
http://www.cambridge.org/9780521880374

P1: ...

FM cuus247-brass 978 0 521 88037 4 August 4, 2008 11:54

ii

This page intentionally left blank

Advanced Data Structures

Advanced Data Structures presents a comprehensive look at the ideas, analysis, and
implementation details of data structures as a specialized topic in applied algorithms.
This book examines efficient ways to realize query and update operations on sets of
numbers, intervals, or strings by various data structures, including search trees,
structures for sets of intervals or piecewise constant functions, orthogonal range search
structures, heaps, union-find structures, dynamization and persistence of structures,
structures for strings, and hash tables. Instead of relegating data structures to trivial
material used to illustrate object-oriented programming methodology, this is the first
volume to show data structures as a crucial algorithmic topic. Numerous code
examples in C and more than 500 references make Advanced Data Structures an
indispensable text.

peter brass received a Ph.D. in mathematics at the Technical University of
Braunschweig, Germany. He is an associate professor at the City College of New York
in the Department of Computer Science and a former Heisenberg Research Fellow of
the Free University of Berlin.

Advanced Data Structures

PETER BRASS

City College of New York

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-88037-4

ISBN-13 978-0-511-43388-7

© Peter Brass 2008

2008

Information on this title: www.cambridge.org/9780521880374

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521880374

Dedicated to my parents,
Gisela and Helmut Brass

Contents

Preface page xi

1 Elementary Structures 1
1.1 Stack 1
1.2 Queue 8
1.3 Double-Ended Queue 16
1.4 Dynamical Allocation of Nodes 16
1.5 Shadow Copies of Array-Based Structures 18

2 Search Trees 23
2.1 Two Models of Search Trees 23
2.2 General Properties and Transformations 26
2.3 Height of a Search Tree 29
2.4 Basic Find, Insert, and Delete 31
2.5 Returning from Leaf to Root 35
2.6 Dealing with Nonunique Keys 37
2.7 Queries for the Keys in an Interval 38
2.8 Building Optimal Search Trees 40
2.9 Converting Trees into Lists 47
2.10 Removing a Tree 48

3 Balanced Search Trees 50
3.1 Height-Balanced Trees 50
3.2 Weight-Balanced Trees 61
3.3 (a, b)- and B-Trees 72
3.4 Red-Black Trees and Trees of Almost Optimal Height 89
3.5 Top-Down Rebalancing for Red-Black Trees 101
3.6 Trees with Constant Update Time at a Known Location 111
3.7 Finger Trees and Level Linking 114

vii

viii Contents

3.8 Trees with Partial Rebuilding: Amortized Analysis 119
3.9 Splay Trees: Adaptive Data Structures 122
3.10 Skip Lists: Randomized Data Structures 135
3.11 Joining and Splitting Balanced Search Trees 143

4 Tree Structures for Sets of Intervals 148
4.1 Interval Trees 148
4.2 Segment Trees 154
4.3 Trees for the Union of Intervals 162
4.4 Trees for Sums of Weighted Intervals 169
4.5 Trees for Interval-Restricted Maximum Sum Queries 174
4.6 Orthogonal Range Trees 182
4.7 Higher-Dimensional Segment Trees 196
4.8 Other Systems of Building Blocks 199
4.9 Range-Counting and the Semigroup Model 202
4.10 kd-Trees and Related Structures 204

5 Heaps 209
5.1 Balanced Search Trees as Heaps 210
5.2 Array-Based Heaps 214
5.3 Heap-Ordered Trees and Half-Ordered Trees 221
5.4 Leftist Heaps 227
5.5 Skew Heaps 235
5.6 Binomial Heaps 239
5.7 Changing Keys in Heaps 248
5.8 Fibonacci Heaps 250
5.9 Heaps of Optimal Complexity 262
5.10 Double-Ended Heap Structures and Multidimensional

Heaps 267
5.11 Heap-Related Structures with Constant-Time Updates 271

6 Union-Find and Related Structures 278
6.1 Union-Find: Merging Classes of a Partition 279
6.2 Union-Find with Copies and Dynamic Segment Trees 293
6.3 List Splitting 303
6.4 Problems on Root-Directed Trees 306
6.5 Maintaining a Linear Order 317

7 Data Structure Transformations 321
7.1 Making Structures Dynamic 321
7.2 Making Structures Persistent 330

Contents ix

8 Data Structures for Strings 335
8.1 Tries and Compressed Tries 336
8.2 Dictionaries Allowing Errors in Queries 356
8.3 Suffix Trees 360
8.4 Suffix Arrays 367

9 Hash Tables 374
9.1 Basic Hash Tables and Collision Resolution 374
9.2 Universal Families of Hash Functions 380
9.3 Perfect Hash Functions 391
9.4 Hash Trees 397
9.5 Extendible Hashing 398
9.6 Membership Testers and Bloom Filters 402

10 Appendix 406
10.1 The Pointer Machine and Alternative Computation

Models 406
10.2 External Memory Models and Cache-Oblivious

Algorithms 408
10.3 Naming of Data Structures 409
10.4 Solving Linear Recurrences 410
10.5 Very Slowly Growing Functions 412

11 References 415

Author Index 441

Subject Index 455

Preface

This book is a graduate-level textbook on data structures. A data structure is
a method1 to realize a set of operations on some data. The classical example
is to keep track of a set of items, the items identified by key values, so that
we can insert and delete (key, item) pairs into the set and find the item with a
given key value. A structure supporting these operations is called a dictionary.
Dictionaries can be realized in many different ways, with different complexity
bounds and various additional operations supported, and indeed many kinds of
dictionaries have been proposed and analyzed in literature, and some will be
studied in this book.

In general, a data structure is a kind of higher-level instruction in a virtual
machine: when an algorithm needs to execute some operations many times, it
is reasonable to identify what exactly the needed operations are and how they
can be realized in the most efficient way. This is the basic question of data
structures: given a set of operations whose intended behavior is known, how
should we realize that behavior?

There is no lack of books carrying the words “data structures” in the title, but
they merely scratch the surface of the topic, providing only the trivial structures
stack and queue, and then some balanced search tree with a large amount of
handwaving. Data structures started receiving serious interest in the 1970s, and,
in the first half of the 1980s, almost every issue of the Communications of the
ACM contained a data structure paper. They were considered a central topic,
received their own classification in the Computing Subject Classification,2

1 This is not a book on object-oriented programming. I use the words “method” and “object” in
their normal sense.

2 Classification code: E.1 data structures. Unfortunately, the Computing Subject Classification is
too rough to be useful.

xi

xii Preface

and became a standard part of computer science curricula.3 Wirth titled a
book Data Structures + Algorithms = Programs, and Algorithms and Data
Structures became a generic textbook title. But the only monograph on an al-
gorithmic aspect of data structures is the book by Overmars (1983) (which is
still in print, a kind of record for an LNCS series book). Data structures re-
ceived attention in a number of application areas, foremost as index structures
in databases. In this context, structures for geometric data have been studied in
the monographs of Samet (1990, 2006); the same structures were studied
in the computer graphics context in Langetepe and Zachmann (2006). Re-
cently, motivated by bioinformatics applications, string data structures have
been much studied. There is a steady stream of publications on data structure
theory as part of computational geometry or combinatorial optimization. But
in the numerous textbooks, data structures are only viewed as an example ap-
plication of object-oriented programming, excluding the algorithmic questions
of how to really do something nontrivial, with bounds on the worst-case com-
plexity. It is the aim of this book to bring the focus back to data structures as a
fundamental subtopic of algorithms. The recently published Handbook of Data
Structures (Mehta and Sahni 2005) is a step in the same direction.

