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Preface

Wireless communications technologies have seen a remarkably fast evolution in the past
two decades. Each new generation of wireless devices has brought notable improve-
ments in terms of communication reliability, data rates, device sizes, battery life, and
network connectivity. In addition, the increase homogenization of traffic transports
using Internet Protocols is translating into network topologies that are less and less
centralized. In recent years, ad-hoc and sensor networks have emerged with many new
applications, where a source has to rely on the assistance from other nodes to forward
or relay information to a desired destination.

Such a need of cooperation among nodes or users has inspired new thinking and
ideas for the design of communications and networking systems by asking whether
cooperation can be used to improve system performance. Certainly it means we have
to answer what and how performance can be improved by cooperative communications
and networking. As a result, a new communication paradigm arose, which had an impact
far beyond its original applications to ad-hoc and sensor networks.

First of all, why are cooperative communications in wireless networks possible?
Note that the wireless channel is broadcast by nature. Even directional transmission
is in fact a kind of broadcast with fewer recipients limited to a certain region. This
implies that many nodes or users can “hear” and receive transmissions from a source
and can help relay information if needed. The broadcast nature, long considered as a
significant waste of energy causing interference to others, is now regarded as a poten-
tial resource for possible assistance. For instance, it is well known that the wireless
channel is quite bursty, i.e., when a channel is in a severe fading state, it is likely to
stay in the state for a while. Therefore, when a source cannot reach its destination due
to severe fading, it will not be of much help to keep trying by leveraging repeating-
transmission protocols such as ARQ. If a third party that receives the information from
the source could help via a channel that is independent from the source–destination link,
the chances for a successful transmission would be better, thus improving the overall
performance.

Then how to develop cooperative schemes to improve performance? The key lies
in the recent advances in MIMO (multiple-input multiple-output) communication tech-
nologies. In the soon-to-be-deployed fourth-generation (4G) wireless networks, very
high data rates can only be expected for full-rank MIMO users. More specifically, full-
rank MIMO users must be equipped multiple transceiver antennas. In practice, most
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users either do not have multiple antennas installed on small-size devices, or the propa-
gation environment cannot support MIMO requirements. To overcome the limitations of
achieving MIMO gains in future wireless networks, one must think of new techniques
beyond traditional point-to-point communications.

A wireless network system is traditionally viewed as a set of nodes trying to commu-
nicate with each other. However, from another point of view, because of the broadcast
nature of wireless channels, one may think of those nodes as a set of antennas distributed
in the wireless system. Adopting this point of view, nodes in the network may cooper-
ate together for distributed transmission and processing of information. A cooperating
node can act as a relay node for a source node. As such, cooperative communications
can generate independent MIMO-like channel links between a source and a destination
via the introduction of relay channels.

Indeed, cooperative communications can be thought of as a generalized MIMO con-
cept with different reliabilities in antenna array elements. It is a new paradigm that
draws from the ideas of using the broadcast nature of the wireless channels to make
communicating nodes help each other, of implementing the communication process in
a distribution fashion, and of gaining the same advantages as those found in MIMO sys-
tems. Such a new viewpoint has brought various new communication techniques that
improve communication capacity, speed, and performance; reduce battery consumption
and extend network lifetime; increase the throughput and stability region for multi-
ple access schemes; expand the transmission coverage area; and provide cooperation
tradeoff beyond source–channel coding for multimedia communications.

The main goals of this textbook are to introduce the concepts of space, time,
frequency diversity, and MIMO techniques that form the foundation of coopera-
tive communications, to present the basic principles of cooperative communications
and networking, and to cover a broad range of fundamental topics where signifi-
cant improvements can be obtained by use of cooperative communications. The book
includes three main parts:

• Part I: Background and MIMO systems In this part, the focus is on building
the foundation of MIMO concepts that will be used extensively in cooperative com-
munications and networking. Chapter 1 reviews of fundamental material on wireless
communications to be used in the rest of the book. Chapter 2 introduces the con-
cept of space–time diversity and the development of space–time coding, including
cyclic codes, orthogonal codes, unitary codes, and diagonal codes. The last chapter in
this part, Chapter 3, concerns the maximum achievable space–time–frequency diver-
sity available in broadband wireless communications and the design of broadband
space–frequency and space–time–frequency codes.

• Part II: Cooperative communications This part considers mostly the physical
layer issues of cooperative communications to illustrate the differences and improve-
ments under the cooperative paradigm. Chapter 4 introduces the concepts of relay
channels and various relay protocols and schemes. A hierarchical scheme that can
achieve linear capacity scaling is also considered to give the fundamental reason
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for the adoption of cooperation. Chapter 5 studies the basic issues of cooperation
in the physical layer with a single relay, including symbol error rate analysis for
decode-and-forward and amply-and-forward protocols, performance upper bounds,
and optimum power control. Chapter 6 analyses multi-node scenarios. Chapter 7
presents distributed space–time and space–frequency coding, a concept similar to
the conventional space–time and space–frequency coding but different in that it is
now in a distributed setting where assumptions and conditions vary significantly.
Chapter 8 concerns the issue of minimizing the inherent bandwidth loss of coop-
erative communications by considering when to cooperate and whom to cooperate
with. The main issue is on devising a scheme for relay selection and maximizing the
code rate for cooperative communications while maintaining significant performance
improvement. Chapter 9 develops differential schemes for cooperative communi-
cations to reduce transceiver complexity. Finally, Chapter 10 studies the issues of
energy efficiency in cooperative communications by taking into account the practical
transmission, processing, and receiving power consumption and illustrates the trade-
off between the gains in the transmit power and the losses due to the receive and
processing powers when applying cooperation.

• Part III: Cooperative networking This part presents impacts of cooperative com-
munications beyond physical layer, including MAC, networking, and application
layers. Chapter 11 considers the effect of cooperation on the capacity and stability
region improvement for multiple access. Chapter 12 studies how special properties in
speech content can be leveraged to efficiently assign resources for cooperation and
further improve the network performance. Chapter 13 discusses cooperative routing
with cooperation as an option. Chapter 14 develops the concept of source–channel–
cooperation to consider the tradeoff of source coding, channel coding, and diversity
for multimedia content. Chapter 15 focuses on studying how source coding diver-
sity and channel coding diversity interact with cooperative diversity, and the system
behavior is characterized and compared in terms of the asymptotic performance of the
distortion exponent. Chapter 16 presents the coverage area expansion with the help
of cooperation. Chapter 17 considers the various effects of cooperation on OFDM
broadband wireless communications. Finally, Chapter 18 discusses network lifetime
maximization via the leverage of cooperation.

This textbook primarily targets courses in the general field of cooperative communi-
cations and networking where readers have a basic background in digital communica-
tions and wireless networking. An instructor could select Chapters 1, 2, 4, 5, 6, 7.1, 8,
10, 11, 13, 14, and 16 to form the core of the material, making use of the other chapters
depending on the focus of the course.

It can also be used for courses on wireless communications that partially cover the
basic concepts of MIMO and/or cooperative communications which can be considered
as generalized MIMO scenarios. A possible syllabus may include selective chapters
from Parts I and II. If it is a course on wireless networking, then material can be drawn
from Chapter 4 and the chapters in Part III.
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This book comes with presentation slides for each chapter to aid instructors with the
preparation of classes. A solution manual is also available to instructors upon request.
Both can be obtained from the publisher via the proper channels.

This book could not have been made possible without the contributions of the fol-
lowing people: Amr El-Sherif, T. Kee Himsoon, Ahmed Ibrahim, Zoltan Safar, Karim
Seddik, and W. Pam Siriwongpairat. We also would like to thank them for their technical
assistance during the preparation of this book.
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Background and MIMO systems





1 Introduction

Wireless communications have seen a remarkably fast technological evolution.
Although separated by only a few years, each new generation of wireless devices has
brought significant improvements in terms of link communication speed, device size,
battery life, applications, etc. In recent years the technological evolution has reached
a point where researchers have begun to develop wireless network architectures that
depart from the traditional idea of communicating on an individual point-to-point basis
with a central controlling base station. Such is the case with ad-hoc and wireless sen-
sor networks, where the traditional hierarchy of a network has been relaxed to allow
any node to help forward information from other nodes, thus establishing communica-
tion paths that involve multiple wireless hops. One of the most appealing ideas within
these new research paths is the implicit recognition that, contrary to being a point-to-
point link, the wireless channel is broadcast by nature. This implies that any wireless
transmission from an end-user, rather than being considered as interference, can be
received and processed at other nodes for a performance gain. This recognition facili-
tates the development of new concepts on distributed communications and networking
via cooperation.

The technological progress seen with wireless communications follows that of many
underlying technologies such as integrated circuits, energy storage, antennas, etc. Digi-
tal signal processing is one of these underlying technologies contributing to the progress
of wireless communications. Perhaps one of the most important contributions to the
progress in recent years has been the advent of MIMO (multiple-input multiple-output)
technologies. In a very general way, MIMO technologies improve the received signal
quality and increase the data communication speed by using digital signal processing
techniques to shape and combine the transmitted signals from multiple wireless paths
created by the use of multiple receive and transmit antennas.

Cooperative communications is a new paradigm that draws from the ideas of using
the broadcast nature of the wireless channel to make communicating nodes help each
other, of implementing the communication process in a distribution fashion and of
gaining the same advantages as those found in MIMO systems. The end result is
a set of new tools that improve communication capacity, speed, and performance;
reduce battery consumption and extend network lifetime; increase the throughput
and stability region for multiple access schemes; expand the transmission coverage
area; and provide cooperation tradeoff beyond source–channel coding for multimedia
communications.
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In this chapter we begin with the study of basic communication systems and concepts
that are highly related to user cooperation, by reviewing a number of concepts that will
be useful throughout this book. The chapter starts with a brief description of the relevant
characteristics of wireless channels. It then follows by discussing orthogonal frequency
division multiplexing followed by the different concepts of channel capacity. After this,
we describe the basic ideas and concepts of MIMO systems. The chapter concludes by
describing the new paradigm of user cooperative communications.

1.1 Wireless channels

Communication through a wireless channel is a challenging task because the medium
introduces much impairment to the signal. Wireless transmitted signals are affected by
effects such as noise, attenuation, distortion and interference. It is then useful to briefly
summarize the main impairments that affect the signals.

1.1.1 Additive white Gaussian noise

Some impairments are additive in nature, meaning that they affect the transmitted signal
by adding noise. Additive white Gaussian noise (AWGN) and interference of different
nature and origin are good examples of additive impairments. The additive white Gaus-
sian channel is perhaps the simplest of all channels to model. The relation between the
output y(t) and the input x(t) signal is given by

y(t) = x(t)/
√
� + n(t), (1.1)

where � is the loss in power of the transmitted signal x(t) and n(t) is noise. The additive
noise n(t) is a random process with each realization modeled as a random variable
with a Gaussian distribution. This noise term is generally used to model background
noise in the channel as well as noise introduced at the receiver front end. Also, the
additive Gaussian term is frequently used to model some types of inter-user interference
although, in general, these processes do not strictly follow a Gaussian distribution.

1.1.2 Large-scale propagation effects

The path loss is an important effect that contributes to signal impairment by reducing
its power. The path loss is the attenuation suffered by a signal as it propagates from the
transmitter to the receiver. The path loss is measured as the value in decibels (dB) of
the ratio between the transmitted and received signal power. The value of the path loss
is highly dependent on many factors related to the entire transmission setup. In general,
the path loss is characterized by a function of the form

�dB = 10ν log(d/d0)+ c, (1.2)

where �dB is the path loss � measured in dB, d is the distance between transmitter
and receiver, ν is the path exponent, c is a constant, and d0 is the distance to a power
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measurement reference point (sometimes embedded within the constant c). In many
practical scenarios this expression is not an exact characterization of the path loss, but
is still used as a sufficiently good and simple approximation. The path loss exponent ν
characterizes the rate of decay of the signal power with the distance, taking values in the
range of 2 (corresponding to signal propagation in free space) to 6. Typical values for
the path loss exponent are 4 for an urban macro cell environment and 3 for urban micro
cell. The constant c includes parameter related to the physical setup of the transmission
such as signal wavelength, antennas height, etc.

