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Preface

This book is intended as a textbook for a graduate course in condensed matter physics. It is
based on many years’ experience in teaching in the Physics department at The University
of Michigan. The material here is more than enough for a one-semester course. Usually I
teach two semesters, and in the second, I add material such as the renormalization group.

In this book advanced techniques such as Green’s functions are not used. I have tried to
introduce as many of the concepts of modern condensed matter physics as I could without
them. As a result, some topics that are of central importance in modern research do not
appear.

The problems are an integral part of the book. Some concepts that are used in later
chapters are introduced as problems.

Students are expected to have a good background in statistical physics, non-relativistic
quantum theory, and, ideally, know undergraduate Solid State physics at the level of Kittel
(2005).

I decided to write this book as a result of coming back to teaching Condensed Matter
after a number of years covering other subjects. I had hoped to find a substitute for the
grand old standards like Ziman (1972) or Ashcroft & Mermin (1976) which I used at the
beginning of my teaching career. Though there are newer texts that are interesting in many
ways, I found that none of them quite fit my needs as an instructor. It is for the reader to
decide how well I have succeeded in giving a modern alternative to the classics – they are
very hard acts to follow.

Many people have helped me in writing this book. Craig Davis and Cagilyan Kurdak have
been remarkably generous with their time, and found many errors. Jim Allen and Michal
Zochowski have given valuable advice. I would like to particularly thank Brad Orr, Andy
Dougherty, Dave Weitz, Jim Allen, Roy Clarke, and Meigan Aronson for figures. And, of
course, my students have given invaluable feedback over more than three decades.





1 The nature of condensed matter

Condensed matter physics is the study of large numbers of atoms and molecules that are
“stuck together.” Solids and liquids are examples. In the condensed state many molecules
interact with each other. The physics of such a system is quite different from that of the
individual molecules because of collective effects: qualitatively new things happen because
there are many interacting particles. The behavior of most of the objects in our everyday
experience is dominated by collective effects. Examples of materials where such effects are
important are crystals and magnets.

This is a vast field: the subject matter could be taken to include traditional solid state
physics (basically the study of the quantum mechanics of crystalline matter), magnetism,
fluid dynamics, elasticity theory, the physics of materials, aspects of polymer science, and
some biophysics. In fact, condensed matter is less a field than a collection of fields with
some overlapping tools and techniques. Any course in this area must make choices. This is
my personal choice.

In this chapter I will discuss orders of magnitude that are important, review ideas from
quantum mechanics and chemistry that we will need, outline what holds condensed matter
together, and discuss how order arises in condensed systems. The discussion here will be
qualitative. Later chapters will fill in the details.

1.1 Some basic orders of magnitude

To fix our ideas, consider a typical bit of condensed matter, a macroscopic piece of solid
copper metal. As we will see later it is best to view the system as a collection of cuprous
(Cu+) ions and conduction electrons, one per atom, that are free to move within the metal.
We discuss some basic scales that will be important for understanding the physics of this
piece of matter.
LengthsAcharacteristic length that will be important is the distance between the Cu atoms.
In a solid this distance will be of order of a chemical bond length:

L ≈ 3 Å ≈ 3 × 10−8cm. (1.1)

Note that this is very tiny on the macroscopic scale. The whole art of condensed matter
physics consists in bridging the gap between the atomic scale and the macroscopic properties
of condensed matter.
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Energies We can ask about the characteristic energy scales for the sample. One important
energy scale is the binding energy of the material per atom. A closely related quantity is the
melting temperature in energy units:

1357 K = 0.11 eV. (1.2)

This is a typical scale to break up the material. If we probe at much larger energies (KeV, for
example) we will be probing the inner shells of Cu, namely the domain of atomic physics,
or at MeV, the Cu nucleus, i.e. nuclear physics.

Cu has an interesting color (it is copper colored, in fact), so we might expect something
interesting at the scale of the energy of ordinary light, namely,

E ≈ �ωopt ∼ 3 eV (1.3)

which is also the strength of a typical chemical bond. A somewhat larger, but comparable
scale is that of the Coulomb interaction of two electrons a distance L apart:

E ≈ e2/L ≈ 5 eV. (1.4)

These energies are low even for atomic physics. This means that in our study of condensed
matter we will always be interested only in the outer (valence electrons) which are least
bound.
SpeedsWhen a piece of Cu carries an electrical current of density, j, the conduction electrons
move at a drift velocity vd:

j = ne vd (1.5)

where n is the number density of conduction electrons and e is the charge on the electron.
For ordinary sized currents we find a very small speed, vd ≈ 0.01 cm/sec.

