i )

for i = x, y, z. Let us consider three closed linear subspaces associated with the
projections into the subspaces with the σ i positive, i.e. with the Pi defined as above
with positive signs. We call these subspaces Mx , My, Mz; they correspond to
propositions which are not compatible, i.e. the corresponding projection operators
do not commute. We shall show explicitly, for this simple example, that

Mz ∩
(
Mx ∪ My

) �= (Mz ∩ Mx) ∪
(
Mz ∩ My

)
,

that is, this set of propositions is not Boolean. The construction is interesting in
that it illustrates the special structure of the topology of Hilbert spaces as well as
the notion of the non-Boolean lattice.

We start by constructing the union of the manifolds Mx and My by their joint
linear span. Taking the standard definition of the Pauli matrices,

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
,

the projection operators into the subspaces with positive eigenvalues are

Px = 1

2
(1+ σ x) = 1

2

(
1 1
1 1

)
Py = 1

2

(
1+ σ y

) = 1

2

(
1 −i
i 1

)
Pz = 1

2
(1+ σ z) = 1

2

(
1 0
0 0

)
.

The corresponding eigenvectors are given by projecting a generic vector v into the
respective subspaces. For

v =
(
v1

v2

)
,
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using the result just given,

Pxv = 1

2
(v1 + v2)

(
1
1

)
,

so that Mx is represented by the linear span of the normalized eigenvector:

vx = 1√
2

(
1
1

)
.

Similarly,

Pyv = 1

2
(v1 − iv2)

(
1
i

)
,

so that the corresponding (normalized) eigenvector is

vy = 1√
2

(
1
i

)
.

Finally,

Pzv = v1

(
1
0

)
,

so the corresponding eigenvector is

vz =
(

1
0

)
.

The union of the subspaces Mx and My is the closed linear span of vectors in both
subspaces. By taking the combination vx + ivy , it is easy to see that the vector vz

(and hence the subspace Mz) is contained in Mx ∪My. To construct the distributed
operation

(Mz ∩ Mx) ∪
(
Mz ∩ My

)
,

we must use the construction for which the projection operator corresponding to
the intersection of two noncompatible subspaces is generated by an alternating
succession of projections into the two subspaces (Jauch, 1968). The products Pz Px

and Pz Py are, it so happens, idempotents up to coefficients less than one, i.e.

Pz Px = 1

2

(
1 1
0 0

)
(Pz Px)

2 = 1

4

(
1 1
0 0

)
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and

Pz Py = 1

2

(
1 −i
0 0

)
(
Pz Py

)2 = 1

4

(
1 −i
0 0

)
,

which implies that both (Pz Px)
n and

(
Pz Py

)n
go to zero as n →∞. Therefore,

Mz ∩ Mx = Mz ∩ My = 0.

Clearly,

Mz ∩
(
Mx ∪ My

) �= (Mz ∩ Mx) ∪
(
Mz ∩ My

)
.

Although Pz Px and Pz Py are not zero (the two corresponding vectors are not
orthogonal), the closed subspace that is common is empty. One can think of this
geometrically in terms of two lines that have some projection on the other, but
the intersection of the two lines is just a point of zero measure. Physically, this
implies that we cannot have a definite statement of the joint values of σ z and σ x or
σ y. The noncommutativity of the associated projections is essential; if they were
commutative, the product of projections would be a projection, and the products
would not converge to zero. It is clear from this example that compatible subspaces
would satisfy Boolean distributivity.

We shall later discuss the Wigner function, which appears to provide joint distri-
butions over noncommutative variables such as q and p; however, these functions
are not probabilities, since, although they are the coefficients of what might be
called the Weyl basis for the operator algebra of the quantum theory which appear
in expectation values, they are not positive (Wigner, 1936).

1.2 The Gleason theorem and consequences

The axioms of quantum mechanics are implicitly developed in the fundamental
work of Dirac (1958). Let us focus here on probability. Given Pi (i = 1, ...), a
sequence of projections Pi Pk = 0 for i �= k, then the probability measure w

w : P → [0, 1]
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satisfies

(a) ∪i w (Pi ) = w

(∑
i

Pi

)
(1.2)

(b) w (φ) = 0, w (I ) = 1

(φ is the zero projection)

(c) w (P) = w (F) = 1 → w (P ∩ F) = 1

Piron (1976) added another axiom, namely that partially ordered (by inclusion)
sets of the non-Boolean lattice of the quantum theory form Boolean sublattices,
and with this he was able to show a converse result, i.e. that such partially ordered
lattices can be embedded in a Hilbert space (or a family of Hilbert spaces if there
are superselection rules), thus inducing the full structure of the quantum theory.

Along with the sets of “yes-no” questions that form the basic elements a of
the quantum lattice, one may assume a function w (a) with values between zero
and unity, with the interpretation of a probability measure, which has the so-called
sigma additivity property

w (a ∪ b) = w (a)+ w (b) (1.3)

when a and b have no intersection, i.e. a ∩ b = φ. This idea is consistent with the
notion of probability for the “yes” answer for a and b. Gleason (1957) showed that
for any Hilbert space of three or more real dimensions, there is a density operator,
self-adjoint and positive, ρ, such that

w (a) = TrρPa, (1.4)

where Pa is the projection operator into a subspace corresponding to the question
a. This existence theorem is one of the most powerful and important theorems
in the foundations of the statistical quantum theory. The function w (a) is called
a state, a notion completely consistent with Dirac’s definition of a state in the
quantum theory, i.e. for any a, this function provides the probability of its truth
and therefore corresponds to maximum knowledge.