This book contains real code for many of the data structures we discuss and
enough information to implement most of the data structures where we do not
provide an implementation. Many textbooks avoid the details, which is one
reason that the structures are not used in the places where they should be used.
The selection of structures treated in this book is therefore restricted almost
everywhere to such structures that work in the pointer-machine model, with
the exception of hash tables, which are included for their practical importance.
The code is intended as illustration, not as ready-to-use plug-in code; there is
certainly no guarantee of correctness. Most of it is available with a minimal
testing environment on my homepage.

This book started out as notes for a course I gave in the 2000 winter semester
at the Free University Berlin; I thank Christian Knauer, who was my assistant
for that course: we both learned a lot. I offered this course again in the fall
semesters of 2004–7 as a graduate course at the City College of New York
and used it as a base for a summer school on data structures at the Korean
Advanced Institute of Science and Technology in July 2006. I finished this
book in November 2007.

3 ABET still lists them as one of five core topics: algorithms, data structures, software design,
programming languages, and computer architecture.

Preface xiii

I thank Emily Voytek and Günter Rote for finding errors in my code ex-
amples, Otfried Cheong for organizing the summer school at KAIST, and
the summer school’s participants for finding further errors. I thank Christian
Knauer and Helmut Brass for literature from excellent mathematical libraries at
the Free University Berlin and Technical University Braunschweig, and János
Pach for access to the online journals subscribed by the Courant Institute. A
project like this book would not have been possible without access to good
libraries, and I tried to cite only those papers that I have seen.

This book project has not been supported by any grant-giving agency.

Basic Concepts

A data structure models some abstract object. It implements a number of
operations on this object, which usually can be classified into

– creation and deletion operations,
– update operations, and
– query operations.

In the case of the dictionary, we want to create or delete the set itself, update the
set by inserting or deleting elements, and query for the existence of an element
in the set.

Once it has been created, the object is changed by the update operations.
The query operations do not change the abstract object, although they might
change the representation of the object in the data structure: this is called an
adaptive data structure – it adapts to the query to answer future similar queries
faster.

Data structures that allow updates and queries are called dynamic data
structures. There are also simpler structures that are created just once for
some given object and allow queries but no updates; these are called static
data structures. Dynamic data structures are preferable because they are more
general, but we also need to discuss static structures because they are useful
as building blocks for dynamic structures, and, for some of the more complex
objects we encounter, no dynamic structure is known.

We want to find data structures that realize a given abstract object and are
fast. The size of structures is another quality measure, but it is usually of less
importance. To express speed, we need a measure of comparison; this is the
size of the underlying object, not our representation of that object. Notice that
a long sequence of update operations can still result in a small object. Our

xiv Preface

usual complexity measure is the worst-case complexity; so an operation in a
specific data structure has a complexity O(f (n)) if, for any state of the data
structure reached by a sequence of update operations that produced an object of
size n, this operation takes at most time Cf (n) for some C. An alternative but
weaker measure is the amortized complexity; an update operation has amortized
complexity O(f (n)) if there is some function g(n) such that any sequence of
m of these operations, during which the size of the underlying object is never
larger than n, takes at most time g(n) + mCf (n), so in the average over a long
sequence of operations the complexity is bounded by Cf (n).

Some structures are randomized, so the data structure makes some random
choices, and the same object and sequence of operations do not always lead
to the same steps of the data structure. In that case we analyze the expected
complexity of an operation. This expectation is over the random choices of the
data structure; the complexity is still the worst case of that expectation over all
objects of that size and possible operations.

In some situations, we cannot expect a nontrivial complexity bound of type
O(f (n)) because the operation might give a large answer. The size of the answer
is the output complexity of the operation, and, for operations that sometimes
have a large output complexity, we are interested in output-sensitive methods,
which are fast when the output is small. An operation has output-sensitive
complexity O(f (n) + k) if, on an object of size n that requires an output of
size k, the operation takes at most time C(f (n) + k).

For dynamic data structures, the time to create the structure for an empty
object is usually constant, so we are mainly interested in the update and query
times. The time to delete a structure of size n is almost always O(n). For static
data structures we already create an object of size n, so there we are interested
in the creation time, known as preprocessing time, and the query time.

In this book, loga n denotes the logarithm to base a; if no base is specified,
we use base 2.

We use the Bourbaki-style notation for closed, half-open, and open intervals,
where [a, b] is the closed interval from a to b,]a, b[is the open interval, and
the half-open intervals are]a, b], missing the first point, and [a, b[, missing the
last point.

Similar to the O(·)-notation for upper bounds mentioned earlier, we also use
the �(·) for lower bounds and �(·) for simultaneous upper and lower bounds.
A nonnegative function f is O(g(n)), or �(g(n)), if for some positive C and all
sufficiently large n holds f (n) ≤ Cg(n), or f (n) ≥ Cg(n), respectively. And
f is �(g(n)) if it is simultaneously O(g(n)) and �(g(n)). Here “sufficiently
large” means that g(n) needs to be defined and positive.

Preface xv

Code Examples

The code examples in this book are given in standard C. For the readers used
to some other imperative programming language, most constructs are self-
explanatory.

In the code examples, = denotes the assignment and == the equality test.
Outside the code examples, we will continue to use = in the normal way.

The Boolean operators for “not,” “and,” “or” are !, &&, ||, respectively,
and % denotes the modulo operator.

Pointers are dereferenced with *, so if pt is a pointer to a memory location
(usually a variable), then *pt is that memory location. Pointers have a type to
determine how the content of that memory location should be interpreted. To
declare a pointer, one declares the type of the memory location it points to, so
“int *pt;” declares pt to be a pointer to an int. Pointers are themselves
variables; they can be assigned, and it is also possible to add integers to a
pointer (pointer arithmetic). If pt points to a memory object of a certain type,
then pt+1 points to the next memory location for an object of that type; this is
equivalent to treating the memory as a big array of objects of that type. NULL
is a pointer that does not point to any valid memory object, so it can be used as
a special mark in comparisons.

Structures are user-defined data types that have several components. The
components themselves have a type and a name, and they can be of any type,
including other structures. The structure cannot have itself as a type of a
component, because that would generate an unbounded recursion. But it can
have a pointer to an object of its own type as component; indeed, such structures
are the main tool of data structure theory. A variable whose type is a structure
can be assigned and used like any other variable. If z is a variable of type C,
and we define this type by

typedef struct { float x; float y; } C,

then the components of z are z.x and z.y, which are two variables of type
float. If zpt is declared as pointer to an object of type C (by C *zpt;),
then the components of the object that zpt points to are (*zpt).x and
(*zpt).y. Because this is a frequently used combination, dereferencing a
pointer and selecting a component, there is an alternative notation zpt->x
and zpt->y. This is equivalent, but preferable, because it avoids the operator
priority problem: dereferencing has lower priority than component selection,
so (*zpt).x is not the same as *zpt.x.