There is another characteristic speed, the mean thermal speed, vT of the Cu ions when they
vibrate at finite temperature. We estimate vT as follows. From the Boltzmann equipartition
theorem the mean kinetic energy of an ion is:

Mv2
T /2 ∼ kBT . (1.6)

Here T is the absolute temperature, kB is Boltzmann’s constant, M is the mass of a Cu ion,
and vT is the mean thermal velocity. At room temperature we get vT ∼ 3 × 104 cm/sec.

There is a larger speed associated with the electrons, namely the quantum mechanical
speed of the valence electrons. We estimate this speed as [frequency of an optical transition]
x length:

v ∼ (E/�)(L) ≈ 107 cm/sec. (1.7)

As we will see below, there is another relevant speed, the magnitude of the Fermi velocity,
which is of the same order.
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In any case, all of these speeds are small compared to the speed of light. Thus, we seldom
need the theory of relativity in condensed matter physics. (An exception is the spin-orbit
interaction of heavy elements.)
Large numbers and collective effects The essential point of the subject is that we deal
with very large numbers of ions and electrons, ≈ 1027 in a macroscopic sample. In a famous
essay P. W. Anderson (1972) pointed out the significance of this fact. When many things
interact we often generate new phenomena, sometimes called emergent phenomena. Or,
as Anderson put it, “more is different.” Some examples of collective effects that we will
emphasize in this book are the existence of order of various types, e.g. crystalline order,
magnetic order, and superconducting order.

1.2 Quantum or classical

We have seen that we are interested in non-relativistic physics. We can go further: for the
case of Cu there are conduction electrons and Cu+ ions. What type of physics is applicable
to each? In particular, do we need quantum mechanics? A useful criterion is to compare the
de Broglie wavelength of the relevant particle, λ = h/mv, to the interparticle spacing.

For the ions, the relevant speed is vT which we estimated above. Thus:

λ = h/(2MkBT )1/2 ≈ 10−9 cm << L. (1.8)

This is smaller than the spacing by an order of magnitude. For all ions in solids (except for
He and H at very low temperatures) we can use classical mechanics. (As we will see, for
vibrations of ions at low T , we need quantum mechanics too.)

For the electrons the situation is different because the electron mass, m, is is 63×1800
times smaller than the mass of a Cu ion, so we get

λ = h/(2mkBT )1/2 ≈ 3 × 10−7 cm >> L. (1.9)

Electrons are quantum mechanical for all temperatures.

1.3 Chemical bonds

Matter condenses because atoms and molecules attract one another. In the condensed state
they are connected by chemical bonds. This is the “glue” that holds condensed matter
together. We will summarize here some notions from chemistry which we will need in the
sequel.
van der Waals’ bonds At long ranges the dominant interaction between neutral atoms or
molecules is the van der Waals interaction which arises from the interaction of fluctuating
induced dipoles. For two neutral molecules (or atoms) a distance d apart this effect gives
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rise to a potential energy of interaction given by:

V (r) ∼ −1/r6. (1.10)

This equation is universally true if the molecules are far apart compared to the size of
of their electronic clouds. For closed shell atoms and molecules such as Ar and H2 that
do not chemically react, the van der Waals’ interaction is the attractive force that causes
condensation. Since this is a weak, short-range force, materials bound this way usually have
low melting points.