Equation (1.2) shows the relation between the path loss and the distance between the
transmit and the receive antenna. In practice, the path losses of two receive antennas
situated at the same distance from the transmit antenna are not the same. This is, in
part, because the transmitted signal is obstructed by different objects as it travels to the
receive antennas. Consequently, this type of impairment has been named shadow loss
or shadow fading. Since the nature and location of the obstructions causing shadow loss
cannot be known in advance, the path loss introduced by this effect is a random variable.
Denoting by S the value of the shadow loss, this effect can be added to (1.2) by writing

�dB = 10ν log(d/d0)+ S + c. (1.3)

It has been found through experimental measurements that S when measured in dB can
be characterized as a zero-mean Gaussian distributed random variable with standard
deviation σ (also measured in dB). Because of this, the shadow loss value is a random
value that follows a log-normal distribution and its effect is frequently referred as log-
normal fading.

1.1.3 Small-scale propagation effects

From the explanation of path loss and shadow fading it should be clear that the reason
why they are classified as large-scale propagation effects is because their effects are
noticeable over relatively long distances. There are other effects that are noticeable at
distances in the order of the signal wavelength; thus being classified as small-scale prop-
agation effects. We now review the main concepts associated with these propagation
effects.

In wireless communications, a single transmitted signal encounters random reflec-
tors, scatterers, and attenuators during propagation, resulting in multiple copies of the
signal arriving at the receiver after each has traveled through different paths. Such a
channel where a transmitted signal arrives at the receiver with multiple copies is known
as a multipath channel. Several factors influence the behavior of a multipath channel.
One is the already mentioned random presence of reflectors, scatterers and attenuators.
In addition, the speed of the mobile terminal, the speed of surrounding objects and the
transmission bandwidth of the signal are other factors determining the behavior of the
channel. Furthermore, due to the presence of motion at the transmitter, receiver, or sur-
rounding objects, the multipath channel changes over time. The multiple copies of the
transmitted signal, each having a different amplitude, phase, and delay, are added at
the receiver creating either constructive or destructive interference with each other. This
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results in a received signal whose shape changes over time. Therefore, if we denote the
transmitted signal by x(t) and the received signal by y(t), we can write their relation as

y(t) =
L∑

i=1

hi (t)x(t − τi (t)), (1.4)

where hi (t) is the attenuation of the i-th path at time t , τi (t) is the corresponding path
delay, and L is the number of resolvable paths at the receiver. This relation implicitly
assumes that the channel is linear, for which y(t) is equal to the convolution of x(t)
and the channel response at time t to an impulse sent at time τ , h(t, τ ). From (1.4), this
impulse response can be written as

h(t, τ ) =
L∑

i=1

hi (t)δ(t − τi (t)), (1.5)

Furthermore, if it is safe to assume that the channel does not change over time, the
received signal can be simplified as

y(t) =
L∑

i=1

hi x(t − τi ),

and the channel impulse response as

h(t) =
L∑

i=1

hiδ(t − τi ). (1.6)

In many situations it is convenient to consider the discrete-time baseband-equivalent
model of the channel, for which the input–output relation derived from (1.4) for sample
m can be written as

y[m] =
L∑

k=l

hk[m]x[m − k], (1.7)

where hk[m] represents the channel coefficients. In this relation it is implicit that there is
a sampling operation at the receiver and that all signals are considered as in the baseband
equivalent model. The conversion to a discrete-time model combines all the paths with
arrival time within one sampling period into a single channel response coefficient hl [m].
Also, note that the model in (1.7) is nothing more than a time-varying FIR digital filter.
In fact, it is quite common to call the channel model based on the impulse response
as the tapped-delay model. Since the nature of each path, its length, and the presence
of reflectors, scatterers, and attenuators are all random, the channel coefficients hk of
a time-invariant channel are random variables (and note that the redundant time index
needs not be specified). If, in addition, the channel changes randomly over time, then the
channel coefficients hk[m] are random processes. Such an effect needs to be taken into
consideration with functions that depend on the coefficients, since now they become
random functions.
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1.1.4 Power delay profile

The function determined by the average power associated with each path is called the
power delay profile of the multipath channel. Figure 1.1 shows the power delay profile
for a typical wireless channel slightly modified from the ITU reference channel model
called “Vehicular B” [87]. Several parameters are derived from the power delay profile
or its spectral response (Fourier transform of the power delay profile), which are used
to both characterize and classify different multipath channels:

• The channel delay spread is the time difference between the arrival of the first mea-
sured path and the last. If the duration of the symbols used for signaling over the
channel exceeds the delay spread, then the symbols will suffer from inter-symbol
interference. Note that, in principle, there may be several signals arriving through
very attenuated paths, which may not be measured due to sensitivity of the receiver.
This makes the concept of delay spread tied to the sensitivity of the receiver.

• The coherence bandwidth is the range of frequencies over which the amplitude of
two spectral components of the channel response are correlated. The coherence band-
width provides a measurement of the range of frequencies over which the channel
shows a flat frequency response, in the sense that all the spectral components have
approximately the same amplitude and a linear change of phase. This means that if
the transmitted signal bandwidth is less than the channel coherence bandwidth, then
all the spectral components of the signal will be affected by the same attenuation and
by a linear change of phase. In this case, the channel is said to be a flat fading channel.
In another way, since the signal sees a channel with flat frequency response, the chan-
nel is often called a narrowband channel. If on the contrary, the transmitted signal
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Fig. 1.1 The power delay profile of a typical wireless channel.
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bandwidth is more than the channel coherence bandwidth, then the spectral compo-
nents of the signal will be affected by different attenuations. In this case, the channel
is said to be a frequency selective channel or a broadband channel.

Example 1.1 There are a large number of different channel models that have been used
over time for evaluation of communications systems. The large number is due to the
different settings found in the plethora of communication systems already in the mar-
ket or under development. In Tables 1.1 through 1.4 we summarize the parameters of
the power delay profile for some of the channels defined in the ITU recommendation
M.1225, which is intended for a system operating at a carrier frequency of 2 GHz. In the
ITU recommendation, several channel models are discussed so as to account for typi-
cally large variability of wireless channels. In this example, Tables 1.1 and 1.2 show the
parameters for channels corresponding to a pedestrian setting. As its names indicates,
this environment is designed to model pedestrian users, either outside on a street or
inside a residence, with small cells, low transmit power and outside base stations with
low antenna heights. Tables 1.3 and 1.4 show the parameters for channels correspond-
ing to a vehicular setting. In contrast with the pedestrian environment, the vehicular case
models larger cell sizes and transmit power. Also to account for the large variability of
wireless channels, two types of channel models are specified for both the pedestrian and
vehicular cases. The two types of channels are called “type A” and “type B”, where the
channel type A is defined as that of a low delay spread case that occurs frequently and
channel type B is defined as that of the median delay spread case.

Table 1.1 ITU-R M.1225 Pedestrian A channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 0
2 110 −9.7
3 190 −19.2
4 410 −22.8

Table 1.2 ITU-R M.1225 Pedestrian B channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 0
2 200 −0.9
3 800 −4.9
4 1200 −8.0
4 2300 −7.8
4 3700 −23.9
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Table 1.3 ITU-R M.1225 Vehicular A channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 0
2 310 −1.0
3 710 −9.0
4 1090 −10.0
4 1730 −15.0
4 2510 −20.0

Table 1.4 ITU-R M.1225 Vehicular B channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 −2.5
2 300 0
3 8900 −12.8
4 12900 −10.0
4 17100 −25.2
4 20000 −16.0

Figures 1.2 and 1.3 show in the time and frequency domain, respectively, the impulse
response in Tables 1.1 through 1.4. The figures illustrate the typical variability of chan-
nel models, both in terms of delay spread and coherence bandwidth. Also note how,
within the same type A or type B channels, the vehicular channels exhibit a larger delay
spread. �

Whether a particular channel will appear as flat fading or frequency selective depends,
of course, on the channel delay spread, but it also depends on the characteristics of
the signal being sent through the channel. Figure 1.4 shows a section of the spectral
response of the channel with power delay profile shown in Figure 1.1. We can see that
if the transmitted signal has a bandwidth larger than a few tens of kilohertz, then the
channel will affect differently those spectral components of the transmitted signal that
are sufficiently apart.

This can be seen in Figure 1.5, which shows the time and frequency domain input and
output signals to the channel in Figures 1.1 and 1.2. In Figure 1.5, the input signal is a
raised cosine pulse with roll off factor 0.25 and symbol period 0.05 μs. For this pulse,
the bandwidth is approximately 2 MHz. This makes the channel behave like a frequency
selective channel. As can be seen in the frequency domain representation of the output
pulse in Figure 1.5, the typical result of the frequency selectivity is that there are large
differences in how each spatial component is affected. In the time domain, it can be



10 Introduction

R
el

at
iv

e 
am

p
lit

u
d

e

R
el

at
iv

e 
am

p
lit

u
d

e
0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Time [s]

Time [s]

× 10–6

× 10–5

50

Vehicular A

Vehicular B

Pedestrain B

Pedestrain A

0 0.5 1 1.5 2

Fig. 1.2 The amplitude of the different paths for the channels in Tables 1.1 through 1.4. The amplitudes
of each path are shown relative to the value of the path with larger gain.

seen that the single pulse at the input of the channel appears repeated at the output with
different delays corresponding to each path.

Such a phenomenon can also be seen in detail in Figure 1.6, which shows the output
pulse and each of the pulses arriving through a different path, with their corresponding
delay. Since the delay associated with some path is larger than the symbol period, the
multipath, frequency selective channel is suffering from intersymbol interference (ISI).
The fact that a time domain phenomenon such as instances of a signal arriving with
different delays, translate into a frequency domain effect, such as frequency selectivity,
can be understood in the following way. When the signals with different delays from
the multipath get superimposed at the receive antenna, the different delay translates
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Fig. 1.5 The input and output pulses to a frequency selective channel.

into different phases. Depending on the phase difference between the spectral compo-
nents, their superposition may result into destructive or constructive interference. Even
more, because the relation between phase and path delay for each spectral component of
the arriving signal varies with the frequency of the spectral component, the signal will
undergo destructive or constructive interference of different magnitude for each spectral
component, resulting in the frequency response of the channel not appearing of constant
amplitude.

Figures 1.7 and 1.8 show the time and frequency domains input and output signals to
the channel in Figures 1.1 and 1.4 when the input pulse have a transmission period long
enough that the channel behaves as non frequency selective. In this case, the input pulse
has a bandwidth of approximately 2 KHz, for which the frequency response of the chan-
nel appears roughly flat. Consequently, the transmitted pulse suffers little alterations in
both time and frequency domains. Also, note that now with the longer duration of the
pulse, the delays associated with different channel paths can be practically neglected
and there is no ISI.

In addition to power delay profile and channel delay spread, there are other para-
meters related to time-varying characteristics of the wireless channel. As we have said,
the motions of the transmitter, the receiver or the reflectors along the signal propagation
path creates a change of the channel transfer characteristics over time. Such motions also
introduce frequency shifts due to the Doppler shift effect. To characterize the channel in
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Fig. 1.6 The pulse at the output of a frequency selective channel and each of the component pulses
due to multipath.

terms of Doppler shift it is necessary to look at the variation of the channel power profile
over time. In other words, instead of considering the statistics of the channel between
two frequencies at a fixed time instant, we now look at the same frequency component
as it changes over time. The parameters usually considered in these cases are:

• For a time-invariant channel, the coefficient of the channel impulse response cor-
responding to one path is a random variable (generally a complex-valued Gaussian
random variable). When the channel changes over time, the coefficient becomes a ran-
dom process, with each realization at different time instants being a random variable.
These random variables may or may not be correlated. The channel coherence time is
the time difference that makes the correlation between two realizations of the chan-
nel impulse response be approximately zero. The Fourier transform of the correlation
function between the realizations of a channel coefficient is known as the channel
Doppler power spectrum, or simply the Doppler spectrum. The Doppler spectrum
characterizes in a statistical sense how the channel response widens an input signal
spectrum due to Doppler shift, i.e., if a single tone of frequency fc is sent through a
channel with a Doppler shift fd, the Doppler spectrum will have components in the
range from fc − fd to fc + fd.
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Fig. 1.7 The input and output pulses to a frequency non-selective channel.