We avoid writing the functions recursively, although in some cases this might
simplify the code. But the overhead of a recursive function call is significant

xvi Preface

and thus conflicts with the general aim of highest efficiency in data structures.
We do not practice any similar restrictions for nonrecursive functions; a good
compiler will expand them as inline functions, avoiding the function call, or
they could be written as macro functions.

In the text we will also frequently use the name of a pointer for the object
to which it points.

1

Elementary Structures

Elementary data structures usually treated in the “Programming 2” class are
the stack and the queue. They have a common generalization, the double-
ended queue, which is also occasionally mentioned, although it has far fewer
applications. Stack and queue are very fundamental structures, so they will
be discussed in detail and used to illustrate several points in data structure
implementation.

1.1 Stack

The stack is the simplest of all structures, with an obvious interpretation: putting
objects on the stack and taking them off again, with access possible only to the
top item. For this reason they are sometimes also described as LIFO storage:
last in, first out. Stacks occur in programming wherever we have nested blocks,
local variables, recursive definitions, or backtracking. Typical programming
exercises that involve a stack are the evaluation of arithmetic expressions with
parentheses and operator priorities, or search in a labyrinth with backtracking.
The stack should support at least the following operations:

{ push(obj): Put obj on the stack, making it the top item.
{ pop(): Return the top object from the stack and remove it from the stack.
{ stack empty(): Test whether the stack is empty.

Also, the realization of the stack has, of course, to give the right values,
so we need to specify the correct behavior of a stack. One method would be
an algebraic specification of what correct sequences of operations and return
values are. This has been done for simple structures like the stack, but even
then the specification is not very helpful in understanding the structure. Instead,
we can describe a canonical implementation on an idealized machine, which
gives the correct answer for all correct sequences of operations (no pop on an

1

2 1 Elementary Structures

empty stack, no memory problems caused by bounded arrays). Assuming that
the elements we want to store on the stack are of type item t, this could look
as follows:

int i=0;
item_t stack[∞];

int stack_empty(void)
{ return(i == 0);
}

void push(item_t x)
{ stack[i++] = x ;
}

item_t pop(void)
{ return(stack[--i]);
}

This describes the correct working of the stack, but we have the problem
of assuming both an infinite array and that any sequence of operations will be
correct. A more realistic version might be the following:

int i=0;
item_t stack[MAXSIZE];

int stack_empty(void)
{ return(i == 0);
}

int push(item_t x)
{ if (i < MAXSIZE)

{ stack[i++] = x ; return(0);
}
else

return(-1);
}

item_t pop(void)
{ return(stack[--i]);
}

1.1 Stack 3

This now limits the correct behavior of the stack by limiting the maximum
number of items on the stack at one time, so it is not really the correct stack
we want, but at least it does specify an error message in the return value if
the stack overflow is reached by one push too many. This is a fundamental
defect of array-based realizations of data structures: they are of fixed size,
the size needs to be decided in advance, and the structure needs the full size
no matter how many items are really in the structure. There is a systematic
way to overcome these problems for array-based structures, which we will see
in Section 1.5, but usually a solution with dynamically allocated memory is
preferable.
We specified an error value only for the stack overflow condition, but not

for the stack underflow, because the stack overflow is an error generated by
the structure, which would not be present in an ideal implementation, whereas
a stack underflow is an error in the use of the structure and so a result in the
program that uses the stack as a black box. Also, this allows us to keep the
return value of pop as the top object from the stack; if we wanted to catch
stack underflow errors in the stack implementation, we would need to return
the object and the error status. A final consideration in our first stack version
is that we might need multiple stacks in the same program, so we want to
create the stacks dynamically. For this we need additional operations to create
and remove a stack, and each stack operation needs to specify which stack it
operates on. One possible implementation could be the following:

typedef struct {item_t *base; item_t *top;
int size;} stack_t;

stack_t *create_stack(int size)
{ stack_t *st;

st = (stack_t *) malloc(sizeof(stack_t));
st->base = (item_t *) malloc(size *

sizeof(item_t));
st->size = size;
st->top = st->base;
return(st);

}

int stack_empty(stack_t *st)
{ return(st->base == st->top);
}

4 1 Elementary Structures

int push(item_t x, stack_t *st)
{ if (st->top < st->base + st->size)

{ *(st->top) = x; st->top += 1; return(0);
}
else

return(-1);
}

item_t pop(stack_t *st)
{ st->top -= 1;

return(*(st->top));
}

item_t top_element(stack_t *st)
{ return(*(st->top -1));
}

void remove_stack(stack_t *st)
{ free(st->base);

free(st);
}

Again, we include some security checks and leave out others. Our policy
in general is to include those security checks that test for errors introduced
by the limitations of this implementation as opposed to an ideal stack, but
to assume both that the use of the stack is correct and that the underlying
operating system never runs out of memory. We included another operation
that is frequently useful, which just returns the value of the top element without
taking it from the stack.
Frequently, the preferable implementation of the stack is a dynamically

allocated structure using a linked list, where we insert and delete in front of
the list. This has the advantage that the structure is not of fixed size; therefore,
we need not be prepared for stack overflow errors if we can assume that the
memory of the computer is unbounded, and so we can always get a new node.
It is as simple as the array-based structure if we already have the get node
and return node functions, whose correct implementation we discuss in
Section 1.4.

typedef struct st_t { item_t item;
struct st_t *next; } stack_t;

1.1 Stack 5

stack_t *create_stack(void)
{ stack_t *st;

st = get_node();
st->next = NULL;
return(st);

}

int stack_empty(stack_t *st)
{ return(st->next == NULL);
}

void push(item_t x, stack_t *st)
{ stack_t *tmp;

tmp = get_node();
tmp->item = x;
tmp->next = st->next;
st->next = tmp;

}

item_t pop(stack_t *st)
{ stack_t *tmp; item_t tmp_item;

tmp = st->next;
st->next = tmp->next;
tmp_item = tmp->item;
return_node(tmp);
return(tmp_item);

}

item_t top_element(stack_t *st)
{ return(st->next->item);
}

void remove_stack(stack_t *st)
{ stack_t *tmp;

do
{ tmp = st->next;

return_node(st);
st = tmp;

}
while (tmp != NULL);

}

Notice that we have a placeholder node in front of the linked list; even an
empty stack is represented by a list with one node, and the top of the stack is

6 1 Elementary Structures

only the second node of the list. This is necessary as the stack identifier returned
by create stack and used in all stack operations should not be changed by
the stack operations. So we cannot just use a pointer to the start of the linked
list as a stack identifier. Because the components of a node will be invalid after
it is returned, we need temporary copies of the necessary values in pop and
remove stack. The operationremove stack should return all the remain-
ing nodes; there is no reason to assume that only empty stacks will be removed,
and we will suffer a memory leak if we fail to return the remaining nodes.