A rough argument for the r−6 dependence is as follows: suppose there is a fluctuation
(a quantum fluctuation, in fact) on one of two molecules so that an instantaneous dipole
moment, p1, arises. This gives rise to an electric field of order E ∼ p1/d3 at the other
molecule. This electric field polarizes the other atom. To understand this, we introduce a
concept that we will use later, the polarizability, α, of the molecule. It is defined by:

pind = αE, (1.11)

where pind is the induced dipole moment. Note that in our system of units the polarizability,
α, has units of volume. It is roughly the molecular volume. Thus p2 ∼ αp1/d3. This finally
gives for identical molecules the fluctuating dipole-dipole interaction:

V ∼ p1p2/d
3 ∼ αp2

1/d
6. (1.12)

Since this expression depends on p2
1 there is a time-averaged value for the potential. It is

easy to show that the dipoles will be antiparallel so that the interaction is attractive. An
actual calculation of the coefficient of r−6, that is, of the average of p2

1, can be done (in
simple cases) using quantum mechanical perturbation theory.
Ionic bonds The chemistry of the valence electrons in a compound can lead to charge
transfer, e.g.:

Na + Cl → Na+Cl−. (1.13)

In this case there will be strong forces due to the charges, and the ions will be bound by the
Coulomb interaction:

V (r) = Zq1q2/r.

This is called ionic binding. Solid NaCl, table salt, is bound in this way. Ionic solids often
have very large binding, and very large melting points.
Covalent bonds In elements with s and p electrons in the outer shell, covalent sp3 orbitals
give rise to directed bonds where electrons between ions glue together the material. Semi-
conductors such as Si, Ge, are bonded this way, as well as polymers and many biological
materials. There are intermediate cases between the covalent and ionic materials, such as
III-V semiconductors like GaAs.
Hydrogen bonds These arise in materials that contain H such as ice. The proton participates
in the bonding. This is very important in biological materials.
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Metallic bonding For most light metals like Cu or Na, the outer valence electrons are
delocalized for quantum mechanical reasons which we will discuss in great detail, later.
The electrons act as glue by sitting between the positively charged ions. These essentially
free electrons give rise to the electrical conduction of metals such as Cu.

1.4 The exchange interaction

We have talked about bonds between atoms in terms of spatial degrees of freedom of the
electrons, but we have not mentioned electron spin. There is another effect, very important
for magnetism, which arises from the interplay between the Pauli exclusion principle, the
spin degrees of freedom, and the electrostatic repulsion of electrons. It occurs, for example,
for atoms which have unpaired spins.

We recall from quantum mechanics that the Pauli principle says that electron wavefunc-
tions must be antisymmetric in the exchange of any two electrons. This implies that when
we bring two atoms together the many-electron wavefunction must vanish when two elec-
trons with parallel spins are at the same position. Therefore electrons with parallel spins
are likely to be farther apart in space than antiparallel ones, and therefore have a smaller
electrostatic repulsion. As a result, if the two atoms have parallel spins the energy is lower.
Thus spins and therefore magnetic moments tend to line up when electrons from adjacent
atoms overlap. This is called the exchange interaction. This is discussed in considerable
detail below, Section 9.2.1, or in standard texts on quantum mechanics, e.g. (Landau &
Lifshitz 1977, Schiff 1968, Baym 1990).

There are a few comments we should make about this. One is that there needs to be
overlap of wavefunctions to have the effect work. The difference in energy between states
with parallel and antiparallel spins on adjacent atoms (the strength of the interaction) is
dependent on the overlap; the exchange interaction is very short range. Also, the size of the
energy difference is basically the electrostatic energy of two electrons an atomic distance
apart, a few electron volts.

Spin and symmetry effects need not favor parallel spins; it depends on the nature of
the wavefunctions and what energies are most important. A simple example of favor-
ing antiparallel spins is the hydrogen molecule, two electrons and two protons. In one
approach to the problem (the Heitler–London approximation) we build up the wave-
function for the molecule from atomic wavefunctions centered on each proton. We can
then form symmetric and antisymmetric combinations of these functions, as above. How-
ever, since the total wavefunction must be antisymmetric, parallel electron spins (total
spin 1) go with the antisymmetric spatial function, and antiparallel spins (total spin 0)
go with the symmetric spatial function; for more details see (Baym 1990). The electro-
static interaction with the hydrogen nuclei favors the symmetric state since the electrons
spend more time between the nuclei, and the kinetic energy of the symmetric state is
lower. As a result the ground (bonding) state of H2 has total spin 0, and is symmetric in
space.
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Suggested reading

There are many excellent references and textbooks for this subject that the student can
explore. The classic undergraduate text is by

Kittel (2005).
Successive editions of this book (the current one is the eighth) have been used by generations
of physicists and engineers.