• The Doppler spread is defined as the range of frequencies over which the Doppler
power spectrum is nonzero. The Doppler spread is the inverse of the channel coher-
ence time and, as such, provides information on how fast the channel changes over
time. Here, again, the notion on how fast the channel is changing depends also on the
input signal. If the channel coherence time is larger than the transmitted signal symbol
period; or equivalently, if the Doppler spread is smaller than the signal bandwidth, the
channel will be changing over a period of time longer than the input symbol dura-
tion. In this case, the channel is said to have slow fading. If the converse applies, the
channel is said to have fast fading.

1.1.5 Uniform scattering environment models

As previously mentioned, the channel coefficients are complex-valued random variables
or processes. This raises the important question of what are the statistical properties
of the coefficients and what kind of mathematical model can characterize this behav-
ior. One of the most common models for the random channel coefficients is based on
an environment known as the “uniform scattering environment.” Since this model was
introduced by R. H. Clarke and later developed by W. C. Jakes, the model is also known
as Clarke’s model or Jakes’ model. In the model, it is assumed that a waveform arrives
at a receiver after being scattered on a very large number of scatterers. These scatterers
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Fig. 1.9 The uniform scattering environment.

are assumed to be randomly located on a circle centered on the receiver (see Figure 1.9).
In the environment it is assumed that there is no line-of-sight (LOS) signal with a power
notably larger than the rest. Consequently, the received waveform is made of the super-
position of many waveforms arriving from the scatterers at an angle that is uniformly
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distributed between 0 and 2π . For the purpose of this study, let us first introduce the
complex baseband representation of the transmitted bandpass signals s(t),

s(t) = �
{

x(t)ej2π fct
}
,

where fc is the carrier frequency. Expanding this expression, we get

s(t) = �{x(t)} cos (2π fct)+ �{x(t)} sin (2π fct)

= sI(t) cos (2π fct)+ sQ(t) sin (2π fct),

where sI(t) and sQ(t) are the in-phase and quadrature components of s(t), respectively.
When this signal is transmitted through a channel with baseband impulse response h(t),
the resulting received signal is

y(t) = �
{(

x(t) ∗ h(t)
)
ej2π fct

}
.

If the channel has L paths, with path n having amplitude hn(t), an associated delay
τn(t), and a Doppler phase shift ϕn (which accounts for the Doppler shift due to the
motion of the receiver of each received wave), the received signal can be written as

y(t) = �
{ L∑

n=1

hn(t)x
(
t − τn(t)

)
ej [2π fc(t−τn(t))+ϕn]

}
.

If, for the purpose of this characterization, we assume that the transmitted signal is
a single tone with the same frequency as the carrier frequency, the received signal
becomes

y(t) = �
{ L∑

n=1

[
hn(t)e

−j(2π fcτn(t)−ϕn)
]
ej2π fct

}
= yI(t) cos (2π fct)+ yQ(t) sin (2π fct), (1.8)

where

yI(t) =
L∑

n=1

hn(t) cos (2π fcτn(t)− ϕn), (1.9)

yQ(t) =
L∑

n=1

hn(t) sin (2π fcτn(t)− ϕn). (1.10)

This result shows that both the in-phase and the quadrature components of the received
signal are actually composed of the superposition of multiple copies of the signal arriv-
ing with a change of amplitude and phase as determined by the characteristics of each
of the channel paths.

Next, as part of the settings associated with the uniform scattering environment, we
assume that all the received signals arrive with the same amplitude. This is a reasonable
assumption because, given the geometry of the uniform scattering environment, in the
absence of a direct LOS path, each signal arriving at the receiver would experience sim-
ilar attenuations. Furthermore, in the uniform scattering environment, it is reasonable
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to assume that the number of paths L is very large. Therefore, resorting to the Central
Limit Theorem, it follows that each coefficient can be modeled as a circularly symmetric
complex Gaussian random variable with zero mean (i.e., as a random variable made of
two quadrature components, with each component being a zero mean Gaussian random
variable with the same variance as the other component σ 2). We denote this observation
as yI ∼ N (0, σ 2), yQ ∼ N (0, σ 2).

To better understand the channel behavior, it is important to find the statistics (in
terms of probability density function (pdf)) of the envelope and phase of the channel
coefficients. To get this, it is necessary to consider the transformation of those random
variables representing a channel coefficient in Cartesian coordinates into those repre-
senting the coefficient in polar coordinates. This means that, if we write the coefficient
as h = hI+jhQ (hI and hQ represent the in-phase and the quadrature phase components,
respectively), we want to find the pdf of the random variables r and θ , obtained through
the transformations

r =
√

h2
I + h2

Q,

θ = arctan(hQ/hI), (1.11)

which represent a channel coefficient as h = r ejθ . Equivalently, we may consider the
inverse transform

hI = r cos θ,

hQ = r sin θ. (1.12)

For the general case of transforming random variables V = t1(X,Y ) and W =
t2(X,Y ), the transformation of the joint pdf fX,Y of the random variables X and Y
into the joint pdf fV,W of the random variables V and W , is given by the expression
[112]

fV,W (v,w) = fX,Y
(
s1(v,w), s2(v,w)

)
|J (x, y)| ,

J (x, y) = det

[
∂v
∂x

∂v
∂y

∂w
∂x

∂w
∂y

]
,

where J (x, y) is the Jacobian of the transformation and where x = s1(v,w) and y =
s2(v,w) are the inverse transformations of t1 and t2, respectively. Applying this relation
to the transformation (1.12) results in the Jacobian J (r, θ) = r/σ 2, which leads to the
joint pdf

f (r, θ) = r

2πσ 2
e−r2/(2σ 2), r ≥ 0, 0 ≤ θ ≤ 2π,
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where we have used for easier readability a slightly modified notation for the pdf. From
the joint pdf it is possible to find the marginal pdfs

f (r) =
∫ 2π

0
f (r, θ)dθ = r

σ 2
e−r2/(2σ 2), r ≥ 0,

f (θ) =
∫ ∞

0
f (r, θ)dr = 1

2π
, 0 ≤ θ ≤ 2π.

This result shows that the magnitude of the channel coefficients is a random variable
with a Rayleigh distribution and the phase is also a random variable with a uniform
distribution in the range [0, 2π ]. Because the magnitude of the channel coefficients
follow a Rayleigh distribution, this model is frequently called a Rayleigh fading model.

Also, for the case of two nonnegative random variables related by the transformation
Y = X2, using similar random variables transformation techniques yields the relation
between pdfs

fY (y) = fX (x)

dy/dx
.

With this relation it can be shown that a random variable X that is defined as the
squared magnitude of a Rayleigh-distributed channel coefficient (X = |h|2) follows
an exponential distribution, with pdf

fX (x) = 1

σ 2
e−x/σ 2

, x ≥ 0. (1.13)

In addition, the sum of the squared magnitude of channel coefficient,
∑

i |hi |2, where
each is the sum of two real i.i.d. Gaussian random variables representing the in-phase
and quadrature components (i.e., hi = hIi + jhQi ), results in a Chi-square random
variable with 2L (L being the number of channel coefficients in the sum) degrees of
freedom. The pdf of this distribution is

f (x) = x L−1

(L − 1)!e
−x , x ≥ 0. (1.14)

To consider the statistics of the received signal and the channel as they change over
time, the two most important results are the time correlation and its Fourier transform,
the power spectral density (PSD). Using as a starting point (1.8), (1.9), and (1.10), the
time correlation of the received signal is

Cy(τ ) = E[y(t)y(t + τ)]
= CyI(τ ) cos(2π fcτ)+ CyI,yQ(τ ) sin(2π fcτ), (1.15)

where E[·] is the expectation operator. The autocorrelation of yI , CyI(τ ) equals

CyI(τ ) = E[yI(t)yI(t + τ)].
Considering the expression for yI(t) in (1.9), the magnitude of the Doppler phase shift,
ϕn , depends on the velocity of the receiver relative to the scatterer from where the wave
comes from. This relative velocity is equal to v cosαk , where v is the absolute velocity
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of the receiver. If we denote the angle associated with the k-th wave as αk , the Doppler
shift for waveform k equals

ϕk = 2π
v

λ
t cosαk = 2π fDt cosαk,

where λ is the wavelength and fD = v/λ is the Doppler frequency. Now we can write
(1.9) as

yI(t) =
L∑

n=1

hn(t) cos (2π fcτn(t)− 2π
v

λ
t cosαn). (1.16)

In the uniform scattering environment the phase 2π fcτn(t) changes more rapidly than
the Doppler phase shift. In addition, since the distance from the scatterers to the mobile
is much larger than the signal wavelength, it is possible to assume that the angle asso-
ciated with the k-th wave, αk , is a random variable uniformly distributed in [0, 2π ]
and independent of the angle associated with other paths. Under these conditions, the
autocorrelation of yI, CyI(τ ) equals

CyI(τ ) =
Pr

2π

∫ 2π

0
cos(πvτ cosα/λ)dα

= Pr J0(2π fcvτ/c),

where c is the speed of light, Pr is the received power, and J0(·) is the Bessel function
of the first kind and zeroth order, defined as

J0(x) = 1

π

∫ π

0
e−jx cos θdθ.

Using similar reasoning, the cross-correlation between the in-phase and quadrature
components of the received signal, CyI,yQ(τ ), can be found to equal zero. Therefore,
using (1.15), the time correlation of the received signal is

Cy(τ ) = Pr J0(2π fcvτ/c) cos(2π fcτ). (1.17)

In this result, the cos(2π fcτ) component indicates the correlation of the received signal
to a complete period shift due to being a single tone of frequency fc. Taking the Fourier
transform of (1.17) yields the power spectral density of the received signal

Sy( f ) =
⎧⎨⎩

Pr
4π fD

1√
1−
( | f− fc |

fD

)2
if | f − fc| ≤ fD

0 else.
(1.18)

Note here that the frequency shift f − fc is a consequence of the cos(2π fcτ) component
in (1.17) and the frequency shift property of Fourier transforms. Since the input signal
is a single tone, ignoring the frequency shift in the power spectral density of the channel
effects, which consequently has a time correlation equal to

Ch(τ ) = Pr J0(2π fcvτ/c). (1.19)
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Example 1.2 In this example we show typical cases of the cross-correlation and the
power spectral density functions we just have discussed. We assume a system setup
where fc = 1 GHz, v = 30 km/h, and Pr = 1. Figure 1.10 shows the power spectral
density as obtained from (1.18). For the settings in this example, fD ≈ 27 Hz, so in the
figure the rapid increase of PSD at frequencies near f = fc± fD can be observed. Since
the uniform scattering environment is nothing more than a model to represent physical
channel behaviors, the PSD in (1.18) could become infinite at frequencies f = fc± fD.
This cannot happen in practice, but (1.18) tells us that the PSD will be maximum at
these frequencies. Next, Figure 1.11 shows the time correlation as given by (1.19). Note
that there are values of τ for which the correlation is 0, which means that the channel
will decorrelate signals arriving with these delays. �

1.1.6 Other channel coefficients models

The Rayleigh fading model is not the only model for the channel coefficients. In fact,
when we derived the Rayleigh fading for the uniform scattering environment from
(1.8)–(1.10), we assumed that all the received signals arrive with the same amplitude
due to the absence of a direct LOS path and the symmetric geometry of the environ-
ment. When there is one line-of-sight path, then it can no longer be assumed that both
the in-phase and quadrature components can be approximated as a zero mean Gaussian
random variable. Now, the two components are Gaussian random variables but one has
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Fig. 1.10 Power spectral density of a received tone of frequency fc = 1 GHz for a mobile in a uniform
scattering environment moving at v = 30 km/h.
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Fig. 1.11 Time correlation for a signal in a uniform scattering environment over a channel with central
frequency fc = 1 GHz and for a mobile speed of v = 30 km/h.

mean A, which is the peak amplitude of the signal from the line-of-sight path, and the
other still has zero mean. In this case, we can still use the useful transformations (1.11),
for which the cumulative distribution function (CDF) of r is

Fr (z) = Pr[r ≤ z]
= 1

2πσ 2

∫∫
√

h2
I+h2

Q≤z
exp
[
− 1

2

([hI − A

σ

]2 +
[hQ

σ

]2)]
dx dy

= e−
1
2

(
A
σ

)2

2πσ 2

∫ z

0
e−

1
2 (

r
σ
)2
(∫ 2π

0
er A cos

θ

σ 2
dθ

)
u(z)r dr, (1.20)

where u(z) is the unit step function so that (1.20) is valid only for z ≥ 0. Next, the
integral in θ in (1.20) can be written in terms of the modified Bessel function of the first
kind and zeroth order, defined as

I0(x) = J0(jx) = 1

2π

∫ 2π

0
ex cos θdθ, (1.21)

to get

Fr (z) = e−
1
2

(
A
σ

)2

σ 2

∫ z

0
r I0

(
r A

σ 2

)
e−

1
2 (

z−A
σ
)2u(z)dr. (1.22)

From this result, the pdf is obtained by differentiating with respect to z, resulting in

fr (z) = z

σ 2
e
−
(

z2

2σ2+K
)

I0

(
2K x

A

)
, z ≥ 0. (1.23)
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Fig. 1.12 Different probability density functions used to model random fading.