next

item

next

item

next

item

next

item

placeholder top of stack

Stack Realized as List, with Three Items

The implementation as a dynamically allocated structure always has the
advantage of greater elegance; it avoids stack overflow conditions and needs
just the memory proportional to the actually used items, not a big array of a size
estimated by the programmer as upper bound to the maximum use expected
to occur. One disadvantage is a possible decrease in speed: dereferencing a
pointer does not take longer than incrementing an index, but the memory
location accessed by the pointer might be anywhere in memory, whereas the
next component of the array will be near the previous component. Thus, array-
based structures usually work very well with the cache, whereas dynamically
allocated structuresmight generatemany cachemisses. So ifwe are quite certain
about the maximum possible size of the stack, for example, because its size is
only logarithmic in the size of the input, we will prefer an array-based version.
If one wants to combine these advantages, one could use a linked list of

blocks, each block containing an array, but when the array becomes full, we
just link it to a new node with a new array. Such an implementation could look
as follows:

typedef struct st_t { item_t *base;
item_t *top;
int size;

struct st_t *previous;} stack_t;

stack_t *create_stack(int size)
{ stack_t *st;

st = (stack_t *) malloc(sizeof(stack_t));
st->base = (item_t *) malloc(size *

sizeof(item_t));
st->size = size;
st->top = st->base;

1.1 Stack 7

st->previous = NULL;
return(st);

}

int stack_empty(stack_t *st)
{ return(st->base == st->top &&

st->previous == NULL);
}

void push(item_t x, stack_t *st)
{ if (st->top < st->base + st->size)

{ *(st->top) = x; st->top += 1;
}
else
{ stack_t *new;

new = (stack_t *) malloc(sizeof(stack_t));
new->base = st->base;
new->top = st->top;
new->size = st->size;
new->previous = st->previous;
st->previous = new;
st->base = (item_t *) malloc(st->size *

sizeof(item_t));
st->top = st->base+1;
*(st->base) = x;

}
}

item_t pop(stack_t *st)
{ if(st->top == st->base)

{ stack_t *old;
old = st->previous;
st->previous = old->previous;
free(st->base);
st->base = old->base;
st->top = old->top;
st->size = old->size;
free(old);

}
st->top -= 1;
return(*(st->top));

}

item_t top_element(stack_t *st)
{ if(st->top == st->base)

return(*(st->previous->top -1));

8 1 Elementary Structures

else
return(*(st->top -1));

}

void remove_stack(stack_t *st)
{ stack_t *tmp;

do
{ tmp = st->previous;

free(st->base);
free(st);
st = tmp;

}
while(st != NULL);

}

In our classification, push and pop are update operations and
stack empty and top element are query operations. In the array-based
implementation, it is obvious that we can do all the operations in constant
time as they involve only a constant number of elementary operations. For the
linked-list implementation, the operations involve the external get node and
return node functions, which occur in both push and pop once, so the
implementation works only in constant time if we can assume these functions
to be constant-time operations. We will discuss the implementation of this
dynamic node allocation in Section 1.4, but we can assume here (and in all later
structures) that this works in constant time. For the block list we allocate large
parts of memory for which we used here the standard memory management
operations malloc and free instead of building an intermediate layer, as
described in Section 1.4. It is traditional to assume that memory allocation and
deallocation are constant-time operations, but especially with the free there
are nontrivial problems with a constant-time implementation, so one should
avoid using it frequently. This could happen in the block list variant if there
are many push/pop pairs that just go over a block boundary. So the small
advantage of the block list is probably not worth the additional problems.
The create stack operation involves only one such memory alloca-

tion, and so that should be constant time in each implementation; but the
remove stack operation is clearly not constant time, because it has to de-
stroy a potentially large structure. If the stack still contains n elements, the
remove stack operation will take time O(n).

1.2 Queue

The queue is a structure almost as simple as the stack; it also stores items,
but it differs from the stack in that it returns those items first that have been

1.2 Queue 9

entered first, so it is FIFO storage (first in, first out). Queues are useful if there
are tasks that have to be processed cyclically. Also, they are a central structure
in breadth-first search; breadth-first search (BFS) and depth-first search (DFS)
really differ only in that BFS uses a queue and DFS uses a stack to store the
node that will be explored next.
The queue should support at least the following operations:

{ enqueue(obj): Insert obj at the end of the queue, making it the last
item.

{ dequeue(): Return the first object from the queue and remove it from the
queue.

{ queue empty(): Test whether the queue is empty.

The difference between queue and stack that makes the queue slightly
more difficult is that the changes occur at both ends: at one end, there are
inserts; at the other, deletes. If we choose an array-based implementation for
the queue, then the part of the array that is in use moves through the array. If
we had an infinite array, this would present no problem. We could write it as
follows:

int lower=0; int upper=0;
item_t queue[∞];

int queue_empty(void)
{ return(lower == upper);
}

void enqueue(item_t x)
{ queue[upper++] = x ;
}

item_t dequeue(void)
{ return(queue[lower++]);
}

A real implementation with a finite array has to wrap this around, using
index calculation modulo the length of the array. It could look as follows:

typedef struct {item_t *base;
int front;
int rear;
int size;} queue_t;

10 1 Elementary Structures

queue_t *create_queue(int size)
{ queue_t *qu;

qu = (queue_t *) malloc(sizeof(queue_t));
qu->base = (item_t *) malloc(size *

sizeof(item_t));
qu->size = size;
qu->front = qu->rear = 0;
return(qu);

}

int queue_empty(queue_t *qu)
{ return(qu->front == qu->rear);
}

int enqueue(item_t x, queue_t *qu)
{ if (qu->front != ((qu->rear +2)% qu->size))

{ qu->base[qu->rear] = x;
qu->rear = ((qu->rear+1)%qu->size);
return(0);

}
else

return(-1);
}

item_t dequeue(queue_t *qu)
{ int tmp;

tmp = qu->front;
qu->front = ((qu->front +1)%qu->size);
return(qu->base[tmp]);

}

item_t front_element(queue_t *qu)
{ return(qu->base[qu->front]);
}

void remove_queue(queue_t *qu)
{ free(qu->base);

free(qu);
}

1.2 Queue 11

Again this has the fundamental disadvantage of any array-based structure –
that it is of fixed size. So it possibly generates overflow errors and does not
implement the structure correctly as it limits it this way. In addition, it always
reserves this expected maximum size for the array, even if it never needs it. The
preferred alternative is a dynamically allocated structure, with a linked list. The
obvious solution is the following:

typedef struct qu_n_t {item_t item;
struct qu_n_t *next; } qu_node_t;

typedef struct {qu_node_t *remove;
qu_node_t *insert; } queue_t;

queue_t *create_queue()
{ queue_t *qu;

qu = (queue_t *) malloc(sizeof(queue_t));
qu->remove = qu->insert = NULL;
return(qu);

}

int queue_empty(queue_t *qu)
{ return(qu->insert ==NULL);
}

void enqueue(item_t x, queue_t *qu)
{ qu_node_t *tmp;

tmp = get_node();
tmp->item = x;
tmp->next = NULL; /* end marker */
if (qu->insert != NULL) /* queue nonempty */
{ qu->insert->next = tmp;

qu->insert = tmp;
}
else /* insert in empty queue */
{ qu->remove = qu->insert = tmp;
}

}

item_t dequeue(queue_t *qu)
{ qu_node_t *tmp; item_t tmp_item;

tmp = qu->remove; tmp_item = tmp->item;
qu->remove = tmp->next;
if(qu->remove == NULL) /* reached end */

qu->insert = NULL; /* make queue empty */
return_node(tmp);