At the graduate level the following old standards are highly recommended:
Ashcroft & Mermin (1976)
Ziman (1972)
Kittel (1963)

More modern treatments can be found in:
Anderson (1997)
Marder (2000)
Grosso & Pastori Parravicini (2000)
Phillips (2003)
Taylor & Heinonen (2002)
Chaikin & Lubensky (1995)

The last book is particularly good on soft condensed matter such as polymers and liquid
crystals, which are not treated in detail in this book.

Problems

1. Calculate the van der Waals’ interaction between two H atoms in their ground state. Use
the Hamiltonian for two single atoms as a reference: Ĥo = p2

1/2m − e2/|r1 − R1| +
p2

2/2m − e2/|r2 − R2|. You can put one nucleus at the origin and the other at distance d
along the x axis. Use the rest of the energy as a perturbation in second-order perturbation
theory:
Ĥ1 = −e2/|r1 − R2|− e2/|r2 − R1|+ e2/r12, where r12 = |r1 − r2|. See (Schiff 1968)
Assume |ri| << d. You may use only the first excited state of H in your perturbation
theory.
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2. Work out the exchange splitting between the singlet and triplet (1s2s) states of He. (a)
Use hydrogenic 1s and 2s states as a basis. Write down symmetric and antisymmetric
2-electron wavefunctions. (b) Show which belongs to the triplet spin state, and which to
the singlet. (c) Figure out the energy difference between the two states in terms of the
direct and exchange integrals (you need not work out the integrals):

I =
∫

dr1dr2ψ
∗
1s(r1)ψ

∗
2s(r2)

e2

r12
ψ1s(r1)ψ2s(r2)

J =
∫

dr1dr2ψ
∗
1s(r1)ψ

∗
2s(r2)

e2

r12
ψ1s(r2)ψ2s(r1).



2 Order and disorder

We have seen in the previous chapter that chemical bonds are the glue for condensed matter.
If the temperature is low enough so that thermal fluctuations do not break the bonds, it is
no surprise that atoms and molecules condense, i.e. stick together, so that there are large
pieces of matter.

However, the precise structure of condensed matter is often quite surprising. For example,
we might guess that the typical result of attractive chemical bonds would be a disorderly
mass of molecules. This does occur; such materials are called glasses. However, very
commonly something else happens: at low enough temperatures the atoms or molecules
form a remarkable ordered structure, a crystal. A crystal is an ordered, periodic array of
atoms or molecules. In the next chapter we will give a precise definition of this concept.
For our purposes, it is enough to understand that crystals are made up of identical building
blocks that are repeated many times. See Figure 2.1 for an example, the face-centered cubic
(fcc) crystal structure.

Chemistry tells us that atoms or ions can have a magnetic moment, either from orbital
currents or unpaired spins. However, you might expect that when large numbers of such
ions are stuck together that the orientation of the moments would be random. This is not
always the case. For some elements, e.g. Fe, Ni, Co, and many compounds the moments
line up in regular arrays of various kinds due to the exchange interaction, discussed above.

(a) (b)

Fig. 2.1 (a) A visualization of the face-centered cubic crystal structure. The nearest and next-nearest
neighbor bonds are shown. (b) The structure may be thought of as a collection of cubes with

atoms at the corners and the middle of all the faces.
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The large magnetic moment leads to the familiar phenomenon of magnets that pick up nails
or stick to your refrigerator. This is called ferromagnetism because it was first noticed in
iron and its compounds.

Complicated organic compounds sometimes form liquid crystals. These are liquids that
are nevertheless ordered in some way. A nematic liquid crystal, for example, consists of
long, rod shaped molecules. In certain temperature ranges the orientation of the molecules
lines up, but the positions are random, as in a classical liquid. Nematics are the essential
part of many liquid crystal displays such as those in laptop computers.

We will now discuss examples of ordered states in some detail.

2.1 Ferromagnets

Michael Faraday classified materials into three classes according to their magnetic state:
there are diamagnets, paramagnets, and ferromagnets. The state can be characterized by
the value of the magnetization, M, which is defined to be the magnetic moment per unit
volume.

In paramagnets there can be non-zero magnetization only if induced by an external field,
e.g., by aligning magnetic moments on ions. Diamagnetism is usually a weak effect which
gives an induced magnetization antiparallel to the magnetic field due to induced shielding
currents described by the Lenz law. The ordered states we are interested in are in the third
class where there is a non-zero spontaneous magnetization in the absence of an external
magnetic field.