The original proof of Gleason is rather long and involved, but Piron has given a
simple and elegant proof, which is given here in an appendix to this chapter for the
mature student.

The density operator (often called “density matrix”) has the properties

Trρ = 1 (1.5)

Trρ2 ≤ 1.

The first follows from the fact that the sum over all disjoint a of w (a) is the total
probability measure on the set of all questions (and the sum over all disjoint Pa is
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the unit operator). The second follows from the first; all eigenvalues of ρ are real
and positive with values less than or equal to unity. With these properties, one can
prove that the spectrum of ρ must be completely discrete.

Mackey (1963) has given a converse theorem. If the function w (a) can reach the
value unity on a one-dimensional subspace of the Hilbert space, the corresponding
density operator is just a projection into this one-dimensional subspace and can
be put into correspondence (up to a phase) with the vector of the Hilbert space
generating this one-dimensional subspace. Such a state is called pure. A state which
cannot reach the value of unity on any one-dimensional subspace is called mixed.

The proof is very simple. Let P0 be the projection onto a one-dimensional sub-
space generated by the vector φ0, and let us use the representation, taking into
account the discrete spectrum of ρ,

ρ =
∑

i

γ i

∣∣ψ i

〉 〈
ψ i

∣∣ . (1.6)

Here we use the Dirac ket
∣∣ψ i

〉
to signify an element of the Hilbert space. Then if

TrρP0 = 1, it follows that

Trρ (1− P0) = 0,

or

Tr
∑

i

γ i

〈
ψ i

∣∣ (1− P0)
∣∣ψ i

〉 = Tr
∑

i

γ i

∥∥(1− P0)
∣∣ψ i

〉∥∥2 = 0,

where ‖χ〉 ‖2is defined as 〈χ | χ〉, the norm of the vector |χ〉. Since the γ i are
positive, this implies that

(1− P0)
∣∣ψ i

〉 = 0

for all of the
∣∣ψ i

〉
, i.e., ∣∣ψ i

〉 = λi

∣∣φ0

〉
for all i. Substituting into Eq. (1.6), we see that in this case we must have

ρ =
∑

i

γ i |λi |2
∣∣φ0

〉 〈
φ0

∣∣ .
Furthermore, if the

∣∣ψ i

〉
and

∣∣φ0

〉
are normalized, |λi |2 = 1. Then, by Eq. (1.5) and

Eq. (1.6) (for the
∣∣ψ i

〉
orthogonal), one sees that the sum of the γ i is unity; hence

ρ = ∣∣φ0

〉 〈
φ0

∣∣ ,
which is the projection operator into the subspace generated by

∣∣φ0

〉
. This theorem

therefore identifies the pure states with vectors of the Hilbert space, and it is for this
reason that one often calls the vectors of the Hilbert space “states.” Every vector in
the Hilbert space corresponds to a pure state.
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If w1 and w2 are two different states, then

w = λ1w1 + λ2w2

with λ1 + λ2 = 1 and with λ1, λ2 positive also is a state; the set of states form a
convex set (Jauch, 1968). Such a state is called a mixture. A state which cannot be
represented in terms of two others is called pure; the pure states are the extremal
subset of a convex set. These definitions are, of course, consistent with Mackey’s
result.

1.3 Calculation of averages of observables

Let us now consider an observable represented by a self-adjoint operator A on the
Hilbert space with a spectrum of discrete eigenvalues ak . Such an operator can be
represented as a sum over projections into its eigenstates, i.e.

A =
∑

k

ak Pk, (1.7)

where, if Pk =
∣∣φk

〉 〈
φk

∣∣ and the
∣∣φk

〉
form a normalized orthogonal set, we clearly

have

A
∣∣φk

〉 = ak

∣∣φk

〉
.

The expectation of this operator in some pure state represented by
∣∣ψ i

〉
is then〈

ψ i

∣∣ A
∣∣ψ i

〉 =∑
k

ak
〈
ψ i

∣∣ Pk

∣∣ψ i

〉
(1.8)

=
∑

k

ak

∣∣〈ψ i | φk

〉∣∣2
,

with the usual quantum interpretation that
∣∣〈ψ i | φk

〉∣∣2
is the quantum mechani-

cal probability that a system in the state described by
∣∣φk

〉
is found in the state∣∣ψ i

〉
. The weighting of the eigenvalues of A by this probability then gives the

expected value of this observable in the state described by
∣∣ψ i

〉
. Suppose now that

we prepare a system which contains subsystems in the states
∣∣ψ i

〉
according to the

a priori probability distribution γ i . This can be arranged by preparing a system
with the number of subsystems in each state

∣∣ψ i

〉
proportional to the γ i . This is an

ensemble. We emphasize here that this step, as in our previous example, is entirely
classical. We build an ensemble of subsystems with a priori probabilities based on
their frequency of occurrence, a completely classical notion of probability, i.e. the
frequency interpretation.

The overall expectation of the value of the observable A is then given by the
sum over all of the expected values in each of the quantum states, with coefficients
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equal to the classical probabilities of the occurrence of each quantum state in the
ensemble, i.e.

〈A〉 =
∑

i

γ i

〈
ψ i

∣∣ A
∣∣ψ i

〉
.