This is the pdf of a Rician distribution. In (1.23), K is a parameter of the Ricean dis-
tribution defined as K = A2/(2σ 2). Note that, when K = 0, the Rician pdf becomes
equal to the Rayleigh pdf, which is consistent with the fact that K = 0 means there is
no LOS path.

In some cases, it is convenient to model the channel by taking samples of channel
realizations and then matching them to a mathematical model. For this it is useful to
have a probability density function that can be easily matched to the data samples. This
function is provided by the Nakagami fading distribution, which is given by

f (x) = 2mm x2m−1

�(m)σ 2m
e−mx2/σ 2

, m ≥ 1/2, (1.24)

where �(·) is the Gamma function and m is a parameter used to adjust the pdf of the
Nakagami distribution to the data samples. For example, if m = 1, then the Nakagami
distribution becomes equal to the Rayleigh distribution. One advantage of the Nakagami
distribution is that it matches empirical data better than other distributions. In fact, the
Nakagami distribution was originally proposed due to this reason.

Figure 1.12 shows the different probability density functions that were discussed in
this section.

1.2 Characterizing performance through channel capacity

In this book we will be studying different communication schemes. One important way
of characterizing their achievable performance is through the use of information theory
concepts, most notably through the use of concepts such as mutual information and the
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characterization of performance limits through system capacity. At its core, information
theory deals with the information provided by the outcome of a random variable. The
information provided by the outcome x of a discrete random variable X is defined as

IX (x) = log
1

Pr[X = x] = − log Pr[X = x], (1.25)

where Pr[X = x] is the probability of the outcome X = x and the logarithm can be,
in principle, of any base but is most frequently taken with base 2, followed by base e
in some fewer cases. Intuitively, the rarer an event is, the more information it provides.
Since the communication process is inherently a process relating more than one random
variable (e.g. the input and output of a channel, an uncompressed and a compressed
representation of a signal, etc.), it is also important to define a magnitude relating the
information shared by two random variables. This magnitude is the mutual information,
which for two discrete random variables X and Y is defined as

I (X; Y ) =
∑
x∈X

∑
y∈Y

Pr[X = x,Y = y] log
Pr[X = x,Y = y]

Pr[X = x]Pr[Y = y] ,

where Pr[X = x,Y = y] is the joint probability mass function and Pr[X = x] and
Pr[Y = y] are marginal probability mass functions. Following Bayes theorem (Pr[X =
x,Y = y] = Pr[X = x |Y = y]Pr[Y = y], with Pr[X = x |Y = y] being the conditional
probability mass function of X given that Y = y), the mutual information can also be
written as

I (X; Y ) =
∑
x∈X

∑
y∈Y

Pr[X = x,Y = y] log
Pr[X = x |Y = y]

Pr[X = x] .

Furthermore, we can write

I (X; Y ) = −
∑
x∈X

log Pr[X = x]
∑
y∈Y

Pr[X = x,Y = y]

+
∑
x∈X

∑
y∈Y

Pr[X = x,Y = y] log Pr[X = x |Y = y]

= −
∑
x∈X

Pr[X = x] log Pr[X = x]

+
∑
x∈X

∑
y∈Y

Pr[X = x,Y = y] log Pr[X = x |Y = y]. (1.26)

The first term in this result is called the entropy of the random variable X ,

H(X) = −
∑
x∈X

Pr[X = x] log Pr[X = x],

and the second term can be written in terms of the conditional entropy of X ,

H(X |Y ) = −
∑
x∈X

Pr[X = x,Y = y] log Pr[X = x |Y = y].

Considering (1.25), the entropy of the random variable can also be read as the mean
value of the information provided by all its outcomes. Likewise, the conditional entropy
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can be regarded as the mean value of the information provided by all the outcomes
of a random variable (X ) given than the outcome of a second random variable (Y ) is
known, or how much uncertainty about a random variable (X ) remains after knowing
the outcome of a second random variable (Y ). Therefore, the mutual information as in
(1.26) can now be written as

I (X; Y ) = H(X)− H(X |Y ),

and intuitively be interpreted as the mean amount of uncertainty about one random
variable (X ) that is resolved after learning about the outcome of another random variable
(Y ), or the average amount of information shared by the two random variables. Finally,
we note here that although the concepts we have been introducing were tailored to
discrete random variables, the same concepts apply to continuous random variables
with the only differences that the sums are replaced by integrals and the probability
mass functions by probability density functions.

In information theory, one of the main measures of performance is system capacity.
Nevertheless, due to the fact that the calculation of capacity always involves a number
of assumptions and simplifications, the measurement of capacity does not come in a
“one size fits all” solution. In particular, the notion of capacity is influenced by how
much the channel changes over the duration of a coding interval and the properties of
the random process associated with the channel fluctuations.

When the random variations of the channel are a stationary and ergodic process it is
possible to consider the traditional notion of capacity as introduced by Claude Shan-
non [181]. In this case, coding is assumed to be done using arbitrary long blocks. Also,
the random process driving the channel changes needs to be stationary and ergodic.
Because of this, this notion of capacity is known as ergodic capacity or Shannon capac-
ity. The capacity of an AWGN channel with fast flat fading, when only the receiver has
knowledge of the channel state,

C = E
[

log
(

1+ |h|
2 P

N0

)]
, (1.27)

where E[·] is the expectation operator (operating on the random channel attenuation), P
is the power of the transmitted signal (assumed i.i.d. Gaussian, with zero mean so as to
achieve capacity), N0 is the variance of the background noise, and |h|2 is the envelope
of the channel attenuation.

Although the notion of Shannon capacity is quite useful, there are also many design
settings where the assumptions of using arbitrary long codes or that the channel is a sta-
tionary and ergodic random process do not hold. In these cases, Shannon capacity may
not yield useful results. For example, in the case of a non-ergodic slowly fading channel
following a Rayleigh distribution, the Shannon capacity is arbitrary small or zero. This
is because the result is affected by those realizations of the channel corresponding to
deep fades. Nevertheless, an arbitrary small capacity is not the true depiction of many
realizations of the fading process (which is confirmed by the many communications
taking place every day under these conditions!). Therefore, for these cases it is more
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appropriate to consider the notion of outage capacity. This notion is tied to the concept
of an outage event.

There are many ways of defining an outage event but, from an information theory
point of view, an outage event is defined as the set of channel realizations that cannot
support reliable transmission at a rate R. In other words, the outage event is the set of
channel realizations with an associated capacity less than a transmit rate R. Considering
now that the setup that led to (1.27) corresponds to a non-ergodic channel, the outage
condition for a realization of the fading can be written as

log
(

1+ |h|
2 P

N0

)
< R. (1.28)

From here, the outage probability is calculated as the one associated with the outage
event,

Pout = Pr
[

log
(

1+ |h|
2 P

N0

)
< R

]
, (1.29)

where Pr[·] is the probability operator (once again on the random channel attenuation).
Once we have introduced the concepts of outage event and outage probability,

the Prout outage capacity, Cout, is defied as the information rate that can be reliably
communicated with a probability 1− Prout, that is

Pr
[
C ≤ Cout

]
= Prout, (1.30)

where C is the Shannon capacity associated with the channel.
We finally note here that, as mentioned above, the outage probability may be defined

differently from (1.29). Another way of defining the outage probability is by considering
the event that the received signal to noise ratio is below a threshold. This definition can
be related to (1.29) by simple algebraic operations that expose the received signal-to-
noise ratio as the random variable, i.e., for the signal-to-noise ratio (SNR) γ and SNR
threshold γT,

Pout = Pr
[
γ < 2R − 1

]
= Pr[γ < γT].

1.3 Orthogonal frequency division multiplexing (OFDM)

In Section 1.1.3 we discussed that when the signal bandwidth is much larger than the
channel coherence bandwidth, the channel is frequency selective. We also explained that
these channels present such impairments as intersymbol interference, which deform the
shape of the transmitted pulse, risking the introduction of detection errors at the receiver.
This impairment can be addressed with different techniques. One of these techniques is
multicarrier modulation. In multicarrier modulation, the high bandwidth signal to be
transmitted is divided over multiple mutually orthogonal signals of a bandwidth small
enough such that the channel appears to be non-frequency selective. Different multicar-
rier modulation techniques may differ based on the choice of orthogonal signals. Among
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the many possible multicarrier modulation techniques, orthogonal frequency division
multiplexing (OFDM) is the one that has gained more acceptance as the modulation
technique for high-speed wireless networks and 4G mobile broadband standards. In
OFDM, the orthogonal signals used for multicarrier modulation are truncated complex
exponentials. Assume an OFDM transmitter where the high rate serial input stream is
split into N parallel substreams. Assume also that, at some instant of time, the sequence
{dk}N−1

k=0 represents the N complex symbols that are input to the OFDM modulator for
transmission as a single OFDM symbol of duration Ts. This translates in practice into an
operation where the input stream to the OFDM modulator is divided and organized into
blocks of N symbols, which are modulated into a single OFDM symbol. The resulting
OFDM modulated symbol is, for 0 ≤ t ≤ Ts,

s(t) =
N−1∑
k=0

dkφk(t) =
N−1∑
k=0

dkej2π fk t , (1.31)

where fk = f0 + k� f and � f = 1/Ts. In (1.31) the signals φk(t), which are defined
as

φk(t) =
{

ej2π fk t if 0 ≤ t ≤ Ts

0 else,
(1.32)

form an orthonormal set that are used as the carrier signal of each subcarrier in this
multicarrier modulation technique. Because these signals are truncated complex expo-
nential, in frequency domain they are of the form sin(x)/x . These signals are shown in
Figure 1.13, which also illustrates how OFDM splits a carrier with large bandwidth into
multiple orthogonal subcarriers of much smaller bandwidth.

N = 18

subcarriersΔf

f

Fig. 1.13 The OFDM orthonormal set of modulation signals in the frequency domain.
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Assume, next, that the OFDM symbol in (1.31) is sampled with a period Tsa = Ts/N .
Then, we can write the resulting sampled signal s[n] as

s[n] = s(nTsa) =
N−1∑
k=0

dkej2π fk nTs/N , 0 ≤ n ≤ N − 1.

If we assume, without loss of generality, that f0 = 0 we get fk = k� f = k/Ts,
leading to

s[n] =
N−1∑
k=0

dkej2πnk/N . (1.33)

This result can be read as s[n] being the inverse Fourier transform of dk , which is a
simple way of generating an OFDM symbol and one of its main advantages.

In practice, the OFDM symbol as defined in (1.33) is extended with the addition of a
cyclic prefix. To understand the construction of the prefix, assume a multipath channel
with L taps defined through the coefficients h[0], h[1], . . . , h[L−1]. With this in mind,
the original channel input sequence s[0], s[1], . . . , s[N−L], s[N−L+1], . . . , s[N−1],
becomes s[N−L+1], . . . , s[N−1], s[0], s[1], . . . s[N−L], s[N−L+1], . . . , s[N−1]
after adding the cyclic prefix. Note that the prefix is built by just copying the last L − 1
elements of the original channel input sequence at the beginning of it. This operation
does not affect the OFDM signal or its properties, such as the orthogonality between
the multicarrier modulated signals, because it is simply a reaffirmation of the periodic-
ity of the OFDM symbol (period equal to N ), as follows from (1.33). Also note that,
following the assumption of a multipath channel with delay spread L , the samples cor-
responding to the cyclic prefix will be affected by intersymbol interference from the
previous OFDM symbol. To combat this interference, the prefix can be eliminated at
the receiver without any loss of information in the original sequence and without inter-
symbol interference affecting the original sequence. Next, let us illustrate the effect of
adding the cyclic prefix on transforming a frequency selective fading channel into a set
of parallel flat fading channels.