12 1 Elementary Structures

return(tmp_item);
}

item_t front_element(queue_t *qu)
{ return(qu->remove->item);
}

void remove_queue(queue_t *qu)
{ qu_node_t *tmp;

while(qu->remove != NULL)
{ tmp = qu->remove;

qu->remove = tmp->next;
return_node(tmp);

}
free(qu);

}

Again we assume, as in all dynamically allocated structures, that the op-
erations get node and return node are available, which always work
correctly and in constant time. Because we want to remove items from the front
of the queue, the pointers in the linked list are oriented from the front to the end,
where we insert items. There are two aesthetical disadvantages of this obvious
implementation: we need a special entry point structure, which is different from
the list nodes, and we always need to treat the operations involving an empty
queue differently. For insertions into an empty queue and removal of the last
element of the queue, we need to change both insertion and removal pointers;
for all other operations we change only one of them.

remove insert

next

item

next

item

next

item

next

item

Queue Realized as List, with Four Items

The first disadvantage can be avoided by joining the list together to make it
a cyclic list, with the last pointer from the end of the queue pointing again to
the beginning. We can then do without a removal pointer, because the insertion
point’s next component points to the removal point. By this, the entry point to
the queue needs only one pointer, so it is of the same type as the queue nodes.
The second disadvantage can be overcome by inserting a placeholder node

in that cyclic list, between the insertion end and the removal end of the cyclic
list. The entry point still points to the insertion end or, in the case of an empty

1.2 Queue 13

list, to that placeholder node. Then, at least for the insert, the empty list is no
longer a special case. So a cyclic list version is the following:

typedef struct qu_t { item_t item;
struct qu_t *next; } queue_t;

queue_t *create_queue()
{ queue_t *entrypoint, *placeholder;

entrypoint = (queue_t *) malloc(sizeof(queue_t));
placeholder = (queue_t *) malloc(sizeof(queue_t));
entrypoint->next = placeholder;
placeholder->next = placeholder;
return(entrypoint);

}

int queue_empty(queue_t *qu)
{ return(qu->next == qu->next->next);
}

void enqueue(item_t x, queue_t *qu)
{ queue_t *tmp, *new;

new = get_node(); new->item = x;
tmp = qu->next; qu->next = new;
new->next = tmp->next; tmp->next = new;

}

item_t dequeue(queue_t *qu)
{ queue_t *tmp;

item_t tmp_item;
tmp = qu->next->next->next;
qu->next->next->next = tmp->next;
if(tmp == qu->next)

qu->next = tmp->next;
tmp_item = tmp->item;
return_node(tmp);
return(tmp_item);

}

item_t front_element(queue_t *qu)
{ return(qu->next->next->next->item);
}

void remove_queue(queue_t *qu)
{ queue_t *tmp;

tmp = qu->next->next;
while(tmp != qu->next)
{ qu->next->next = tmp->next;

return_node(tmp);

14 1 Elementary Structures

tmp = qu->next->next;
}
return_node(qu->next);
return_node(qu);

}

next

item

next

item

next

item

next

item

next

item

placeholder

entrypoint

front of queue

Queue Realized as Cyclic List, with Three Items

Or one could implement the queue as a doubly linked list, which requires no
case distinctions at all but needs two pointers per node. Minimizing the number
of pointers is an aesthetic criterion more justified by the amount of work that
has to be done in each step to keep the structure consistent than by the amount of
memory necessary for the structure. Here is a doubly linked list implementation:

typedef struct qu_t { item_t item;
struct qu_t *next;
struct qu_t *previous; } queue_t;

queue_t *create_queue()
{ queue_t *entrypoint;

entrypoint = (queue_t *) malloc(sizeof(queue_t));
entrypoint->next = entrypoint;
entrypoint->previous = entrypoint;
return(entrypoint);

}

int queue_empty(queue_t *qu)
{ return(qu->next == qu);
}

void enqueue(item_t x, queue_t *qu)
{ queue_t *new;

new = get_node(); new->item = x;
new->next = qu->next; qu->next = new;
new->next->previous = new; new->previous = qu;

}

item_t dequeue(queue_t *qu)
{ queue_t *tmp; item_t tmp_item;

tmp = qu->previous; tmp_item = tmp->item;

1.2 Queue 15

tmp->previous->next = qu;
qu->previous = tmp->previous;
return_node(tmp);
return(tmp_item);

}

item_t front_element(queue_t *qu)
{ return(qu->previous->item);
}

void remove_queue(queue_t *qu)
{ queue_t *tmp;

qu->previous->next = NULL;
do
{ tmp = qu->next;

return_node(qu);
qu = tmp;

}
while (qu != NULL);

}

next

previous

item

next

previous

item

next

previous

item

next

previous

item

next

previous

item

insertion
end

deletion
end

entry point

Queue Realized as Doubly Linked List, with Four Items

Which of the list-based implementations one prefers is really a matter of taste;
they are all slightlymore complicated than the stack, although the two structures
look similar.
Like the stack, the queue is a dynamic data structure that has the update

operations enqueue and dequeue and the query operations queue empty
and front element, all of which are constant-time operations, and the
operations create queue and delete queue, which are subject to the
same restrictions as the similar operations for the stack: creating an array-
based queue requires getting a big block of memory from the underlying system
memory management, whereas creating a list-based queue should require only
some get node operations; and deleting an array-based queue just involves

16 1 Elementary Structures

returning that memory block to the system, whereas deleting a list-based queue
requires returning every individual node still contained in it, so it will takeO(n)
time to delete a list-based queue that still contains n items.

1.3 Double-Ended Queue

The double-ended queue is the obvious common generalization of stack
and queue: a queue in which one can insert and delete at either end. Its
implementation can be done as an array, or as a doubly linked list, just like a
queue; because it does not present any new problems, no code will be given
here. The double-ended queue does not have many applications, but at least
a “one-and-a-half ended queue” sometimes is useful, as in the minqueue dis-
cussed in Section 5.11.

1.4 Dynamical Allocation of Nodes

In the previous sections we used the operationsget node andreturn node
to dynamically create and delete nodes, that is, constant-sized memory objects,
as opposed to the generic operations malloc and free provided by the stan-
dard operating-system interface, which we used only for memory objects of
arbitrary, usually large, size. The reason for this distinction is that although the
operating-system memory allocation is ultimately the only way to get memory,
it is a complicated process, and it is not even immediately obvious that it is
a constant-time operation. In any efficient implementation of a dynamically
allocated structure, where we permanently get and return nodes, we cannot
afford to access this operating-system-level memory management in each op-
eration. Instead, we introduce an intermediate layer, which only occasionally
has to access the operating-systemmemory management to get a large memory
block, which it then gives out and receives back in small, constant-sized pieces,
the nodes.
The efficiency of these get node and return node operations is really

crucial for any dynamically allocated structure, but luckily we do not have
to create a full memory management system; there are two essential simpli-
fications. We deal only with objects of one size, as opposed to the malloc
interface, which should provide memory blocks of any size, and we do not re-
turn any memory from the intermediate level to the system before the program
ends. This is reasonable: the amount of memory taken by the intermediate layer
from the system is the maximum amount taken by the data structure up to that