This result is obtained directly by computing

〈A〉 = TrρA, (1.9)

where

ρ =
∑

i

γ i

∣∣ψ,

〉 〈
ψ i

∣∣ . (1.10)

Viewing this in a slightly different way, we see that

〈A〉 =
∑

k

akTr (ρPk) , (1.11)

where

Tr (ρPk) =
∑

i

γ i

〈
ψ i

∣∣ Pk

∣∣ψ i

〉
(1.12)

=
∑

i

γ i

∣∣〈ψ i | φk

〉∣∣2

is the probability of finding the system in the subspace associated with Pk . This
probability is composed of two types of expectation: the quantum probability to
find the Pk in each state ψ i , and the classical probability for the occurrence of the
state ψ i (determined by the relative number of subsystems in that state).

The results that we have given can easily be extended to the most general case
of an observable with both discrete and continuous spectra without change in the
formal structure, although as we shall see later, there are special technical aspects
that arise in the continuous case (for example, in scattering theory). To see this,
we use the spectral representation theory of von Neumann. It was shown by von
Neumann (1955) that every self-adjoint operator A, corresponding to a physical
observable, has a spectral representation of the form

A =
∫

a d E (a) , (1.13)

where a takes on a continuous set of values (the real line), and the self-adjoint set
of operators E (a) is called a “spectral family.” It satisfies the property

E (a) E (b) = E (min (a, b)) , (1.14)
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with E (−∞) = 0 and E (∞) = I . It easily follows from these properties that

d E (a) d E (b) =
{

d E (a) , if a = b;
0, otherwise

(1.15)

where a and b now refer to names given to infinitesimal intervals along the line
(i.e. for �a small, d E (a) = E (a +�a)− E (a)). The integral Eq. (1.13) is con-
sidered to be of Stieltjes–Lebesgue type, in the sense that if the weight function
〈ψ |d E (a)|ψ〉 = d ‖E (a) |ψ〉‖2 has a jump discontinuity at some point a0, the
integral is evaluated as the difference between the values of ‖E (a) |ψ〉‖2 above
and below the point a0. If, in particular, d ‖E (a) |ψ〉‖2 is zero in the neighbor-
hood of the point a0 (except at the point itself), so that the jump is isolated, one
obtains a contribution to any expectation value of A just from the point a = a0 (in
this neighborhood). The coefficient, since E (a)2 = E (a), is 〈ψ | E (a0 + ε) −
E (a0 − ε) |ψ〉, where ε is infinitesimal. The operator E (a0 + ε) − E (a0 − ε)

may then be identified with one of the discrete projection operators appearing
in Eq. (1.7). Hence, the representation Eq. (1.11) includes both discrete and
continuous spectra. In Eq. (1.8) one then uses〈

ψ i

∣∣ A
∣∣ψ i

〉 = ∫
ad

∥∥E (a)
∣∣ψ i

〉∥∥2
,

and Eq. (1.9) remains valid quite generally.
We now turn to time evolution, which is the central issue of this book. The

quantum states ψ i from which the density operator is constructed evolve under
Schrödinger evolution as

i h̄
∂

∂t

∣∣ψ i

〉 = H
∣∣ψ i

〉
. (1.16)

It follows simply that for ρ of the form of Eq. (1.10), acting with the time derivative
on both factors

∣∣ψ i

〉
and

〈
ψ i

∣∣, using Eq. (1.16) and its conjugate, we see that

dρ

dt
= i h̄ (ρH − Hρ) = i h̄ [ρ, H ] , (1.17)

a time evolution similar to the evolution of a Heisenberg operator but with opposite
sign.

Eq. (1.17) forms the basis for the description of the dynamical evolution of
a system in statistical mechanics, the analog of the classical Liouville equation
(Tolman, 1938). Since the Schrödinger equation is reversible in time, this evolu-
tion is reversible (Farquahar, 1964). Under such an evolution, a pure state remains
pure, and a mixed state does not change its character (this follows from the fact that
the change in time of Trρ2, given by 2i h̄Tr(ρ [ρ, H ]), vanishes). We shall discuss
in later chapters evolution given by, for instance, master equations, the Pauli equa-
tion and the Lindblad equation, describing irreversible processes. Such equations
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can describe the evolution of a density matrix for a pure state into a density matrix
corresponding to a mixed state. (For this more general evolution, Tr(ρρ̇) does not
vanish.)

Although, as we have previously emphasized, the density operator might appear
to be a somewhat artificial construction, combining both classical and quantum
probability notions to achieve an overall expectation value, it actually arises on
the most fundamental level of the quantum theory. Methods for the construc-
tion and study of this operator and its time evolution are the essential goal of
the techniques of statistical mechanics; the theory is constructed on this basic
foundation.

Good general references to the topics of this chapter are the books of Tolman
(1938), Dirac (1958), Farquahar (1964), Landau and Lifshitz (1970), Balescu
(1975), Dvurecenskij (1993), and Huang (1987). Extensive pertinent references
are given at the ends of later chapters.

Appendix 1A: Gleason theorem

The Gleason theorem (Gleason, 1957) is concerned with the calculation of the
probability w of obtaining the answer “yes” as a result of carrying out an exper-
iment which is an ideal measurement of the first kind on a system in some
given state. In working out the proof of this theorem, we shall follow closely the
presentation given by C. Piron (1976).

To study and prove the result, we shall need some definitions already implicit in
previous sections.