Ordered states of this sort are not uncommon. There are a handful of ferromagnetic
elements, and many ferromagnetic compounds. To illustrate a simple case of macroscopic
order in condensed matter, we concentrate on magnetic insulators, which may be thought of
as a collection of atoms with spin and/or orbital magnetic moments arranged in a crystal. In
the ordered state a finite fraction of all the moments line up, i.e. point in the same direction,
because of strong interactions between the ions. Magnetic metals are a much more subtle
phenomenon, and will be discussed later. The interaction that causes ferromagnetism is
exchange. The strength of a bond between two magnetic atoms or ions depends on the
relative orientation of the spins, as we have seen. If the energy is lower when the spins are
parallel, we can have alignment.

A way to parameterize this energy difference was proposed by W. Heisenberg. He noted
that the energy is a scalar, but the spins of the atoms are vectors. The simplest way to make
a scalar from two vectors is to take their dot product. We expect to be able to write the
energy as:

E = −2 J s1 · s2. (2.1)

This is called the Heisenberg Hamiltonian, and J is called the exchange constant. The minus
sign and the factor of 2 are conventional, and J can be positive or negative. It is easy to see
for H2, mentioned above, that J is related to the singlet-triplet energy splitting.
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2.1.1 Magnetic order and energies

Suppose we have many magnetic ions in a crystal. We can extend Eq. (2.1) to this case by
writing:

H = −
∑
i �=j

Jijsi · sj . (2.2)

Jij is the exchange between ion i and ion j. Recall that the exchange interaction is very
short-ranged, so we can suppose that Jij = 0 unless i and j are nearest neighbors. In that
case we can write:

H = −
∑
j,δ

J sj · sj+δ, (2.3)

where j + δ runs over the nearest neighbors of j.
Suppose that J > 0. Now it is clear that the lowest energy state of our model system has

all the spins aligned in some direction, so that the magnetization is:

M = nγ�〈s〉 (2.4)

where n = N/� is the number of ions per unit volume, and γ�〈s〉 the average moment of a
single spin in the crystal. In this expression γ is the gyromagnetic ratio, the ratio between the
moment of a single ion and its angular momentum, �s. Note that γ� = −gµB = −ge�/2mc
where µB is the Bohr magneton, and g the g-factor of the ion. The state will be something
like that pictured in Figure 2.2(a).

The difference in energy between the ground state of the system and a random one where
the exchange interaction averages out is, from Eq. (2.2), Eo = −NJs2z/2 where z is the
coordination number, the number of nearest neighbors of a given ion. For example, in
Figure 2.2, z = 4.

(a) (b)

Fig. 2.2 Magnetic order. (a) Ferromagnet (b) Antiferromagnet. The arrow denotes the direction of the
magnetic moment.
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However, suppose that J < 0 so that antiparallel spins are preferred. Then, provided the
arrangement of atoms permits, spins can rearrange into a Néel or antiferromagnetic state
with every down spin surrounded by up spins, see Figure 2.2(b). This can happen if the
crystal can be divided into two sublattices, A and B, such that the nearest neighbors of sites
on lattice A are on B.

This structure was proposed by L. Néel. In this case there is no observable magnetic
moment, but there is a macroscopic magnetization on every other site. This can be measured,
as we will see below. The state pictured is not an eigenstate of the quantum mechanical
Hamiltonian in Eq. (2.2). It is an approximation which is better in the classical limit, i.e.,
the limit of large spin.

In a real crystal there are effects due to spin-orbit interactions and the electric fields
of ions. One result which is commonly observed is that magnetic moments align easily
with certain crystal directions. These are called easy axes. Further, an effect of spin-orbit
interactions can be to make the exchange constants, J , different for different directions
(White 1970). For example, it can happen that the Heisenberg Hamiltonian should be
replaced by:

H = −
∑
i �=j

Jijs
z
i s z

j . (2.5)

This is called the Ising model. It was originally introduced in order to make calculations
easier. However, it turns out that there are real Ising magnets.