1.4 Dynamical Allocation of Nodes 17

moment, so we do not overestimate the total memory requirement; we only fail
to free it earlier for other coexisting programs or structures.
This allows us to use the free list as a structure for our dynamical allocation

of nodes. The free list contains all the nodes not currently in use; whenever
a return node is executed, the node is just added to the free list. For the
get node, the situation is slightly more complicated; if the free list is not
empty, we may just take a node from there. If it is empty and the current
memory block is not used up, we take a new node from that memory block.
Otherwise, we have to get a new memory block with malloc and create the
node from there.
An implementation could look as follows:

typedef struct nd_t { struct nd_t *next;
/*and other components*/ } node_t;

#define BLOCKSIZE 256
node_t *currentblock = NULL;
int size_left;
node_t *free_list = NULL;

node_t *get_node()
{ node_t *tmp;
if(free_list != NULL)
{ tmp = free_list;

free_list = free_list -> next;
}
else
{ if(currentblock == NULL || size_left == 0)

{ currentblock =
(node_t *) malloc(BLOCKSIZE *

sizeof(node_t));
size_left = BLOCKSIZE;

}
tmp = currentblock++;
size_left -= 1;

}
return(tmp);

}

void return_node(node_t *node)
{ node->next = free_list;

free_list = node;
}

18 1 Elementary Structures

Dynamical memory allocation is traditionally a source of many program-
ming errors and is hard to debug. A simple additional precaution to avoid some
common errors is to add to the node another component, int valid, and
fill it with different values, depending on whether it has just been received
back by return node or is given out by get node. Then we can check
that a pointer does indeed point to a valid node and that anything received by
return node has indeed been a valid node up to that moment.

1.5 Shadow Copies of Array-Based Structures

There is a systematic way to avoid the maximum-size problem of array-based
structures at the expense of the simplicity of these structures.We simultaneously
maintain two copies of the structure, the currently active copy and a larger-sized
structure which is under construction. We have to schedule the construction of
the larger structure in such a way that it is finished and ready for use before
the active copy reaches its maximum size. For this, we copy in each operation
on the old structure a fixed number of items from the old to the new structure.
When the content of the old structure is completely copied into the new, larger
structure, the old structure is removed and the new structure taken as the active
structure and, when necessary, construction of an even larger copy is begun.
This sounds very simple and introduces only a constant overhead to convert
a fixed-size structure into an unlimited structure. There are, however, some
problems in the details: the structure that is being copied changes while the
copying is in progress, and these changes must be correctly done in the still
incomplete larger copy. To demonstrate the principle, here is the code for the
array-based stack:

typedef struct { item_t *base;
int size;
int max_size;
item_t *copy;
int copy_size; } stack_t;

stack_t *create_stack(int size)
{ stack_t *st;

st = (stack_t *) malloc(sizeof(stack_t));
st->base = (item_t *) malloc(size *

sizeof(item_t));
st->max_size = size;
st->size = 0; st->copy = NULL; st->copy_size = 0;
return(st);

}

1.5 Shadow Copies of Array-Based Structures 19

int stack_empty(stack_t *st)
{ return(st->size == 0);
}

void push(item_t x, stack_t *st)
{ *(st->base + st->size) = x;

st->size += 1;
if (st->copy != NULL ||
st->size >= 0.75*st->max_size)
{ /* have to continue or start copying */

int additional_copies = 4;
if(st->copy == NULL)
/* start copying: allocate space */
{ st->copy =

(item_t *) malloc(2 * st->max_size *
sizeof(item_t));

}
/* continue copying: at most 4 items

per push operation */
while(additional_copies > 0 &&

st->copy_size < st->size)
{ *(st->copy + st->copy_size) =

*(st->base + st->copy_size);
st->copy_size += 1; additional_copies -= 1;

}
if(st->copy_size == st->size)
/* copy complete */
{ free(st->base);

st->base = st-> copy;
st->max_size *= 2;
st->copy = NULL;
st->copy_size = 0;

}
}

}

item_t pop(stack_t *st)
{ item_t tmp_item;

st->size -= 1;
tmp_item = *(st->base + st->size);
if(st->copy_size == st->size) /* copy complete */
{ free(st->base);

st->base = st-> copy;
st->max_size *= 2;
st->copy = NULL;
st->copy_size = 0;

}

20 1 Elementary Structures

return(tmp_item);
}

item_t top_element(stack_t *st)
{ return(*(st->base + st->size - 1));
}

void remove_stack(stack_t *st)
{ free(st->base);

if(st->copy != NULL)
free(st->copy);

free(st);
}

For the stack, the situation is especially easy because we can just copy
from the base until we reach the current top; in between, nothing changes.
The threshold when to start copying (here, at 0.75*size), the size of the new
structure (here, twice the previous size), and the number of items copied in
each step (here, four items) must, of course, be chosen in such a way that
copying is complete before the old structure overflows. Note that we can reach
the situation when the copying is finished in two ways: by actual copying in
the push and by deleting uncopied items in the pop.
In general, the connection between copying threshold size, new maximum

size, and number of items copied is as follows:

{ if the current structure has maximum size smax,
{ and we begin copying as soon as its actual size has reached αsmax (with

α ≥ 1
2),

{ the new structure has maximum size 2smax, and
{ each operation increases the actual size by at most 1,

then there are at least (1− α)smax steps left to complete the copying of at most
smax elements from the smaller structure to the new structure. So we need to
copy � 1

1−α
� elements in each operation to finish the copying before the smaller

structure overflows. We doubled the maximum size when creating the new
structure, but we could have chosen any size βsmax, β > 1, as long as αβ > 1.
Otherwise, we would have to start copying again before the previous copying
process was finished.
In principle, this technique is quite general and not restricted to array-based

structures. We will use it again in Sections 3.6 and 7.1. We can always try to
overcome the size limitation of a fixed-size structure by copying its content to a
larger structure. But it is not always clear how to break this copying into many

1.5 Shadow Copies of Array-Based Structures 21

small steps that can be executed simultaneously with the normal operations on
the structure, as in our example. Instead, we have to copy the entire structure
in one step, so we cannot get a worst-case time bound, but only an amortized
bound.
A final example of this technique and its difficulties is the realization of an

extendible array. Normal arrays need to be declared of a fixed size, they are
allocated somewhere in memory, and the space that is reserved there cannot be
increased as it might conflict with space allocated for other variables. Access
to an array element is very fast; it is just one address computation. But some
systems also support a different type of array, which can be made larger; for
these, accessing an element is more complicated and it is really an operation
of a nontrivial data structure. This structure needs to support the following
operations:

{ create array creates an array of a given size,
{ set value assigns the array element at a given index a value,
{ get value returns the value of the array element at a given index,
{ extend array increases the length of the array.