The logical propositions of the quantum theory correspond to equivalence
classes of questions {β} which are realized in terms of measurements. A ques-
tion β is called a measurement of the first kind if, every time the answer is
“yes,” the proposition b, corresponding to the equivalence class defined by {β},
is true immediately after the measurement. (Measurement will be taken up again
in Chapter 13.)

A question β is said to be ideal if every proposition b defined by such a β,

which is true beforehand, is again true afterwards when the response of the system
is “yes.”

We shall assume that the probability w is the same for every question β defining
the proposition b, for β (or β ,̃ its complement) is an ideal measurement of the
first kind. We may then denote this probability by w (p, b), where p is the initial
state in which the experiment is carried out, and b is the proposition defined by the
equivalence class {β} .

The Gleason theorem applies to the construction of the function w in the
framework of a Hilbert space, on which the operators of the quantum theory are
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represented. The closed subspaces of a Hilbert space, with their associated projec-
tion operators, form a set subject to the operations of intersection and union, and
contain the empty set and the set of all subsets, i.e. a structure called a lattice, iso-
morphic to the lattice of propositions (Birkhoff and von Neumann, 1936; Birkhoff,
1961; Piron, 1976), as mentioned earlier. For an irreducible proposition system,
in which there is only one minimal proposition (no superselection rules), every
self-adjoint operator corresponds to an observable. Let P (H) be such a Hilbert
realization.

We now state the Gleason theorem (Gleason, 1957) (see Piron, 1976, for the
general case of a family of Hilbert spaces, for which there is a nontrivial set of
minimal propositions):

Theorem: Given a propositional system L = P (H), where H is a Hilbert space
(of dimension ≥ 3) over the reals, complex numbers or quaternions, there exists
a unique function w (p, b) defined on the atoms p (corresponding to the one-
dimensional subspaces of H) and the propositions b of L which satisfies (as in
Eq. (1.2) and Eq. (1.3))

(1) 0 ≤ w (p, b) ≤ 1 (1A.1)

(2) p ⊂ b ⇔ w (p, b) = 1

(3) b ⊥ c ⇒ w (p, b)+ w (p, c) = w (p, b ∪ c) .

We begin the proof by noting that there is a vector f p in H , associated with the
atom p, satisfying 〈

f p | f p
〉 = ∥∥ f p

∥∥2 = 1.

Each proposition b in P (H) can be represented by a projection operator Q into a
linear closed subspace of H . Then

w (p, b) = 〈
f p |Q| f p

〉
satisfies the conditions of the theorem.

Our principal task is then to show uniqueness. If there were another function
w (p, b) satisfying these conditions, it would have to have a different value on
some pair p, b. For such functions, there would be another proposition q (an atom)
for which, in this case, w (p, q) has a different value. However, if the function were
unique, the value would necessarily be the same. Such a q can be constructed as
follows. Note that [(

p ∪ b′
) ∩ b

] ∪ (
p′ ∩ b

) = b

and that, since p and p′ are orthogonal,[(
p ∪ b′

) ∩ b
] ⊥ p′ ∩ b.
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However, w
(

p, p′ ∩ b
) = 0, so

q = (
p ∪ b′

) ∩ b (1A.2)

for an atom. The other function would, by construction, have a different value
for w (p, q). We choose the two vectors f p and fq in such a way that

〈
f p | fq

〉
is real. We may then consider just three vectors associated with the atoms p, q,
i.e. f p, fq and a vector (real) orthogonal to these. The restriction of w (p, b) to
the three-dimensional real Hilbert subspace generated by f p, fq and a third vector
orthogonal to these still satisfies the conditions of the theorem. To complete the
proof, it is then sufficient to prove the uniqueness of w in the case of the real three-
dimensional Hilbert space

(
R3

)
. This construction, therefore, has the minimum

dimension necessary to carry out a proof of uniqueness.
To carry out the proof, let us assume p in w (p, b) to be fixed. The lattice of

subspaces of R3 is then the points and lines of the projective plane realized as the
intersection of R3 with the tangent plane at p to the unit sphere. In the same way
as the complex plane is mapped onto the unit sphere including the point at infinity,
we are considering the plane as a (projective) representation of the sphere of unit
vectors in R3. (It may be helpful for the reader to draw his own diagrams for the
construction described here.)

We seek a unique function w(q), where we drop reference to p, now fixed,
defined at the points q of the plane which has the value 1 at p and 0 at the point(s)
at infinity.

If q lies on some arbitrary line L in the plane, then w (q) takes on a maximal
value at a point q0 where the line pq0 is perpendicular to the line L . This follows
from the fact that if q is a point on L , and q ′ is its orthogonal complement on
L , q ∪ q ′ on the line is just q0. Hence, by (3) of Eq. (1A.1),

w (q)+ w
(
q ′
) = w (q0)

or w (q0) ≥ w (q) .

We now note that w (q) decreases along the line L . To see this, consider a point
at q and a line Lq perpendicular to pq . Move along this line to q1; we know by the
foregoing argument that

w (q) ≥ w (q1) .

Now erect a line at q1 perpendicular to pq1 and move to a point on this new line, r.
Clearly,

w (q1) ≥ w (r) .

Now put another line at this point r , and connect it back to Lq at the point q2. Since

w (r) ≥ w (q2)
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along Lq , it follows that

w (q) ≥ w (q1) ≥ w (q2) , (1A.3)

forming a decreasing sequence.
We prove now the first lemma of four leading to the uniqueness of the func-

tion w (p, q). The method we follow is to prove each lemma making some crucial
assumptions, and each succeeding lemma proves those assumptions. In the fourth
lemma the proof is complete.