Let us call the channel input sequence, after adding the cyclic prefix, as x where

x = [s[N − L + 1], . . . , s[N − 1], s[0], s[1], . . . , s[N − L] ,
s[N − L + 1], . . . , s[N − 1]] . (1.34)

The output of the channel can be written as

y[n] =
L−1∑
l=0

h[l]x[n − l] + v[n], n = 1, 2, . . . , N + L − 1, (1.35)

where v[n] is additive white Gaussian noise.
The multipath channel affects the first L − 1 symbols and therefore the receiver

ignores these symbol. The received sequence is then given by

y = [y[L], y[L + 1], . . . , y[N + L − 1]] . (1.36)
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Equivalently, one can write the received signal in terms of the original channel input as

y[n] =
L−1∑
l=0

h[l]s [(n − l − L)modN ]+ v[n]. (1.37)

This can be also written in terms of cyclic convolution as follows:

y = h⊗ s+ v, (1.38)

where ⊗ denotes cyclic convolution. At the receiver, after taking the discrete Fourier
transform (DFT) of the received signal and after removing the cyclic prefix, we get

Yn = Hn Sn + Vn, (1.39)

where Yn , Hn , Sn , and Vn are the n-th point of the N -point DFT of the received signal,
channel response, channel input, and noise vector, respectively.

From (1.39), at the receiver side the frequency selective fading channel has been
transformed to a set of parallel flat fading channels. Therefore, one can see the benefit
of OFDM and how it reduces the complexities associated with time equalization.

Finally, Figure 1.14 summarizes the operations involved in the OFDM communi-
cation link by showing a block diagram of a transmitter and a receiver. It is worth
highlighting here that an OFDM symbol is made of a block of N input symbols. At
the OFDM transmitter the N input symbols are converted into an OFDM symbol with

Constellation
mapper {dk 

} k = 0
N – 1

{dk 
} k = 0

N – 1

S

P

Data

. . . IFFT

. . .
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Add
cyclic
prefix

Radio
module
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Transmitter

Constellation
de-mapper

S

P

. . . FFT

. . .
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Radio
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data

Fig. 1.14 Block diagram of an OFDM transmitter and a receiver.



1.4 Diversity in wireless channels 29

N subcarriers. If we now consider the successive transmission of several OFDM sym-
bols, the data organization on the channel can be conceptually pictured as a grid in a
frequency × time plane with a width of N subcarriers (in the frequency dimension) and
a depth equal to the number of transmitted OFDM symbols (in the time dimension).

1.4 Diversity in wireless channels

As we have explained, fading wireless channels present the challenge of being chang-
ing over time. In communication systems designed around a single signal path between
source and destination, a crippling fade on this path is a likely event that needs to be
addressed with such techniques as increasing the error correcting capability of the chan-
nel coding block, reducing the transmission rate, using more elaborate detectors, etc.
Nevertheless, these solutions may still fall short for many practical channel realizations.

Viewing the problem of communication through a fading channel with a different
perspective, the overall reliability of the link can be significantly improved by provid-
ing more than one signal path between source and destination, each exhibiting a fading
process as much independent from the others as possible. In this way, the chance that
there is at least one sufficiently strong path is improved. Those techniques that aim at
providing multiple, ideally independent, signal paths are collectively known as diver-
sity techniques. In its simplest form, akin to repetition coding (where signal redundancy
is achieved by simply repeating the signal symbols multiple times), the multiple paths
may carry multiple distorted copies of the original message. Nevertheless, better perfor-
mance may be achieved by applying some kind of coding across the signals sent over
the multiple paths and by combining in a constructive way the signals received through
the multiple paths.

Also important is the processing performed at the receiver, where the signals arriving
through the multiple paths are constructively combined. The goal in combining is to
process the multiple received signals so as to obtain a resulting signal of better quality
or with better probability of successful reception than each of the received ones. The
nature of the processing that is applied to each signal during combining is a function
of the particular design goals. If the goal is to linearly combine the signals so that
the signal-to-noise ratio (SNR) is maximized at the resulting signal, then the resulting
mechanism is called a maximal ratio combiner (MRC). Suppose that at the input of
the MRC there are L signal samples, y0, y1, . . . , yL−1, that are to be combined into a
signal sample yM . Each of the received signals correspond to a unit-energy transmited
signal that have been received through the corresponding L different paths characterized
as h0ejφ0 , h1ejφ1 , . . . , hL−1ejφL−1 . Since the MRC is a linear combiner, the input and
output are related through the relation

yM =
L−1∑
k=0

cke−jφk yk, (1.40)
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where ck are the coefficients of the MRC combiner and the complex exponential is used
for equalizing the phases of each term (cophasing). Assuming that the signals to be
combined are equally affected by noise at the receiver with power density N0, the SNR
at the output of the MRC, γM is

γM =

(
L−1∑
k=0

ckhk

)2

N0

L−1∑
k=0

c2
k

, (1.41)

because the noise is also processed as part of the received signal samples. The MRC
coefficients that maximize (1.41) also maximize its numerator. Then, the maximizing
coefficients can be found by using the Cauchy–Schwarz inequality,(

L−1∑
k=0

ckhk

)2

≤
(

L−1∑
k=0

c2
k

)(
L−1∑
k=0

h2
k

)
. (1.42)

The SNR in (1.41) is maximized when (1.42) is an equality. This is achieved by letting

ck = hk√
N0
.

The resulting maximized SNR at the output of the MRC is

γM =

(
L−1∑
k=0

h2
k

)
N0

. (1.43)

Intuitively, the MRC combines multiple signals by first cophasing them, followed by
weighting each sample proportionally to the corresponding path SNR and finally adding
them. The resulting signal at the output of the MRC will have an SNR equal to the sum
of the SNRs corresponding to each path.

As mentioned earlier, the MRC is not the only known combiner. Other cases are
the selection combiner, where the output is the input with best SNR, and the threshold
combiner, which sequentially scans the received signals and outputs the first one with
SNR exceeding a threshold.

For any diversity technique, the performance improvement is manifested by the
communication error probability decreasing at a much larger rate at a high channel
signal-to-noise ratio (SNR) than systems with less or no diversity. When using log–log
scales, this rate of decrease in the communication error probability becomes the slope
of the line representing the communication error probability at high SNR and is known
as the diversity gain. Strictly speaking, the diversity gain is defined as [239]

m = − lim
γ→∞

log PSER

log γ
, (1.44)

where γ is the SNR and PSER is the probability of symbol error (a function of the
SNR). This definition establishes an implicit behavior at high SNR for the probability
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of symbol error as being a linear function of the SNR when seen in a plot with log–log
scales. Then it can be seen that, as previously stated, in these conditions the diversity
gain is the slope of the linear relation. It is better to have as large a diversity gain as
possible, since it means that the probability of symbol error is reduced at a faster rate.

For MIMO systems, as will be shown in Chapters 2 and 3, it is possible to achieve a
diversity gain equal to the product between the number of transmit and receive antennas.
Also, it is important to note that, depending on the particular diversity scheme and
the system setup, other measures of probability of error can be used. For example, the
outage probability is used in some cases, instead of the probability of symbol error.

There are many different forms of diversity in addition to the spatial diversity men-
tioned above. For example, in time diversity, multiple (possibly coded) copies of a
symbol are sent at different time instants, and in frequency diversity, multiple (pos-
sibly coded) copies of a symbol are sent through channels of different carrier frequency.
Furthermore, multiple diversity techniques can be combined to provide even greater per-
formance improvement. Next, a succinct introduction to time, frequency, and antenna
diversity systems is provided. Some of the following chapters will consider techniques
that are derived from or that combine these forms of diversity.

1.4.1 Time diversity

It is quite common to find communication scenarios where the channel coherence time
equals or exceeds several symbol transmission periods. This implies that two symbols
transmitted with a separation in time longer than the coherence time will experience
channel realizations that are highly uncorrelated and can be used to obtain diversity.
The simplest way to achieve this is to form the two symbols by using a repetition coding
scheme. Also, to guarantee that the repeated symbols will be transmitted over uncorre-
lated channel realization, an appropriate interleaver is applied to the stream of symbols
to be transmitted.

At the receiver, the copies of the symbol will have to be combined together.
As explained above, if the transmission of each symbol can be represented by an
input–output expression of the form

yi = hi x + ni , (1.45)

where x is the unit-energy transmitted symbol, yi is the symbol received over path i , ni

is the background noise modeled as a circularly symmetric Gaussian random variable
with zero mean and variance N0, and hi is the channel realization over path i , assumed
to be following a Rayleigh fading, optimal combining that maximizes the received SNR
is achieved with a maximal ratio combiner. Recall that the SNR at the output of an
MRC equals the sum of the SNRs of the branches at the input of the MRC. From the
explanation above on Rayleigh fading, the MRC output SNR will have a Chi-squared
distribution as in (1.14).

If, for example, we assume BPSK modulation, and M copies of the transmitted sym-
bol being combined with path channel gains, h1, h2, . . . , hM , the error probability that
can be obtained using MRC combiner is
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Q

⎛⎝
√√√√ 2

N0

M∑
n=1

|hn|2
⎞⎠ .

From here, the average probability of symbol error is [45]

PSER =
∫ ∞

0
Q(
√

2γ ) f (γ )dγ (1.46)

=

⎛⎜⎜⎜⎜⎝
1−

√
γ̄

1+ γ̄
2

⎞⎟⎟⎟⎟⎠
M

M−1∑
m=0

(
M + m − 1

m

)⎛⎜⎜⎜⎜⎝
1+

√
γ̄

1+ γ̄
2

⎞⎟⎟⎟⎟⎠
m

, (1.47)

where γ = (1/N0)
∑M

n=1 |hn|2 is the SNR at the output of the MRC, f (γ ) is the
probability density function of the Chi-squared distribution, as in (1.14), and γ̄ is the
mean SNR at the output of the MRC.

Example 1.3 Although it is possible to derive useful results from (1.47), in the study
of systems with some form of diversity (and, in fact, in many other communication sys-
tems also), it is sometimes better to work with upper bounds derived from the Chernoff
bound. The Chernoff bound is a useful inequality in applications of probability and ran-
dom processes to signal processing problems that establishes an upper bound on the tail
probability of a random variable X ,

Pr[X ≥ a] ≤ min
t
{e−at E[et X ]}, (1.48)

where a is a constant. When X is a standard Gaussian random variable N (0, 1) (zero
mean, unit variance), the Chernoff bound becomes

Pr[X ≥ a] ≤ min
t
{e(−at+t2/2)} = e−a2/2, (1.49)

where the minimization is done by simply equating the derivative of e(−at+t2/2) to zero.
When applying the Chernoff bound to the Q function in (1.46), we obtain the upper
bound on average probability [45]

PSER ≤
M∏

m=1

1

1+ γ̄i
2

. (1.50)

At large SNR, this upper bound becomes tighter, leading to the approximation

PSER ≈
(
γ̄

2

)−M

. (1.51)

�

The result (1.51) is revealing in presenting the physical meaning of diversity gain. If
now, we look at this expression using log–log scales we get

log(PSER) ≈ −M log(γ̄ ), (1.52)
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which is the equation of a linear function. Furthermore, notice that by applying
the definition of diversity gain (1.44), it can be seen not only that the diversity gain
equals −M (the number of repetitions of the symbol), but also that the diversity gain
represents the slope of the approximately linear relation (1.52). Since the diversity
gain equals the number of repetitions of the symbol, we may say that the time-diversity
system with repetition coding achieves full diversity gain. Nevertheless, the use of rep-
etition coding sacrifices the total bit rate. This drawback can be addressed through other
coding schemes as will be seen in later chapters.

1.4.2 Frequency diversity

Analogous to time diversity, in those wideband systems where the available bandwidth
exceeds the channel coherence bandwidth, it is possible to realize diversity by using
channels that are a partition of the available bandwidth and that are separated by more
than the channel coherence bandwidth.