Ferro- and anti-ferromagnetism are not the only types of magnetic order. Very compli-
cated magnetic structures are possible, including helical arrangements of moments in rare
earth metals.

2.1.2 Ferromagnets and paramagnets

For J > 0 the ferromagnetic state has the lowest energy of any spin configuration. However,
as temperature increases all ferromagnets become disordered, and at a temperature, Tc, the
Curie temperature, they lose their macroscopic magnetism altogether. Instead of the ordered
array of Figure 2.2 we have a random array of directions for the spins. This is called a
paramagnet: any magnetic moment that arises is induced by an external field, rather than
being permanent, as in a ferromagnet.

Why does this occur? In fact, the lowest energy state is not the thermal equilibrium state
except at T = 0. Statistical physics tells us that the equilibrium state is that of minimum free
energy: F = E −TS, where E is the energy and S is the entropy. The paramagnetic state has
many different random orientations of spins, and thus has high entropy. (To see this recall
Boltzmann’s formula: S = kB ln(W ) where W is the number of equivalent configurations
in a macrostate.) As T goes up, the entropy wins, and magnetic order is lost.

As an order-of-magnitude guess, we can turn a ferromagnet into a paramagnet when a
typical thermal fluctuation (whose energy is kBT ) breaks an exchange bond, i.e., kBTc ∼ J .
We will refine this estimate in the next section.
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2.1.3 Magnetic phase transition

As temperature goes up, disorder increases, and the magnetic moment decreases for the
reasons given in the previous paragraph. Only a fraction of the time will spins point along
the macroscopic moment. That is the thermally averaged moment is less than Nγ�s. Above
Tc there is no order left. It is an observed fact that the magnetic order disappears continuously.
In the language of statistical physics the magnetic phase transition is second order (or, more
properly, continuous). In contrast, in crystals, which we will discuss next, the positional
order disappears suddenly at the melting point, a first-order transition.

Molecular field theory

There is an approximate treatment of the magnetic phase transition, molecular field theory,
proposed by P. Weiss. The idea is to compare Eq. (2.2) to the Zeeman interaction of a
magnetic dipole with an external field:

−γ�sj · H. (2.6)

Weiss thought of each spin as seeing an effective (or molecular) field, HM, due to to all
the other spins. From Eq. (2.3) we see that the relevant term is:

−J sj ·
∑
δ

sj+δ ≡ −γ�sj · HM. (2.7)

In order to make this expression tractable, we make a mean-field assumption: we replace
the sum by its statistical average so we have:

HM = Jz〈s〉/γ� = JzM/n(γ�)2. (2.8)

We have used the fact that for ferromagnets the average of sj is independent of j and we have
used Eq. (2.4). Note that the molecular field is proportional to the magnetization: HM =
λM, λ = Jz/n(γ�)2. However, we can also calculate M from the statistical mechanics of
a spin in a magnetic field. Let the number of up spins be given by N+ and the number of
down spins by N−. We consider the z-component of the magnetization. For spin 1/2 we
have, using Eq. (2.6):

M = γ�

2�
(N+ − N−)

= 1

2
nγ�

(
exp(βγ�H/2)− exp(−βγ�H/2)

exp(βγ�H/2)+ exp(−βγ�H/2)

)

= nµ

2
tanh(βµH/2), (2.9)

where β = 1/kBT .
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x

Fig. 2.3 Graphical solution of Eq. (2.10); x = 2M/nγ�. The functions plotted on the vertical axis are:
solid y = x (LHS of the equation); dotted, RHS for T < Tc; dashed, RHS for T > Tc.
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Fig. 2.4 Solution of Eq. (2.10) as a function of temperature.

The magnetic field in this case is the molecular field. This gives:

M = nγ�

2
tanh(βγ�λM/2)

2M/nγ� = tanh[(βJz/4)(2M/nγ�)]. (2.10)

An equation of this type is easy to solve numerically. In Figure 2.3 we show a graph of
the two sides of the equation. Note from the figure that if the slope of the right-hand side
near the origin is less than 1, there will only one solution, M = 0. Since the hyperbolic
tangent has slope 1 near M = 0, this condition is equivalent to:

βJz/4 = 1; kBTc = Jz/4. (2.11)