Lemma 1: If the value of w (p, q) depends only on the angle θ between the rays
p and q, then it is unique and given by

w (q) = cos2 θ. (1A.4)

To prove this lemma, we work as before in the plane tangent to R3 at the point p
and erect another point q at a “distance” λ (corresponding to the square of the actual
distance), say, below p. We then erect another point q ′ at an equal distance λ from
p, labeling the midpoint of the line qq ′ by q1. By the rules of ordinary geometry,
the line pq1 is orthogonal to the line qq ′; it is the closest point on that line to p. It
then follows from our previous arguments (q ′ is the orthogonal complement of q
on this line) that

w
(
q ′
)+ w (q) = w (q1) .

But the angles q ′q1 and q1q are equal, and by the assumptions of our lemma, it
then follows that

2w (q) = w (q1) .

There is a line Lq , perpendicular to pq at a point r , passing through q ′, and a right
triangle that can be constructed from r to the apex q2 to q, with the line r pq as
hypotenuse. To satisfy Pythagoras’s theorem, we see that the distance pr is 1

λ
. pq2

is unity (this line is orthogonal to qp). The distance qq2 is 1+ λ, and the distance
rq2 is 1+ 1

λ
. Finally, q ′r is λ− 1

λ
. Now we denote the total length of q ′q as 2y (this

line is bisected by q1). Again, by Pythagoras, the length of qr is 1 + λ + 1 + 1
λ
.

Adding this to q ′r , which is λ − 1
λ
, we find the simple result that 4y = 2 (1+ λ).

Finally, using the fact that pq has length (squared) λ, the length of pq1, which we
call z, is

z = λ− y = λ− 1

2
(1+ λ) = 1

2
(λ− 1) .

We now rewrite the relation previously obtained, 2w (q) = w (q1), as

2w (λ) = w

(
1

2
(λ− 1)

)
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for λ > 1. Since by our construction, r ⊥ q,

w (λ)+ w

(
1

λ

)
= w (p) = 1,

we have that

1− w (λ) = w

(
1

λ

)
.

If we now define

x = (1+ λ)−1 = cos2 θ,

the rest of the demonstration follows by simple algebra.
Since λ = 1

x − 1, by defining

f (x) = w (λ) = w

(
1− x

x

)
,

one easily finds that

2 f (x) = f (2x) (1A.5)

for 0 ≤ x ≤ 1
2 (i.e. λ > 1), and for a second relation,

1− f (x) = f (1− x) . (1A.6)

To see this, set y = 2
λ+1 = 2x ; then, using the definition,

f (y) = w

(
1− y

y

)
= w

(
1

2
(λ− 1)

)
= 2w (λ) ,

it follows that f (y) = f (2x) = 2 f (x) .
The second relation follows from the fact that

f (1− x) = w

(
x

1− x

)
= w

(
1

λ

)
,

so that 1− f (x) = f (1− x), for 0 ≤ x ≤ 1.
The identification f (x) = x with x = cos2 θ for some θ satisfies both these

relations and satisfies the statement of the lemma. To see that this solution is the
only solution which increases, we may expand both sides of the equation 2 f (x) =
f (2x) in Taylor series about x = 0. The condition f (0) = 0 follows from the
requirement that w → 0 at∞; it follows that all derivatives equal to or higher than
second order must vanish, and the function must therefore be linear. Substituting
f (x) = αx into the second relation, Eq. (1A.6), we see that 1 − αx = α (1− x)
so that α must be unity. The solution is therefore unique.

We now prove one of the assumptions of Lemma 1.
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Lemma 2: If w (q) is continuous, then its value depends only on the angle between
the rays p and q.

The remaining two lemmas (lemmas 3 and 4) prove continuity.
To prove this lemma, let q and r be two points on the projective plane situated at

the same distance from p. To prove that w (q) = w (r), we start by proving that for
any q0 ∈ qp sufficiently close to q, the signs of w (q0)−w (r) and λ−λ0, where λ

and λ0 are the distances pq and pq0 respectively, are the same. If λ > λ0, we can
join q0 to r by a sequence q0, q1, q2, ... of sequentially perpendicular steps, since
at each step λ1 ≥ λ0, λ2 ≥ λ1, ... up to r , which reaches λ, by construction (note
that we started with λ0 < λ). Then

w (q0) ≥ w (q1) ≥ w (q2) ≥ ... ≥ w (r) , (1A.7)

since the lengths increase at every step. But we can take q0 arbitrarily close to q.
The same set of inequalities can be established in the other direction, starting with
a point r0 on pr , and hence w (q) = w (r); i.e. the value of w (q) depends only on
the distance between p and q (the angle).

Lemma 3: If w (q) is continuous at some point q0, then it is continuous at every
point.