Realizing frequency diversity as a partition of the whole system bandwidth into chan-
nels with smaller bandwidth and independent frequency response is perhaps the most
intuitively natural approach. This approach is applicable in multicarrier systems, where
transmission is implemented by dividing the wideband channel into non-overlapping
narrowband subchannels. The symbol used for transmission in each subchannel has a
transmission period long enough for the subchannel to appear as a flat fading channel.
Different subchannels are used together to achieve frequency diversity by ensuring that
each is separated in the frequency domain from the rest of the subchannels in the trans-
mission by more than the coherence bandwidth. In this way, the fading processes among
the subchannels will show a small cross-correlation. As will be seen in later chapters,
an example of these systems are those using orthogonal frequency division multiplexing
(OFDM).

Although not as intuitively natural, frequency diversity can also be achieved through
processing based on a time-domain phenomenon. Recall that the frequency response of
multipath channels is not of constant amplitude and linear phase because each spectral
component of the signal undergoes destructive or constructive interference of different
magnitude depending on the delay of each path and the frequency of the spectral com-
ponent. These multipath channels provide diversity through each of the copies of the
signal arriving through each path. Because of this, the overall channel appears as fre-
quency selective (see Figures 1.5 and 1.6). It is then possible to achieve diversity of an
order equal to the number of independent paths.

1.4.3 MIMO systems

By using multiple antennas at the transmitter side and/or the receiver side as shown in
Figure 1.15, we may exploit diversity in the spatial domain which is called spatial diver-
sity (also called antenna diversity). This configuration of deploying multiple antennas is
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Fig. 1.15 A four-transmit, four-receive MIMO system.

often referred as multiple-input-single-output (MISO) systems if only a single antenna
is deployed at the receiver side, single-input-multiple-output (SIMO) systems if a single
transmit antenna is used, or, in general, multiple-input-multiple-output (MIMO) sys-
tems with multiple transmit antennas and multiple receive antennas. With more than one
transmit/receive antenna, different channels are established between each pair of trans-
mit and receive antennas. With such a configuration, the transmitted information can go
through different channels to arrive at the receiver side. As long as one of the channels is
strong enough, the receiver should be able to recover the transmitted information. If we
assume that different channels are independent or correlated with a low correlation, then
the chance that all channel links fail is low. The greater the number of antenna pairs, the
greater the redundancy (diversity) of the received signals, i.e., the higher the reliability
of the transceiver detection. The assumption of low-correlated or independent channel
links can be achieved by appropriate separation of the antennas at both the transceiver
sides. The necessary antenna separation at each side depends on the scattering in the
neighborhood of the antenna and on the signal carrier frequency. For a mobile, the typi-
cal separation is between half to one carrier wavelength, for base stations the necessary
separation is in the order of tens of wavelengths, which can be easily satisfied.

1.4.3.1 Two motivated examples
Note that, in a MISO system, the signal present at the receive antenna is the combination
of signals from all transmit antennas after having traveled through the different fading
channels established from each transmit antenna to the receive antenna. The redun-
dancy is also termed as transmit diversity, which depends on the number of transmit
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antennas. While in a SIMO system, a transmitted signal goes through different channels
and is received at each receive antenna. Signals from each receive antenna are com-
bined and jointly detected at the receiver side. The corresponding redundancy is often
called receive diversity, which is related to the number of receive antennas. In general,
in a MIMO system, both transmit and receive diversities are realized. As we will dis-
cuss in Chapter 2, the overall signal redundancy, or diversity order, is in this case the
product of the numbers of transmit and receive antennas. The MIMO configuration can
be exploited through different designs that differ, among other factors, in the antenna
configuration at the receiver and the transmitter, as well as the particular form of per-
formance improvement that it is intended to obtain. For better understanding the spatial
diversity, we consider the following two motivated examples.

Example 1.4 Consider a system that implements receive diversity by using one antenna
at the transmitter and Mr antennas at the receiver (i.e., a SIMO system). There are
Mr paths between transmitter and receiver. The signal arriving from all paths need
to be combined at the receiver. If the additive background noise is complex-valued,
zero-mean circularly symmetric Gaussian, and independent from each path, then the
optimal combiner is the maximal ratio combiner (MRC) (a fact that can be accepted
after realizing the similarity of the combining problem here and the one in diversity
from repetition coding over time, with the diversity branches now over space instead of
over time). Assuming BPSK modulation, and conditioning on the Mr channel gains of
the paths, h1, h2, . . . , hMr , the error probability that can be obtained using MRC com-

biner is Q
(√

2γ
∑Mr

j=1 |h j |2
)

. This error probability can be written in the following

form, which provides more insight into the achievable gains,

Pe = Q

⎛⎜⎝
√√√√2(Mrγ )

(∑Mr
j=1 |h j |2

Mr

)⎞⎟⎠ .
In this expression, the factor Mrγ shows that the use of the MRC results in a linear
increase of SNR with the number of paths. This gain is called the array gain. Also,
the factor (1/Mr)

∑Mr
j=1 |h j |2 shows an averaging effect on the paths gain where the

paths in deeper fade are compensated by those in a good condition, thus resulting in a
lower probability that the overall link attenuation will be too large. This effect is the
materialization of the diversity gain in this scheme. To see this more clearly, consider
that each h j is the sum of two i.i.d. real Gaussian random variables, and recall from
Section 1.1.3 that

∑Mr
j=1 |h j |2 follows a Chi-square distribution with 2Mr degrees of

freedom (see (1.14)). Integrating over this distribution to obtain the average probability
of symbol error results in

PSER =

⎛⎜⎜⎝1−
√

γ

1+ γ
2

⎞⎟⎟⎠
Mr

Mr−1∑
m=0

(
Mr + m − 1

m

)⎛⎜⎜⎝1+
√

γ

1+ γ
2

⎞⎟⎟⎠
m

. (1.53)
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Unsurprisingly, this expression is very similar to (1.47). This is due to the analogy
between achieving diversity by transmitting at different time instants and by transmit-
ting through different paths. The essence of this similarity resides in the common use
of an MRC combiner, which results in a similar expression for the probability of error.
Furthermore, we can now draw on this similarly and apply the Chernoff bound to derive
expressions similar to (1.50) and (1.51) to get

PSER ≈ αMr

(
βMrγ

2

)−Mr

,

which shows the diversity order Mr, since the SNR decays as γ−Mr . �

Example 1.5 (Alamouti scheme) Consider now a system that implements transmit
diversity, with two antennas at the transmitter and one antenna at the receiver. Trans-
mission is done by sending two symbols, s1 and s2, over the duration of two symbols
periods. We assume a flat fading channel, i.e., the channel does not change during the
two symbol periods. Instead of sending the symbol s1 during the first symbol period and
the symbol s2 during the second period, the Alamouti scheme treats the two symbols
as a block and applies a form of precoding to the symbols. Specifically, during the first
transmission period, s1 is sent from antenna 1 and s2 is sent from antenna 2; and during
the second transmission period,−s∗2 is sent from antenna 1 and s∗1 from antenna 2 (here
s∗1 denotes the complex conjugate of s1).

At the receiver, we denote by y1 and y2 the signals received during the first and second
symbol periods, respectively. The two received signals are processed as a vector given
by [

y1

y2

]
=
[

s1 s2

−s∗2 s∗1

] [
h1

h2

]
+
[

z1

z2

]
The above transceiver signals can be rearranged as[

y1

y∗2

]
=
[

h1 h2

h∗2 −h∗1

] [
s1

s2

]
+
[

z1

z∗2

]
.

Denote y = [y1 y∗2 ]T and

H =
[

h1 h2

h∗2 −h∗1

]
.

Then the receiver processes the received vector y by taking ỹ = HHy, resulting in

ỹ =
[ |h1|2 + |h2|2 0

0 |h2
1| + |h2

2|
] [

s1

s2

]
+HH

[
z1

z∗2

]
.

Since the processed noise vector is still complex Gaussian with zero mean, but now with
a covariance matrix equal to the diagonal matrix diag(|h2

1| + |h2
2|, |h2

1| + |h2
2|) times the

received noise power, the received SNR for a symbol detected with z is
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γ = |h2
1| + |h2

2|
2

γS,

where γS is the SNR of a symbol transmitted without the Alamouti scheme and the
factor 2 is due to the fact that each si is transmitted at half γS. We finally note here
that this result shows in a fashion similar to Example 1.4 that the Alamouti scheme can
achieve a diversity order 2. �

1.4.3.2 MIMO capacity
In this subsection, we address advantages of MIMO systems from an information the-
ory aspect by reviewing a fundamental capacity result indicating that the capacity of
a MIMO system increases at least linearly with the minimum number of transmit or
receive antennas.

We consider a MIMO system with Mt transmit antennas and Mr receive antennas.
The channel coefficient between transmit antenna i, 1 ≤ i ≤ Mt, and receive antenna
j, 1 ≤ j ≤ Mr, is denoted by hi, j . These coefficients are modeled as independent
circularly symmetric complex Gaussian random variables with zero mean and variance
one. The MIMO transceiver can be modeled as

Y =
√
ρ

Mt
X H + Z , (1.54)

where X = [x1 x2 . . . xMt ] is a signal vector transmitted by the Mt antennas, Y =
[y1 y2 . . . yMr ] is a signal vector received by the Mr receive antennas, and Z =
[z1 z2 . . . zMr ] is a noise vector whose elements are modeled as independent circu-
larly symmetric complex Gaussian random variables with zero mean and variance one.
The channel coefficient matrix H = {hi, j : 1 ≤ i ≤ Mt, 1 ≤ j ≤ Mr} is assumed to
be known at the receiver side, but unknown at the transmitter side. The signal vector is
assumed to satisfy the energy constraint E ||X ||2F = Mt, where ||X ||F is the Frobenius
norm of X , defined as

||X ||2F =
Mt∑

i=1

|xi |2.

In (1.54), the factor
√
ρ/Mt ensures that ρ is the average signal to noise ratio (SNR) at

each receive antenna, and it is independent of the number of transmit antennas.
If the input signal X is a circularly symmetric complex Gaussian random vector

with zero mean and variance E{XH X} = Q, then the output signal is also a circularly
symmetric complex Gaussian random vector with zero mean and variance

E{Y HY } = ρ

Mt
HH Q H + IMr ,

in which IMr is an identity matrix of size Mr by Mr. So, for any given channel H , the
mutual information between the input X and the output Y is

I (X; Y |H) = log2 det

(
IMr +

ρ

Mt
HH Q H

)
. (1.55)
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Since E ||X ||2F = Mt, trace(Q) = trace
(
E{XH X}) = Mt. Next, we would like to

maximize the mutual information I (X; Y |H) as in (1.55) over the choice of nonnegative
Q with the constraint trace(Q) = Mt. Since we can write Q as Q = U H Q0U , where
U is unitary and Q0 is diagonal, so

log2 det

(
IMr +

ρ

Mt
HH Q H

)
= log2 det

(
IMr +

ρ

Mt
H̃H Q0 H̃

)
, (1.56)

in which H̃ = U H . Note that H̃ has the same distribution as that of H since U is
unitary. So we just need to maximize

log2 det

(
IMr +

ρ

Mt
H̃H Q0 H̃

)
over the nonnegative diagonal matrix Q0 with the constraint trace(Q0) = Mt. It has
been shown in [215] that

log2 det

(
IMr +

ρ

Mt
H̃H Q0 H̃

)
is maximized when Q0 has equal diagonal elements, i.e., Q0 = IMt . Intuitively, it is
easy to understand that if the transmitter has no prior information about the channel,
each transmit antenna should be treated equally and allocated the same weight, i.e.,
the variance of the input signal vector over Mt transmit antennas should be an identity
matrix. Therefore, the maximal mutual information is

log2 det

(
IMr +

ρ

Mt
H̃H H̃

)
.

Finally, we assume that the channel is memoryless, i.e., the channel H changes inde-
pendently from each use of the channel to another. Thus the average capacity of the
MIMO system is given by

C = EH

{
log2 det

(
IMr +

ρ

Mt
HH H

)}
, (1.57)

in which the expectation is taken over the fading channel H . We can see that when
Mt = Mr = 1, the above result reduces to the capacity in (1.27) for a conventional
single-input-single-output (SISO) system.