We have labeled the temperature in this expression Tc because it is the mean-field theory
estimate of the Curie temperature. Figure 2.3 shows the following: for T > Tc there is only
one solution, M = 0, i.e. a paramagnet. Below Tc there are three solutions to Eq. (2.10), one
corresponding to magnetic moment up, another to moment down, and the trivial solution,
M = 0. One of the non-trivial solutions is shown in Figure 2.4. This should be interpreted
as the temperature dependence of the spontaneous magnetization. It is quite easy to show
that near Tc there is a square root singularity: M (T ) ∝ (Tc − T )1/2. Eq. (2.11) can be
generalized to other values of the spin:

kBTc = z Js(s + 1)/3. (2.12)



14 Order and disorder

The estimate of the transition temperature and of M (T ) are in qualitative agreement with
experiment. In detail the agreement is not very good since we have neglected thermal
fluctuations.

It is interesting to return to Eq. (2.9) in the case where there is an external magnetic field
in the z-direction so that H = He + HM. Then we have:

M = nγ�

2
tanh(βγ�(He + λM )/2). (2.13)

Suppose that T > Tc and that He is small. We are in the paramagnetic regime, and only M
is that induced by the external field. The argument of the hyperbolic tangent is small, and
we can expand it. After simple algebra we find:

M = βn(γ�)2

4
[He + λM ],

M/He = n(γ�)2

2kB(T − Tc)
. (2.14)

The quantity in the last equation is the magnetic susceptibility, χ.
In the case that there is negligible exchange we can put Tc = 0, and we recover the

famous Curie law for paramagnets:

χ = A/T ; A = n(γ�)2/2kB. (2.15)

In the case where Tc > 0 we find that χ diverges at Tc. This is confirmed by experiment,
but the form of the divergence is different close to Tc.

Landau theory

The fact that M (T ) goes to zero at Tc means that the magnetic phase transition is not
a first-order transition like boiling or melting, but continuous. In 1937, L. Landau gave
an empirical theory of such transitions which is widely used (Landau & ter Haar 1965).
We will briefly review it here: it is very well discussed in many books on statistical
physics.

Landau noted that since M is small near Tc, it is useful to do a Taylor expansion in M
of relevant functions. He called M the order parameter; this means a quantity that marks
the transition in the sense that the order parameter is zero above the transition temperature.
Suppose we look at the probability to have various values of the order parameter in a region
of the sample. This involves averaging with a Boltzmann distribution over many statistical
states that give the same M . Thus the probability will depend on temperature. Landau wrote
it as exp(−βF(M , H , T )), where F is called the (Landau) free energy. The minimum of F
with respect to the order parameter is the thermodynamic free energy.

We can write down a candidate form for F simply from symmetry. We work with an
Ising model for which the magnetization is along the z-axis, and is a scalar. In the absence
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a >0

F
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Fig. 2.5 The Landau free energy as a function of M .

of an external field F must be even in M . So we put, for the first terms in the power series
expansion:

F = F◦ + a(T )M 2 + bM 4 − γ�MH . (2.16)

The last term is the Zeeman interaction. A plot of F − F◦ is given in Figure 2.5 for H = 0.
The minimum of the free energy is at M = 0 unless a is negative. The simplest assumption
for the temperature dependence of a is:

a(T ) = a◦(T − Tc).

We will assume that b is not temperature dependent. Minimizing the free energy gives:

M (T ) =
(−a

2b

)1/2

=
(

a◦[Tc − T ]
2b

)1/2

T < Tc

= 0 T > Tc. (2.17)

This is the result we got already near Tc. Further, we see that the trivial solution, M = 0
is a maximum of the free energy in the ordered state. If we turn on the external magnetic
field and assume that T > Tc we can easily rederive the Curie law, Eq. (2.15).

The Landau theory is a very powerful tool in discussing phase transitions of different
types. We have neglected fluctuations in this discussion. That is, we could have states
with different values of M in different parts of the sample, and in thermal equilibrium
there will be a statistical ensemble of such states. A generalized Landau theory taking
spatial fluctuations into account is the starting point of modern theories of phase transi-
tions. Even if fluctuations are not important, we can have spatial variations in M due to
external fields and surfaces. In this case we need to deal with a free energy density, f ,
defined by:

F =
∫

dr f (M (r)).

We will look in detail at a theory of this type in Chapter 10.