To implement that structure, we use the same technique of building shadow
copies. There is, however, an additional problem here, because the structure
we want to model does not just grow by a single item in each operation; the
extend array operation can make it much larger a single operation. Still,
we can easily achieve an amortized constant time per operation.
When an array of size s is created, we allocate space for it, but more than

requested. We maintain that the size of the arrays we actually allocate is always
a power of 2, so we initially allocate an array of size 2�log s� and store the
start position of that array, as well as the current and the maximum size, in a
structure that identifies the array. Any access to an array element first has to
look up that start position of the current array. Each time an extend array
operation is performed, we first check whether the current maximum size is
larger than the requested size; in that case we can just increase the current size.
Else, we have to allocate a new array whose size is the next number 2k larger
than the requested size, and copy every item from the old array to the new
array. Thus, accessing an array element is always done in O(1) time; it is just
one in the direction of the pointer; but extending the array can take linear time
in the size of the array. But the amortized complexity is not that bad; if the
ultimate size of the array is 2�log k�, then we have at worst copied arrays of size
1, 2, 4, . . . , 2�log k�−1, so we spent in total time O(1+ 2+ · · · + 2�log k�−1) =
O(k) with those extend array operations that did copy the array, andO(1)

22 1 Elementary Structures

with each extend array operation that did not copy the array. Thus, we
have the following complexity:

Theorem. An extendible array structure with shadow copies performs any
sequence of n set value, get value, and extend array operations on
an array whose final size is k in time O(n + k).

If we assume that each element of the array we request is also accessed
at least once, so that the final size is at most the number of element access
operations, this gives an amortized O(1) complexity per operation.
It would be natural to distribute the copying of the elements again over

the later access operations, but we have no control over the extend array
operations. It is possible that the next extension is requested before the copying
of the current array is complete, so our previous method does not work for this
structure. Another conceptual problem with extendible arrays is that pointers
to array elements are different from normal pointers because the position of the
array can change. Thus, in general, extendible arrays should be avoided even
if the language supports them. A different way to implement extendible arrays
was discussed in Challab (1991).

2

Search Trees

A search tree is a structure that stores objects, each object identified by a key
value, in a tree structure. The key values of the objects are from a linearly
ordered set (typically integers); two keys can be compared in constant time and
these comparisons are used to guide the access to a specific object by its key.
The tree has a root, where any search starts, and then contains in each node
some key value for comparison with the query key, so one can go to different
next nodes depending on whether the query key is smaller or larger than the
key in the node until one finds a node that contains the right key.
This type of tree structure is fundamental to most data structures; it allows

many variations and is also a building block for most more complex data
structures. For this reason we will discuss it in great detail.
Search trees are one method to implement the abstract structure called

dictionary. A dictionary is a structure that stores objects, identified by keys, and
supports the operations find, insert, and delete. A search tree usually supports at
least these operations of a dictionary, but there are also other ways to implement
a dictionary, and there are applications of search trees that are not primarily
dictionaries.

2.1 Two Models of Search Trees

In the outline just given, we supressed an important point that at first seems
trivial, but indeed it leads to two different models of search trees, either of
which can be combined with much of the following material, but one of which
is strongly preferable.
If we compare in each node the query key with the key contained in the

node and follow the left branch if the query key is smaller and the right branch

23

24 2 Search Trees

if the query key is larger, then what happens if they are equal? The two models
of search trees are as follows:

1. Take left branch if query key is smaller than node key; otherwise take the
right branch, until you reach a leaf of the tree. The keys in the interior node
of the tree are only for comparison; all the objects are in the leaves.

2. Take left branch if query key is smaller than node key; take the right branch
if the query key is larger than the node key; and take the object contained
in the node if they are equal.

This minor point has a number of consequences:

{ In model 1, the underlying tree is a binary tree, whereas in model 2, each
tree node is really a ternary node with a special middle neighbor.

{ In model 1, each interior node has a left and a right subtree (each possibly a
leaf node of the tree), whereas in model 2, we have to allow incomplete
nodes, where left or right subtree might be missing, and only the
comparison object and key are guaranteed to exist.

So the structure of a search tree of model 1 is more regular than that of a tree
of model 2; this is, at least for the implementation, a clear advantage.

{ In model 1, traversing an interior node requires only one comparison,
whereas in model 2, we need two comparisons to check the three
possibilities.

Indeed, trees of the same height inmodels 1 and 2 contain atmost approximately
the same number of objects, but one needs twice as many comparisons in model
2 to reach the deepest objects of the tree. Of course, in model 2, there are also
some objects that are reached much earlier; the object in the root is found
with only two comparisons, but almost all objects are on or near the deepest
level.

Theorem. A tree of height h and model 1 contains at most 2h objects.
A tree of height h and model 2 contains at most 2h+1 − 1 objects.

This is easily seen because the tree of height h has as left and right subtrees a
tree of height at most h − 1 each, and in model 2 one additional object between
them.

{ In model 1, keys in interior nodes serve only for comparisons and may
reappear in the leaves for the identification of the objects. In model 2, each
key appears only once, together with its object.

2.1 Two Models of Search Trees 25

It is even possible in model 1 that there are keys used for comparison that
do not belong to any object, for example, if the object has been deleted. By
conceptually separating these functions of comparison and identification, this
is not surprising, and in later structures we might even need to define artificial
tests not corresponding to any object, just to get a good division of the search
space. All keys used for comparison are necessarily distinct because in a model
1 tree, each interior node has nonempty left and right subtrees. So each key
occurs at most twice, once as comparison key and once as identification key in
the leaf.
Model 2 became the preferred textbook version because in most textbooks

the distinction between object and its key is not made: the key is the object.
Then it becomes unnatural to duplicate the key in the tree structure. But in
all real applications, the distinction between key and object is quite important.
One almost never wishes to keep track of just a set of numbers; the numbers
are normally associated with some further information, which is often much
larger than the key itself.
In some literature, where this distinction is made, trees of model 1 are called

leaf trees and trees of model 2 are called node trees (Nievergelt and Wong
1973). Our preferred model of search tree is model 1, and we will use it for all
structures but the splay tree (which necessarily follows model 2).

5

3 8

2 4 7 9

61 2 3 4

5 6

7 8 9
obj1 obj2 obj3 obj4

obj5 obj6

obj7 obj8 obj9

1 8

2 4 6 9

3 7

5

obj1 obj8

obj2 obj4 obj6 obj9

obj3 obj7

obj5

Search Trees of Model 1 and Model 2

A tree of model 1 consists of nodes of the following structure:

typedef struct tr_n_t {key_t key;
struct tr_n_t *left;
struct tr_n_t *right;

/* possibly additional information */
} tree_node_t;

We will usually need some additional balancing information, which will be
discussed in Chapter 3. So this is just an outline.

26 2 Search Trees

From nodes of this type, we will construct a tree essentially by the following
recursive definition: each tree is either empty, or a leaf, or it contains a special
root node that points to two nonempty trees, with all keys in the left subtree
being smaller than the key in the root and all keys in the right subtree being larger
than or equal to the key in the root. This still needs some details; especially
we have to specify how to recognize leaves. We will follow here the following
convention:

{ A node *n is a leaf if n->right = NULL. Then n->left points to the
object stored in that leaf and n->key contains the object’s key.

We also need some conventions for the root, especially to deal with empty
trees. Each tree has a special node *root.

{ If root->left = NULL, then the tree is empty.
{ If root->left �= NULL and root->right = NULL, then root is a
leaf and the tree contains only one object.

{ If root->left �= NULL and root->right �= NULL, then
root->right and root->left point to the roots of the right and left
subtrees. For each node *left node in the left subtree, we have
left node->key < root->key, and for each node *right node in
the right subtree, we have right node->key ≥ root->key.