In the following, we further interpret the capacity result in (1.57) for SIMO, MISO,
and MIMO systems, respectively. For a SIMO system, i.e., Mt = 1 and Mr > 1, the
channel H is a vector as H = [h1,1 h1,2 . . . h1,Mr]. Since

det
(

IMr + ρHH H
)
= det

(
IMt + ρH HH

)
= 1+ ρ

Mr∑
j=1

|h1, j |2,

in which the first equality follows from the determinant identity det(Im + AB) =
det(In+B A) for any matrices A and B of sizes m×n and n×m respectively. Therefore,
the capacity of the SIMO system is
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C = EH

⎧⎨⎩log2

⎛⎝1+ ρ
Mr∑
j=1

|h1, j |2
⎞⎠⎫⎬⎭ , (1.58)

in which
∑Mr

j=1 |h1, j |2 is a Chi-square random variable with 2Mr degrees of freedom,

compared with the SISO case where C = Eh
{
log2

(
1+ ρ|h|2)} and |h|2 is a Chi-

square random variable with two degrees of freedom.
For a MISO system, i.e., Mr = 1 and Mt > 1, the channel H is a column vector as

H = [h1,1 h1,2 . . . hMt,1]T. In this case,

det

(
IMr +

ρ

Mt
HH H

)
= 1+ ρ

Mt

Mt∑
i=1

|hi,1|2.

So the corresponding capacity can be specified as

C = EH

{
log2

(
1+ ρ

∑Mt
i=1 |hi,1|2

Mt

)}
. (1.59)

We can see that when Mt is large,
(∑Mt

i=1 |hi,1|2
)
/Mt ≈ E{|h|2}, in which |h|2 is a

Chi-square random variable with two degrees of freedom. Thus, the capacity in (1.59)
is almost the same as that of the SISO system.

For a MIMO system, without loss of generality, we assume Mt = Mr > 1. Note that

HH H =

⎡⎢⎢⎢⎢⎣
∑Mt

i=1 |hi,1|2 ∑Mt
i=1 h∗i,1hi,2 · · · ∑Mt

i=1 h∗i,1hi,Mr

h∗i,2hi,1
∑Mt

i=1 |hi,2|2 · · · ∑Mt
i=1 h∗i,2hi,Mr

...
...

. . .
...

h∗i,Mr
hi,1

∑Mt
i=1 h∗i,Mr

hi,2 · · · ∑Mt
i=1 |hi,Mr |2

⎤⎥⎥⎥⎥⎦ .
Since hi, j are i.i.d. complex Gaussian random variables with zero mean and vari-

ance one, so for large Mt,
(∑Mt

i=1 |hi, j |2
)
/Mt → 1 for each 1 ≤ j ≤ Mr and(∑Mt

i=1 h∗i, j1 hi, j2

)
/Mt → 0 for any 1 ≤ j1 �= j2 ≤ Mr. Thus, for large Mt,

(1/Mt) HH H → IMr . Therefore, for large Mt , the capacity in (1.57) is

C → log2 det
(
IMr + ρ IMr

)
= Mr log2(1+ ρ), (1.60)

which increases linearly with the number of receive antennas. Note that the above dis-
cussion is also true for any Mt ≥ Mr. Based on the above discussion for SIMO, MISO,
and MIMO systems, we can see that the capacity of a multiple-antenna system increases
at least linearly with the minimum number of transmit or receive antennas.

1.4.3.3 Diversity–multiplexing tradeoff
In MIMO systems, the multiple paths created between any pair of transmit-receive
antennas can be used to obtain diversity gain. On the other hand, these paths can also
be used to transmit independent messages from each transmit antenna, in which case
it is possible to achieve an increase in transmit bit rate given by a multiplexing gain.
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At the receiver, the MIMO configuration allows for separation of each data stream. It
is readily apparent that there should be a tradeoff between diversity and multiplexing
gains because the later is achieved at the expense of signal paths that otherwise could
be used to increase the former.

The diversity–multiplexing tradeoff is specified through the choice of an achiev-
able combination of diversity and multiplexing gains, or, in other words, by specifying
the achievable diversity gain as a function of the multiplexing gain. Let d∗(r) be the
diversity–multiplexing tradeoff curve for the slow fading channel. A point on this curve,
a diversity gain d∗(r), is achieved at multiplexing gain r if

d∗(r) = − lim
γ→∞

log Pout(r log γ )

log γ
. (1.61)

This definition means that when communicating at a rate R = r log γ , the achievable
diversity gain is that for which the outage probability decays as Pout(r log γ ) ≈ γ−d∗(r)

at arbitrary large SNR. Also, this formulation can be extended to any type of fading
channel, beyond the slow fading channel, by replacing the outage probability with the
probability of error, i.e.,

d∗(r) = − lim
γ→∞

log Pe(r log γ )

log γ
. (1.62)

Example 1.6 Consider a system that transmits a single symbol using QAM modulation
at SNR γ over a channel with unit-average power Rayleigh fading and complex-valued,
circularly symmetric additive Gaussian background noise with zero mean and unit
power. At the receiver, the detection performance is driven by the minimum distance
between constellation points dmin, which at high SNR is approximately given by [219]

dmin ≈
√
γ

2R/2
.

This leads to an error probability at high SNR approximately equal to

Pe ≈ 1

d2
min

= 2R

γ
,

which results in the diversity–multiplexing tradeoff

d(r) = 1− r,

for r between 0 and 1. �

1.5 Cooperation diversity

The proliferation of wireless communication applications in the last few years is
unprecedented. Voice communication is no longer the only application people need.
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High data rate applications, wireless broadband Internet, gaming, and many other appli-
cations have emerged recently. Most future wireless systems such as ultra mobile
broadband (UMB), Long Term Evolution (LTE), and IEEE 802.16e (WiMAX) promise
very high data rates per user over high bandwidth channels (5, 10, and 20 MHz). For
example, in the fourth generation wireless networks to be deployed in the next couple
of years, namely, mobile broadband wireless access (MBWA) or IEEE 802.20, peak
date rates of 260 Mbps can be achieved on the downlink, and 60 Mbps on the uplink
[80]. These data rates can, however, only be achieved for full-rank MIMO users. More
specifically, full-rank MIMO users must have multiple antennas at the mobile terminal,
and these antennas must see independent channel fades to the multiple antennas located
at the base station. In practice, not all users can guarantee such high rates because they
either do not have multiple antennas installed on their small-size devices, or the prop-
agation environment cannot support MIMO because, for example, there is not enough
scattering. In the later case, even if the user has multiple antennas installed, full-rank
MIMO is not achieved because the paths between several antenna elements are highly
correlated.

To overcome the above limitations of achieving MIMO gains in future wireless
networks, we must think of new techniques beyond traditional point-to-point commu-
nications. The traditional view of a wireless system is that it is a set of nodes trying
to communicate with each other. From another point of view, however, because of the
broadcast nature of the wireless channel, we can think of those nodes as a set of anten-
nas distributed in the wireless system. Adopting this point of view, nodes in the network
can cooperate together for distributed transmission and processing of information. The
cooperating node acts as a relay node for the source node.

Cooperative communications is a new communication paradigm which generates
independent paths between the user and the base station by introducing a relay chan-
nel. The relay channel can be thought of as an auxiliary channel to the direct channel
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Fig. 1.16 Two transmitters associated in a user-cooperative configuration.
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between the source and destination. Since the relay node is usually several wavelengths
distant from the source, the relay channel is guaranteed to fade independently from the
direct channel, which introduces a full-rank MIMO channel between the source and the
destination. In the cooperative communications setup, there are a-priori few constraints
to different nodes receiving useful energy that has been emitted by another transmitting
node. The new paradigm in user cooperation is that, by implementing the appropriate
signal processing algorithms at the nodes, multiple terminals can process the transmis-
sions overheard from other nodes and be made to collaborate by relaying information
for each other (Figure 1.16). The relayed information is subsequently combined at a
destination node so as to create spatial diversity. This creates a network that can be
regarded as a system implementing a distributed multiple antenna where collaborating
nodes create diverse signal paths for each other.

Hence, cooperative communications is a new paradigm shift for the fourth generation
wireless system that will guarantee high data rates to all users in the network, and we
anticipate that it will be the key technology aspect in fifth generation wireless networks.

In terms of research “ascendance,” cooperative communications can be seen as
related to research in relay channel and MIMO systems. The concept of user coop-
eration itself was introduced in two-part series of papers [179, 180]. In these works,
Sendonaris et al. proposed a two user cooperation system, in which pairs of terminals in
the wireless network are coupled to help each other forming a distributed two-antenna
system. Parts II and III of this book will study in detail the design and analysis of
cooperative communications, so we defer further explanation until then.

1.6 Bibliographical notes

Because this is an introductory chapter, we have not covered in detail any of the topics
studied here. Nevertheless, there are plenty of excellent textbooks and research papers
that complement our presentation. On the topic of wireless channels, the reader can find
more information in the books by Proakis [146], Rappaport [150], Tse and Viswanath
[219], and Goldsmith [45]. For a practical presentation, the description of channel mod-
els used in different standards such as [87] are always a good reference. The books by
Tse and Viswanath [219] and by Goldsmith [45] were the main sources for most of the
topics covered in this introduction and are where further explanations can be found. The
book by Cover and Thomas [26] presents very good in-depth study of many topics in
information theory. Also, in-depth study of the concept of outage capacity can be found
in [141]. Extra coverage on the topic of diversity can be found in books such as [91],
tutorial papers such as [144], or books covering communications over fading channels
[189]. Finally, the topic of diversity–multiplexing tradeoff has been studied in [239] and
related papers.



2 Space–time diversity and coding

The idea of using multiple transmit and receive antennas in wireless communication
systems has attracted considerable attention with the aim of increasing data transmission
rate and system capacity. A key issue is how to develop proper transmission techniques
to exploit all of the diversities available in the space, time, and frequency domains.
In the case of narrow-band wireless communications, the channel fading is frequency
non-selective (flat) and diversities are available only in the space and time domains. The
modulation and coding approach that is developed for this scenario is termed space–time
(ST) coding, exploiting available spatial and temporal diversity.

In this chapter, we first describe the MIMO communication system architecture with
frequency-non-selective fading channels, which are often termed as narrow-band wire-
less channels, and discuss design criteria in achieving the full space–time diversity.
Then, we introduce several well-known ST coding techniques that can be guaranteed to
achieve full space–time diversity.

2.1 System model and performance criteria

Assume that the MIMO systems have Mt transmit and Mr receive antennas. Channel
state information (CSI) is assumed to be known at the receiver, but not at the transmit-
ter. In narrowband transmission scenario, the fading channel is frequency-non-selective
or flat, and is assumed to be quasi-static, i.e., the channel stays constant during one code-
word transmission and it may change independently from one codeword transmission
to another. In this case, diversity is available only in the space and time domains.

An ST-coded MIMO system is shown in Figure 2.1. The ST encoder divides input
data stream into b bit long blocks and, for each block, selects one ST codeword from
the codeword set of size L = 2b. The selected codeword is then transmitted through
the channel over the Mt transmit antennas and T time slots. Each codeword can be
represented as a T × Mt matrix

C =

⎡⎢⎢⎢⎢⎣
c1

1 c2
1 · · · cMt

1
c1

2 c2
2 · · · cMt

2
...

...
. . .

...

c1
T c2

T · · · cMt
T

⎤⎥⎥⎥⎥⎦ �= {ci
t : i = 1, 2, . . . ,Mt}, (2.1)
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Fig. 2.1 MIMO communication system with Mt transmit and Mr receive antennas

where ci
t denotes the channel symbol transmitted by transmit antenna i, i =1, 2, . . . ,Mt,

at discrete time t, t = 1, 2, . . . , T . The codewords are assumed to satisfy the energy
constraint E ||C ||2F = MtT , where E stands for the expectation and ||C ||F is the
Frobenius norm of C , defined as

||C ||2F = tr(CHC) = tr(CCH) =
T∑

t=1

Mt∑
i=1

|ci
t |2.