We first show that if w (q) is continuous at q0, it is continuous at each point q1

orthogonal to q0. Then q0 and q1 lie symmetrically on both sides of the point of
a line from p perpendicular to q0q1. Denote an ε neighborhood of q0 by U , and
take a point q ′ on the line q0q1 in U ; further, consider the point q on the line q0q1

orthogonal to q ′. As we have done before, we use the relations

w (q)+ w
(
q ′
) = w (q0)+ w (q1)

w (r0)+ w (r1) = w
(
r ′
)+ w (q0) ,

where r0, r1 and r ′ are defined in a similar way on a line passing at some angle
through q, for which q and r ′ are orthogonal and r0 ∈ U and r1 are orthogonal. It
follows from these relations that

|w (r1)− w (q1)| =
∣∣w (q0)− w (r0)+ w

(
r ′
)− w

(
q ′
)∣∣

= ∣∣w (q0)− w (r0)+ w
(
r ′
)− w (q0)+ w (q0)− w

(
q ′
)∣∣

≤ |w (q0)− w (r0)| +
∣∣w (

r ′
)− w (q0)

∣∣+ ∣∣w (q0)− w
(
q ′
)∣∣

≤ 3ε,

where we have used the bounding inequalities between the relation between the
w (q)’s and the distances. Our construction, furthermore, requires r ′, q ′ ∈ Uq0 .

The subset r0 � r1 ∈ U then forms an ε neighborhood of q1 and is therefore
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continuous at q1. We finally note that there always exists a point q⊥ perpendicular
to two arbitrary points q ′, r ′.

Lemma 4: The function w (q) is continuous at some point q0.

On a line L through p, w (q) is a decreasing function of λ (distance from p).
A decreasing bounded function is continuous almost everywhere. Hence w (q)
is continuous on L at some point q0. Finally, if w (q2) − w (q1) < ε, then
|w (q)− w (q0)| < ε at every point in the triangle formed by rr ′q1 (all points
in this triangle are farther away from p than the distance λ at q2, in the ε

neighborhood of q0 ).
This completes the lemmas for the proof of the Gleason theorem, in general.
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2

Elementary examples

2.1 Introduction

Now we will turn to some elementary and familiar examples of quantum mechanics
to remind us of matters which will be used in the subsequent discussions. The focus
will be the harmonic oscillator and also the two-level atom and spin 1

2 systems
(Dirac, 1958; Louisell, 1973; Cohen-Tannoudji et al., 1977; Jordan, 1986; Liboff,
1998).

2.2 Harmonic oscillator

The Hamiltonian operator is

Ĥ = 1

2

(
p̂2 + ω2q̂2

) = Ĥ †. (2.1)

The classical equations of motion are

dq

dt
= ∂H

∂p
= p (2.2)

dp

dt
= −∂H

∂q
= −ω2q.

In quantum mechanics, [
q̂, p̂

] = i h̄. (2.3)

The “hat” denotes operator.
The time-dependent Heisenberg equations are of the same form as the classical

counterpart:

dq̂(t)

dt
= p̂(t) (2.4)

d p̂ (t)

dt
= −ω2q̂ (t) .

19
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This is generally true in one dimension, where we have

dq̂ (t)

dt
= 1

i

[
q̂ (t), Ĥ

(
p̂ (t), q̂ (t)

)] = ∂ Ĥ (t)

∂ p̂ (t)
d p̂ (t)

dt
= 1

i

[
p̂ (t), Ĥ

(
p̂ (t), q̂ (t)

)] = −∂H (t)

∂q̂ (t)
,

where Ĥ
(

p̂ (t), q̂ (t)
)

is the Heisenberg Hamiltonian operator. This, of course, is
the classical correspondence rule

{A, B} → 1

h̄i
[A, B]

[
q̂ (t), p̂ (t)

] = i h̄,

where the Heisenberg operators q̂ (t), p̂ (t) are related to the Schrödinger q̂, p̂ by

q̂ (t) = U † (t, 0) q̂U (t, 0) (2.5)

p̂ (t) = U † (t, 0) p̂U (t, 0) .

Here U (t) = exp
(
−i Ĥ t

)
, h̄ = 1. Utilizing this, we obtain the solutions to Eq.

(2.4):

q̂ (t) = q̂ cosωt + p̂

ω
sinωt (2.6)

p̂ (t) = −ωq̂ sinωt + p̂ cosωt.

These operator equations have exactly the same form as the solutions to the
classical equations. For this reason, this is one of the few cases in which an
exact Heisenberg operator solution may be obtained. It is easily shown that the
time-dependent commutation laws follow.

The Schrödinger equation is

i
∂

∂t
|ψ (t)〉 = Ĥ |ψ (t)〉 . (2.7)

In this “picture” the operators, Ĥ etc., are time independent. From this the von
Neumann equation for ρ̂ (t) is obtained (see the previous chapter):

ı̂
dρ̂

dt
=

[
Ĥ , ρ̂

]
(2.8)

Keep in mind that we are working in the Schrödinger picture. For the harmonic
oscillator,

ψ (t) = exp (−i Ht) |ψ (0)〉 = U (t, 0) |ψ (0)〉
= −i

[
cos Ĥ t + i sin Ĥ (t)

]
|ψ (0)〉 . (2.9)
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To reduce this further, let us introduce the well-known creation (a†) and annihila-
tion (a) operators. (Both are non-Hermitian.)

â = 1√
2ω

(
ωq̂ + i p̂

)
(2.10)

â† = 1√
2ω

(
ωq̂ − i p̂

)
(2.11)

From the commutation law, Eq. (2.3), we obtain[
â, â†

] = 1. (2.12)

Also important are [
â, â†â

] = â (2.13)[
â†, â†â

] = −â†.