Any structure with these properties is a correct search tree for the objects and
key values in the leaves.
With these conventions we can now create an empty tree.

tree_node_t *create_tree(void)
{ tree_node_t *tmp_node;

tmp_node = get_node();
tmp_node->left = NULL;
return(tmp_node);

}

2.2 General Properties and Transformations

In a correct search tree, we can associate each tree node with an interval, the
interval of possible key values that can be reached through this node. The
interval of root is]–∞,∞[, and if *n is an interior node associated with
interval [a, b[, then n->key ∈ [a, b[, and n->left and n->right have as
associated intervals [a,n->key[and [n->key, b[. With the exception of the
intervals starting in −∞, all these intervals are half-open, containing the left

2.2 General Properties and Transformations 27

endpoint but not the right endpoint. This implicit structure on the tree nodes is
very helpful in understanding the operations on the trees.

3]-∞,4[4 [4,5[

4]-∞,5[7 [5,10[

5]-∞,10[

10]-∞,∞[

11 [10,13[13 [13,16[

13 [10,16[

16 [16,17[17 [17,18[

17 [16,18[19 [18,20[

18 [16,20[30 [20,∞[

20 [16,∞[

16 [10,∞[

obj3 obj4

obj7

obj11 obj13

obj16 obj17

obj19

obj30

Intervals Associated with Nodes in a Search Tree

The same set of (key, object) pairs can be organized in many distinct correct
search trees: the leaves are always the same, containing the (key, object) pairs in
increasing order of the keys, but the tree connecting the leaves can be very differ-
ent, and we will see that some trees are better than others. There are two opera-
tions – the left and right rotations – that transform a correct search tree in a differ-
ent correct search tree for the same set. They are used as building blocks ofmore
complex tree transformations because they are easy to implement and universal.
Suppose *n is an interior node of the tree and n->right is also an

interior node. Then the three nodes n->left, n->right->left, and
n->right->right have consecutive associated intervals whose union is
the associated interval of *n. Now instead of grouping the second and third
intervals (of n->right->left and n->right->right) together in node
n->right, and then this union together with the interval of n->left in
*n, we could group the first two intervals together in a new node, and that
then together with the last interval in *n. This is what the left rotation does:
it rearranges three nodes below a given node *n, the rotation center. This is
a local change done in constant time; it does not affect either the content of
those three nodes or anything below them or above the rotation center *n. The
following code does a left rotation around *n:

void left_rotation(tree_node_t *n)
{ tree_node_t *tmp_node;

key_t tmp_key;
tmp_node = n->left;
tmp_key = n->key;
n->left = n->right;

28 2 Search Trees

n->key = n->right->key;
n->right = n->left->right;
n->left->right = n->left->left;
n->left->left = tmp_node;
n->left->key = tmp_key;

}

Note that we move the content of the nodes around, but the node *n still
needs to be the root of the subtree because there are pointers from higher levels
in the tree that point to *n. If the nodes contain additional information, then
this must, of course, also be updated or copied.
The right rotation is exactly the inverse operation of the left rotation.

void right_rotation(tree_node_t *n)
{ tree_node_t *tmp_node;

key_t tmp_key;
tmp_node = n->right;
tmp_key = n->key;
n->right = n->left;
n->key = n->left->key;
n->left = n->right->left;
n->right->left = n->right->right;
n->right->right = tmp_node;
n->right->key = tmp_key;

}

[a,b[[b,c[

[c,d[

left right

key b

left right

key c

[a,b[

[b,c[[c,d[

left right

key b

left right

key c

right rotation

left rotation

Left and Right Rotations

Theorem. The left and right rotations around the same node are inverse oper-
ations. Left and right rotations are operations that transform a correct search
tree in a different correct search tree for the same set of (key, object) pairs.

2.3 Height of a Search Tree 29

The great usefulness of the rotations as building blocks for tree operations
lies in the fact that they are universal: any correct search tree for some set of
(key, object) pairs can be transformed into any other correct search tree by a
sequence of rotations. But one needs to be careful with the exact statement of
this property because it is obviously false: in our model of search trees, we can
change the key values in the interior nodes without destroying the search tree
property as long as the order relation of the comparison keys with the object
keys stays the same. But the rotations, of course, do not change the key values.
The important structure is the combinatorial type of the tree; any system of
comparison keys is transformed correctly together with the tree.

Theorem. Any two combinatorial types of search trees on the same system
of (key, object) pairs can be transformed into each other by a sequence of
rotations.

But this is easy to see: if we apply right rotations to the search tree as long as
any right rotation can be applied, we get a degenerate tree, a path going to the
right, to which the leaves are attached in increasing order. So any search tree
can be brought into this canonical shape using only right rotations. Because
right and left rotations are inverse, this canonical shape can be transformed into
any shape by a sequence of left rotations.
The space of combinatorial types of search trees, that is, of binary trees with

n leaves, is isomorphic to a number of other structures (a Catalan family). The
rotations define a distance on this structure, which has been studied in a number
of papers (Culik and Wood 1982; Mäkinen 1988; Sleator, Tarjan, and Thurston
1988; Luccio and Pagli 1989); the diameter of this space is known to be 2n − 6
for n ≥ 11 (Sleator et al. 1988). The difficult part here is the exact value of the
lower bound; it is simple to prove just �(n) bounds (see, e.g., Felsner 2004,
Section 7.5).

2.3 Height of a Search Tree

The central property which distinguishes the different combinatorial types of
search trees for the same underlying set and which makes some search trees
good and others bad is the height. The height of a search tree is the maximum
length of a path from the root to a leaf – the maximum taken over all leaves.
Usually not all leaves are at the same distance from the root; the distance of
a specific tree node from the root is called the depth of that node. As already
observed in Section 2.1, the maximum number of leaves of a search tree of
height h is 2h. And at the other end, the minimum number of leaves is h + 1

30 2 Search Trees

because a tree of height h must have at least one interior node at each depth
0, . . . , h − 1, and a tree with h interior nodes has h + 1 leaves. Together, this
gives the bounds.

Theorem. A search tree for n objects has height at least �log n� and at most
n − 1.

It is easy to see that both bounds can be reached.
The height is the worst-case distance we have to traverse to reach a specific

object in the search tree. Another related measure of quality of a search tree
is the average depth of the leaves, that is, the average over all objects of the
distance we have to go to reach that object. Here the bounds are:

Theorem. A search tree for n objects has average depth at least log n and at
most (n−1)(n+2)

2n ≈ 1
2n.

To prove these bounds, it is easier to take the sum of the depths instead of the
average depth. Because the sum of depths can be divided in the depth of the
a leaves to the left of the root and the depth of the b leaves to the right of
the root, these sums satisfy the following recursions:

depthsummin(n) = n + min
a,b≥1
a+b=n

depthsummin(a)+ depthsummin(b)

and

depthsummax(n) = n + max
a,b≥1
a+b=n

depthsummax(a)+ depthsummax(b);

with these recursions, one obtains

depthsummin(n) ≥ n log n

and

depthsummax(n) = 1

2
(n − 1)(n + 2)

by induction. In the first case, one uses that the function x log x is convex, so
a log a + b log b ≥ (a + b) log (a + b)/2.