The channel coefficient between transmit antenna i and receive antenna j is denoted
by hi, j . These coefficients are modeled as zero-mean, complex Gaussian random vari-

ables with unit variance. The received signal y j
t at receive antenna j at time t can be

expressed as

y j
t =

√
ρ

Mt

Mt∑
i=1

ci
t hi, j + z j

t , t = 1, 2, . . . , T, (2.2)

where z j
t is the complex Gaussian noise component at receive antenna j at time t with

zero mean and unit variance. The factor
√
ρ/Mt in (2.2) ensures that ρ is the average

signal-to-noise ratio (SNR) at each receive antenna, and it is independent of the number
of transmit antennas. The received signal (2.2) can be rewritten in a more compact
form as

Y =
√
ρ

Mt
C H + Z , (2.3)

where Y = {y j
t : 1 ≤ t ≤ T, 1 ≤ j ≤ Mr} is the received signal matrix of size T × Mr,

H = {hi, j : 1 ≤ i ≤ Mt, 1 ≤ j ≤ Mr} is the channel coefficient matrix of size Mt×Mr,

Z = {z j
t : 1 ≤ t ≤ T, 1 ≤ j ≤ Mr} is the noise matrix of size T × Mr, and C is the

space–time codeword, as defined in (2.1).
Assume that the perfect channel information is available at the receiver, then the

maximum-likelihood (ML) decoding of the transmitted matrix is

Ĉ = arg min
C
||Y −

√
ρ

Mt
C H ||2F.
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Suppose that codeword C is transmitted and the receiver erroneously in favor of code-
word C̃ . Since the noise term is a zero-mean Gaussian random variable, the pairwise
error probability (PEP) for a fixed channel realization can be determined as (leave the
proof as an exercise)

P(C → C̃ |H) = Q

(√
ρ

2Mt
||(C − C̃)H ||F

)
= 1

π

∫ π/2

0
exp

(
− ρ

4Mt sin2 θ
||(C − C̃)H ||2F

)
dθ, (2.4)

where Q(x) = 1/
√

2π
∫∞

x exp
(−t2/2

)
dt is the Gaussian error function, and the

second equality comes from the Craig expression

Q(x) = 1

π

∫ π/2

0
exp

(
− x2

2 sin2 θ

)
dθ.

Averaging over the Rayleigh fading channel H , the PEP can be determined as follows
(leave the proof as an exercise):

P(C → C̃) = 1

π

∫ π/2

0

γ∏
i=1

(
1+ ρλi

4Mt sin2 θ

)−Mr

dθ, (2.5)

where γ = rank(C − C̃), and λ1, λ2, . . . , λγ are the non-zero eigenvalues of
(C − C̃)(C − C̃)H. The superscript H stands for the complex conjugate and transpose
of a matrix. By taking θ = π/2 in (2.5), we have the well known upper bound

P(C → C̃) ≤ 1

2

γ∏
i=1

(
1+ ρλi

4Mt

)−Mr

(2.6)

≤ 1

2

(
ρ

4Mt

)−γMr
(
γ∏

i=1

λi

)−Mr

. (2.7)

On the other hand, for high enough SNR, it is easy to see that the exact PEP in (2.5) can
be upper bounded as

P(C → C̃) ≤ 1

π

∫ π/2

0

γ∏
i=1

(
ρλi

4Mt sin2 θ

)−Mr

dθ

=
(

2γMr − 1
γMr − 1

)(
ρ

Mt

)−γMr
(
γ∏

i=1

λi

)−Mr

, (2.8)

where the equality comes from

1

π

∫ π/2

0
(sin θ)2γMr dθ = 22γMr

(
2γMr − 1
γMr − 1

)
.

Let us compare the three upper bounds in (2.6–2.8) with the exact PEP (2.5) in
Figure 2.2. We can see that, at high SNR, the upper bound (2.8) is much tighter than
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Fig. 2.2 Comparison between the exact PEP and the three upper bounds. Assume that there are Mt = 2
transmit and Mr = 1 receive antennas, γ = 2 and λ1 = λ2 = 1.

that in (2.7). Note that they share the same term on the product of the nonzero eigenval-
ues and the order of SNR, and the difference between them is a constant. We observe
that the term (ρ/Mt)

−γMr in the upper bounds is a dominant term when the SNR ρ

is high, thus for a given SNR, the rank γ should be maximized in order to minimize
the PEP error rate. Two ST code design criteria can be developed based on the upper
bound (2.7):

• Rank criterion or diversity criterion: The minimum rank of the code difference matrix
C− C̃ overall distinct codewords C and C̃ should be as large as possible. If the matrix
C − C̃ is always of full rank for a specific ST code, we say that this ST code achieves
full diversity.

• Product criterion: The minimum value of the product
∏γ

i=1 λi over all distinct code-
words C and C̃ , which is often termed as coding gain, should be as large as possible.
This quantity is referred to as the coding advantage achieved by the ST code.

The diversity criterion is the more important of the two since it determines the slope
of the performance curve. In order to achieve the maximum diversity, the difference
matrix C − C̃ has to be full rank for any pair of distinct codewords C and C̃ . The
product criterion is of secondary importance and should be optimized if the full diversity
is achieved. If (C − C̃)(C − C̃)H is of full rank, then the product λ1λ2 . . . λn is equal
to the determinant of (C − C̃)(C − C̃)H. In this case, which implies Mt ≥ T , a helpful
quantity ζ called diversity product is given by

ζ = 1

2
√

Mt
min
C �=C̃

∣∣∣det
[
(C − C̃)(C − C̃)H

]∣∣∣1/(2T )
, (2.9)
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which is a normalized coding gain. The factor 1/(2
√

Mt) guarantees that 0 ≤ ζ ≤ 1.
When all codewords are square matrices, i.e., T = Mt, the diversity product can be
simplified as

ζ = 1

2
√

Mt
min
C �=C̃

∣∣∣det(C − C̃)
∣∣∣1/Mt

, (2.10)

which is often used as a benchmark in designing ST codes.

2.2 Space–time coding

In the previous section, we analyzed the performance of the ST-coded MIMO systems
and obtained ST code design criteria in achieving the spatial and temporal diversity. In
this section, we introduce several well-known ST coding techniques that can guarantee
to achieve the full space–time diversity.

2.2.1 Cyclic and unitary ST codes

A simple and effective coding scheme achieving full space–time diversity is the cyclic
ST coding approach which follows the following code structure:

Cl =
√

Mt diag{eju1θl , eju2θl , . . . , ejuMt θl }, l = 0, 1, . . . , L − 1, (2.11)

where diag{eju1θl , eju2θl , . . . , ejuMt θl } is a diagonal matrix with diagonal entries
eju1θl , eju2θl , . . . , and ejuMt θl , in which θl = (l/L)2π and u1, u2, . . . , uMt

∈{0, 1, . . . , L − 1} are some integers to be optimized. We observe that if we denote

V1 = diag{eju1
2π
L , eju2

2π
L , . . . , ejuMt

2π
L }, (2.12)

then Cl = √Mt V l
1 for l = 0, 1, . . . , L − 1, and V L

1 = V 0
1 , which has a cyclic structure,

hence the term cyclic ST codes.
In the following, we discuss how the cyclic structure can guarantee the full diver-

sity and we will also optimize the parameters u1, u2, . . . , uMt . For any two distinct
codewords Cl and Cl ′ , l �= l ′, we have

Cl − Cl ′ =
√

Mt diag{eju1θl − eju1θl′ , eju2θl − eju2θl′ , . . . , ejuMt θl − ejuMt θl′ }
= √

Mt diag{eju1θl′ , eju2θl′ , . . . , ejuMt θl′ }
× diag{eju1θl−l′ − 1, eju2θl−l′ − 1, . . . , ejuMt θl−l′ − 1}

= Cl ′ diag{eju1θl−l′ − 1, eju2θl−l′ − 1, . . . , ejuMt θl−l′ − 1},
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in which θl−l ′ = l−l ′
L 2π . So the determinant of the difference matrix is

|det(Cl − Cl ′)| = |det(Cl ′)| ·
∣∣∣det(diag{eju1θl−l′ − 1,

eju2θl−l′ − 1, . . . , ejuMt θl−l′ − 1})
∣∣∣

= M
Mt
2

t

Mt∏
i=1

∣∣∣ejui θl−l′ − 1
∣∣∣

= M
Mt
2

t

Mt∏
i=1

∣∣∣∣2 sin
ui (l − l ′)π

L

∣∣∣∣ . (2.13)

From (2.13), we can see that if sin ui (l−l ′)
L �= 0 for u1, u2, . . . , uMt and for any l �= l ′,

then the cyclic code achieves the full diversity according to the rank criterion discussed
in the previous section.

From (2.13), we can calculate the diversity product of the cyclic code as follows:

ζ = 1

2
√

Mt
min
l �=l ′

|det(Cl − Cl ′)|1/Mt

= min
l �=l ′

∣∣∣∣∣
Mt∏

i=1

sin
ui (l − l ′)π

L

∣∣∣∣∣
1/Mt

= min
1≤l≤L−1

∣∣∣∣∣
Mt∏

i=1

sin
ui lπ

L

∣∣∣∣∣
1/Mt

. (2.14)

Thus, the parameters ui ∈ {0, 1, . . . , L − 1} should be chosen such that the diver-
sity product ζ is maximized. For small L and Mt, exhaustive computer search can be
performed to find the optimum parameters u1, u2, . . . , uMt ∈ {0, 1, . . . , L − 1}.

Example 2.1 For Mt = 2 and L = 4 (i.e., R = 1 bit/s/Hz), by exhaustive computer
search, the optimum parameters in this case are [u1 u2] = [1 1]. The corresponding
cyclic ST codes are given by:

C0 =
√

2

[
1 0
0 1

]
, C1 =

√
2

[
j 0
0 j

]
,

C2 =
√

2

[ −1 0
0 −1

]
, C3 =

√
2

[ −j 0
0 −j

]
.

The diversity product ζ = min1≤l≤3

∣∣∣∏2
i=1 sin ui lπ

4

∣∣∣1/2 = √
2

2 . �

Example 2.2 For Mt = 2 and L = 16 (i.e., R = 2 bits/s/Hz), by exhaustive computer
search, the optimum parameters in this case are [u1 u2] = [1 7]. The corresponding
cyclic ST codes are given by:
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Cl =
√

2

[
ejθl 0
0 ejθl

]
, θl = lπ

8
, l = 0, 1, . . . , 15.

�

Cyclic ST codes are special unitary codes in which all off-diagonal entries are zero. In
general, unitary matrices with nonzero diagonal entries can also be used to achieve the
full space–time diversity and provide a larger diversity product. Unitary ST codes with
codewords C0, C1, . . . , CL−1 satisfy(

1√
Mt

Cl

)H ( 1√
Mt

Cl

)
= IMt×Mt , or CH

l Cl = Mt IMt×Mt , (2.15)

for l = 0, 1, . . . , L − 1. Unitary ST codes can be designed through Fourier trans-
forms or by using unitary matrices with some special structures. For example, the
following unitary ST code has a larger diversity product than the cyclic code shown
in Example 2.1.

Example 2.3 For Mt = 2 and L = 4 (i.e., R = 1 bit/s/Hz), there are four unitary
matrices with size 2× 2 that can guarantee the full space–time diversity:

C0 =
√

2

3

[
j 1− j

−1− j −j

]
, C1 =

√
2

3

[ −j −1− j
1− j j

]
,

C2 =
√

2

3

[ −j 1+ j
−1+ j j

]
, C3 =

√
2

3

[
j −1+ j

1+ j −j

]
.

The diversity product of this unitary ST code is ζ =
√

2
3 ≈ 0.8165. �

2.2.2 ST codes from orthogonal designs

ST codes from orthogonal designs have received considerable attention in MIMO wire-
less communications. Such codes can guarantee to achieve the full space–time diversity
and also provide simple fast ML decoding algorithms. Some codes have been adopted
in the WLAN standard IEEE 802.11n.

A motivated example: Alamouti scheme
Alamouti proposed in 1998 [5] a simple scheme for MIMO systems with two transmit
antennas as follows:

G2(x1, x2) =
[

x1 x2

−x∗2 x∗1

]
, (2.16)

in which x1 and x2 are arbitrary complex symbols and an energy constraint is
E ||G2||2F = 4. The proposed scheme in (2.16) has an interesting property that for
arbitrary complex x1 and x2, the columns of G2 are orthogonal to each other, i.e.,