In this representation,

Ĥ = h̄ω

(
â†â + 1

2

)
. (2.14)

These relations are true in the Heisenberg as well as the Schrödinger picture.
Now, for the harmonic oscillator,

U (t, 0) = exp
(−iωâ†ât

)
exp

(−iωt

2

)
.

Let us introduce the number representation

N̂ |n〉 = n |n〉 , (2.15)

equivalent to the energy representation

Ĥ |E〉 = E |E〉

N̂ = â†â = N̂ †.

From Eq. (2.13),

aN − Na = a (2.16)

a† N − Na† = a†.
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With these raising and lowering operators, we may construct a complete set of
states (Dirac, 1958). For normalized states we have

N̂ |n〉 = n |n〉 n integer and positive (2.17)

< n | n′ > = δnn′

â † |n〉 = √n + 1 |n + 1〉
â |n〉 = √n |n − 1〉
a |0〉 = 0

|n〉 = â†n |0〉√
n!

and completeness
∞∑

n=0

|n〉 〈n| = I.

The energy is

En = ω

(
n + 1

2

)
.

In the number states, the harmonic oscillator von Neumann equation is

i ρ̇nn′ = (En − En′) ρnn′

= ω
(
n − n′

)
ρnn′ .

The solution is simply

ρnn′ (t) = exp− (
iω

(
n − n′

)
t
)
ρnn′(0). (2.18)

The diagonal and off-diagonal elements are uncoupled. Diagonal elements are
constant, and the off-diagonal elements oscillate, and∑

n

ρnn (t) =
∑

n

ρnn (0) = 1. (2.19)

In the so-called random phase approximation, we replace ρnn′ (t) by its average
over n − n′. Then the oscillations cancel, and ρ̄nn′ (t) = ρnn′ (0) is time indepen-
dent. The comments made are also true for any exact diagonal representation, not
just the harmonic oscillator being discussed here. We may write the coordinate
representation un (q). From

a |0〉 = 0 = (q + i p) |0〉,
we have (

ωq ′ + d

dq ′

)
u0

(
q ′
) = 0, (2.20)
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whose normalized solution is the Gaussian

u0 (q) ≡< q | 0 >=
(ω

π

) 1
4

exp

(−ωq2

2

)
. (2.21)

The time-dependent solution is

u0 (q, t) = exp
(
−i

ω

2
t
)

u0 (q) .

It is easily seen that the ground state is a minimum uncertainty state �q�p = 1
2 h̄.

Let us now consider the coherent state representation. We introduce the non-
Hermitian eigenvalue problem,

a |α〉 = α |α〉 . (2.22)

The eigenvalues are not real, nor are they orthogonal.
To solve this, we use the completeness of the number representation |α〉 =

∞∑
n=0

cn (α) |n〉 . Next, we form

a |α〉 =
∞∑

n=1

cn (α)
√

n |n − 1〉 =
∞∑

n=0

αcn (α) |n〉 (2.23)

and shift indices n → n + 1. Take the scalar product with |m〉. We obtain the
recursion relation

cn+1 (α)
√

n + 1 = αcn (α) . (2.24)

This gives

cn (α) = αn

√
n!c0.

Thus,

|α〉 = c0

∞∑
n=0

αn

√
n! |n〉 .

It is easy to show

| 〈n | α〉 |2=
α2n exp

(
−α2

2

)
n! ,

a Poisson distribution. From this 〈n〉 = α∗α, and〈
(n − 〈n〉)2

〉 1
2

〈n〉 = 1

|α| =
1

〈n〉 1
2

.
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We take 〈α | α〉 = 1 and obtain

〈α | α〉 = |c0|2 exp |α|2 ,
so

|α〉 = exp

(− |α|2)
2

expαâ† exp
(−α∗â

) |0〉 , (2.25)

taking α to be complex. The completeness relation is∫
d2α |α〉 〈α| = 1 =

∞∑
0

|n〉 〈n| , (2.26)

where d2α = rdrdθ, and the non-orthogonality is seen by

|〈β | α〉|2 = exp
(− |α − β|2) . (2.27)

The expansion in terms of coherent states is not unique (Nussenzweig, 1973).
They are overcomplete and non-orthogonal. In spite of this, one may expand an
arbitrary vector in Hilbert space in terms of them. If we assume that the expansion
is an entire function, f (αα∗), of the complex α plane, then the representation is
unique.

We may show

〈q〉 =
√

1

2ω

(
α + α∗

)
(2.28)

〈p〉 = i

√
ω

2

(
α∗ − α

)
〈
q2

〉 = 1

2ω

(
α∗2 + α2 + 2α∗α + 1

)
(2.29)〈

p2
〉 = −ω

2

(
α∗2 + α2 − 2α∗α − 1

)
.

Thus, �p�q = 1
2 , since (�q)2 = 1

2ω and (�p)2 = ω
2 . All the coherent states are

minimum uncertainty. They are quasi-classical. We may obtain 〈q | α〉 to verify
this. It is the generalized Gaussian

〈q | α〉 =
(ω

π

) 1
4

exp

[−ω

2

(
q − 〈

q̂
〉)2 + i

〈
p̂
〉
q + iu

]
, (2.30)

where u is an arbitrary phase and as above,

〈�q〉2 = 1

2ω

〈�p〉2 = ω

2
.
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Now we introduce the first example met here of a phase space distribution func-
tion, P(αα∗, t), of Glauber (1963) and Sudarshan (1963). Here the “phase space”
is α, α∗. Now ∫

d2αP
(
αα∗, t

) = 1. (2.31)

P (αα∗) is a “diagonal” representation of the density operator in coherent states

ρ =
∫

d2αP
(
αα∗

) |α〉 〈α| .
It has the important property

tr ρ̂ Ô = 〈
O

(
â, â†

)〉 = ∫
d2αOcl

(
αa∗

)
P

(
αα∗

)
. (2.32)

Quantum averages are calculated quasi-classically. There is a correspondence
rule, the normal ordering rule. In Ô the â is placed to the right of the â†. For
instance, by commutation, aa† → a†a+1. Phase space distribution functions, such
as the Wigner function, will be discussed in greater detail in subsequent chapters.
We must remark P (αα∗, t) ≯ 0. It is real and normalizable. Let

P
(
αα∗, t

) = trρ (t) δ
(
α∗ − a†

)
δ (α − a) . (2.33)

This is a somewhat sophisticated statement because of the operator δ functions. Uti-
lizing this definition and the von Neumann equation, we may write for the harmonic
oscillator

i
∂P

∂t
= Tr

[
ρ (t)

[
δ
(
α† − a∗

)
δ (α − a) , ωa†a

]]
.

We will evaluate this in the appendix to this chapter. We obtain a Fokker–Planck
equation for P (αα∗, t) (Gardiner, 1991).

∂P (αα∗, t)

∂t
= iω

[
α
∂P

∂α
− α∗

∂P

∂α∗

]
. (2.34)

It is a first-order partial differential equation in t, α, α∗. The general solution may
be obtained from the characteristic equations

dt = dα

−iωα
= dα∗

iωα∗
, (2.35)

which are the “Hamilton equations” of the α, α∗ “phase space.” The solution is

α (t) = α0 exp (−iωt) (2.36)

α∗ (t) = α∗0 exp (iωt) .
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The general solution is an arbitrary function f (α (t) , α∗ (t)). If the initial value is
Gaussian in α, i.e.

P
(
α, α∗, 0

) = N exp
(− |α − α0|2

)
,

then

P
(
α, α∗, t

) = N exp
(− |α (t)− α0|2

)
.

For

P
(
αα∗,t

) = δ2 (α (t)− α0) ,

the coherent state propagates in time as exp iωt . This was first seen by Schrödinger
(1926).

Let us consider an extension of the harmonic oscillator by including a damp-
ing term. A particularly simple example is the phase damped oscillator with the
interaction

V = �a†a + �†a†a (2.37)

(Walls and Milburn, 1985; Gardiner, 1991). The von Neumann equation may be
written

ρ̇ = −iω
[
a†a, ρ

]+ 1

2
K

(
N̄ + 1

)
2a†aρa†a − (

a†a
)2

ρ − ρ
(
a†a

)2
. (2.38)

This is the Lindblad form and is discussed in detail in Chapters 4, 5 and 6. Here
N̄ = 1

exp( ω
kT )−1

, and K is a damping constant. In the number representation,

〈n |ρ̇|m〉 =
{
−iω (n − m)− 1

2
K

(
2N̄ + 1

)
(n − m)2

}
〈n |ρ|m〉 .

The diagonal and off-diagonal elements 〈n |ρ|m〉 are still uncoupled. The solution
is immediate:

〈n |ρ (t)|m〉 = exp (−iω (n − m) t) exp−
[
(2N̄ + 1)K (n − m)2 t

2

]
〈n |ρ (0)|m〉 .

The off-diagonal elements decay as (n − m)2 K
(
2N̄ + 1

)
to the constant diagonal

initial state 〈n |ρ (0)|m〉. More will be said of this in the discussion of decoherence
in Chapter 12.
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To obtain the equation for P (α), we use the operator correspondence discussed
in the appendix:

aρ → αP
(
αα∗

)
(2.39)

a†ρ →
(
α∗ − ∂

∂α

)
P

(
αα∗

)
ρa →

(
α − ∂

∂α∗

)
P

(
αα∗

)
ρa† → α∗P

(
αα∗

)
to obtain the Fokker–Planck equation,

∂P

∂t
=

{
1

2
K

(
∂

∂α
α + ∂

∂α∗
α∗

)
− iω

(
∂

∂α
α − ∂

∂α∗
α∗

)
+ K N̄

∂2

∂α∂α∗

}
P.

(2.40)

By introducing α = x + iy (Scully and Zubairy, 1997), we find the average:

〈α (t)〉 = α (0) exp

[
−

(
K

2

)
− iω

]
t. (2.41)

In the coherent state, we obtain a classical damped oscillator solution.
P (αα∗, t) need not be positive. If it is, then the state of the system is classical,

P (αα∗) being a true probability distribution. P (αα∗) may exist for nonclassical or
truly quantum states. However, if α = x+ iy, we obtain a Fokker–Planck equation
in x, y with positive diffusion coefficient, so P (αa∗, t) > 0.

2.3 Spin one-half and two-level atoms

The spin of the electron is

S = 1

2
h̄σ Let h̄ = 1 (2.42)

(Cohen-Tannoudji et al., 1977). σ obeys mS = − e
2μσ , and ms is the spin magnetic

moment. σ j has the properties [
σ i , σ j

]
− = 2iσ k (2.43)

i, j = 1, 2, 3.

These are angular momentum commutation laws for half integer l. Now
σ 2

i = 1, so

σ iσ j = iσ k . (2.44)


