
http://www.cambridge.org/9780521883337

This page intentionally left blank

Real-Time Systems

Real-time systems need to react to certain input stimuli within given time bounds.
For example, an airbag in a car has to unfold within 300 milliseconds in a crash.
There are many embedded safety-critical applications and each requires real-time
specification techniques. This textbook introduces three of these techniques, based
on logic and automata: Duration Calculus, Timed Automata, and PLC-Automata.
The techniques are brought together to form a seamless design flow, from real-

time requirements specified in the Duration Calculus, via designs specified by PLC-
Automata, and into source code for hardware platforms of embedded systems. The
syntax, semantics, and proof methods of the specification techniques are introduced;
their most important properties are established; and real-life examples illustrate their
use. Detailed case studies and exercises conclude each chapter.
Ideal for students of real-time systems or embedded systems, this text will also be

of great interest to researchers and professionals in transportation and automation.

E.-R. OLDEROG is Professor of Computer Science at the University of Oldenburg,
Germany. In 1994 he was awarded the Leibniz Prize of the German Research
Council (DFG).

H. DIERKS is a researcher currently working with OFFIS, a technology transfer
institute for computer science in Oldenburg, Germany.

REAL-TIME SYSTEMS
Formal Specification and Automatic Verification

ERNST-RÜDIGER OLDEROG1 AND HENNING DIERKS2

1 Department of Computing Science, University of Oldenburg, Germany
2 OFFIS, Oldenburg, Germany

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-88333-7

ISBN-13 978-0-511-42693-3

© E.-R. Olderog and H. Dierks 2008

2008

Information on this title: www.cambridge.org/9780521883337

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521883337

Contents

Preface page vii

Acknowledgements xii

List of symbols xv

1 Introduction 1

1.1 What is a real-time system? 1

1.2 System properties 4

1.3 Generalised railroad crossing 7

1.4 Gas burner 12

1.5 Aims of this book 15

1.6 Exercises 20

1.7 Bibliographic remarks 21

2 Duration Calculus 28

2.1 Preview 28

2.2 Syntax and semantics 31

2.3 Specification and correctness proof 47

2.4 Proof rules 53

2.5 Exercises 75

2.6 Bibliographic remarks 79

3 Properties and subsets of DC 81

3.1 Decidability results 81

3.2 Implementables 97

3.3 Constraint Diagrams 110

3.4 Exercises 128

3.5 Bibliographic remarks 132

4 Timed automata 134

4.1 Timed automata 134

v

vi Contents

4.2 Networks of timed automata 145

4.3 Reachability is decidable 153

4.4 The model checker UPPAAL 165

4.5 Exercises 184

4.6 Bibliographic remarks 187

5 PLC-Automata 189

5.1 Programmable Logic Controllers 190

5.2 PLC-Automata 192

5.3 Translation into PLC source code 197

5.4 Duration Calculus semantics 201

5.5 Synthesis from DC implementables 212

5.6 Extensions of PLC-Automata 227

5.7 Exercises 237

5.8 Bibliographic remarks 240

6 Automatic verification 241

6.1 The approach 241

6.2 Requirements 243

6.3 Specification 257

6.4 Verification 265

6.5 The tool Moby/RT 283

6.6 Summary 287

6.7 Exercises 289

6.8 Bibliographic remarks 290

Notations 293

Bibliography 304

Index 313

Preface

Computers are used more and more to provide high-quality and reliable

products and services, and to control and optimise production processes.

Such computers are often embedded into the products and thus hidden to

the human user. Examples are computer-controlled washing machines or

gas burners, electronic control units in cars needed for operating airbags

and braking systems, signalling systems for high-speed trains, or robots and

automatic transport vehicles in industrial production lines.

In these systems the computer continuously interacts with a physical envi-

ronment or plant. Such systems are thus called reactive systems. Moreover,

common to all these applications is that the computer reactions should obey

certain timing constraints. For example, an airbag has to unfold within mil-

liseconds, not too early and not too late. Reactive systems with such con-

straints are called real-time systems. They often appear in safety-critical

applications where a malfunction of the controller will cause damage and

risk the lives of people. This is immediately clear for all applications in the

transport sector where computers control cars, trains and planes.

Therefore the design of real-time systems requires a high degree of pre-

cision. Here formal methods based on mathematical models of the system

under design are helpful. They allow the designer to specify the system

at different levels of abstraction and to formally verify the consistency of

these specifications before implementing them. In recent years significant

advances have been made in the maturity of formal methods that can be

applied to real-time systems.

Structure of this book

In this advanced textbook we shall present three such formal approaches:

vii

viii Preface

• Duration Calculus (DC for short), a logic and calculus for specifying high-

level requirements of real-time systems;

• timed automata (TA for short), a state-transition model of real-time sys-

tems with the advantage of elaborate tool support for the automatic ver-

ification of real-time properties;

• PLC-Automata, a state-transition model of real-time systems with the

advantage of being implementable, for example in the programming lan-

guage C or on Programmable Logic Controllers (PLCs for short), a hard-

ware platform that is widespread in the automation industry.

This book is the first one that presents the above three approaches to the

specification of real-time systems in a coherent way. This is achieved by

combining the approaches into a design method for real-time systems, reach-

ing from requirements down to executable code as illustrated in Figure 0.1.

Here:

• Real-time requirements are specified in the Duration Calculus or subsets

thereof.

• Designs are specified by PLC-Automata.

• Implementations are written as C programs with timers or as programs

that are executable on PLCs.

• Automatic verification of requirements is performed using the model-

checking tool UPPAAL for timed automata.

• A tool Moby/RT, built for PLC-Automata, allows the user to invoke

algorithms for generating C or PLC code from such automata, and to

automatically verify properties specified in a subset of Duration Calculus

by using UPPAAL as a back-end verification engine.

The connection is that PLC-Automata have both a semantics in terms of

the Duration Calculus and an equivalent one in terms of timed automata.

To verify that a PLC-Automaton satisfies a given real-time requirement

expressed in the Duration Calculus, there are two possibilities: either a proof

can be conducted in the Duration Calculus exploiting the corresponding

semantics of the PLC-Automaton, or, for certain types of requirement, an

automatic verification is possible using the tool UPPAAL and the timed

automata semantics of the PLC-Automaton.

How to read this book

The titles and dependencies of the chapters are shown in Figure 0.2. First,

the introduction in Chapter 1 should be read. Here two case studies (railroad

Preface ix

Requirements

Designs

Implementations

DC

Subsets of DC

PLC-Automata

C code or
PLC code

TA
Automatic
verification

Fig. 0.1. Overview of design method

crossing and gas burner) provide a feeling for the delicacies of real-time

systems. Then one can continue with Chapter 2 (Duration Calculus) or

Chapter 4 (Timed automata).

Chapter 2 presents the basic knowledge of the Duration Calculus. First,

the syntax and semantics of the logic are defined. Then the proof rules of

the calculus are introduced, including a simple induction rule. These rules

are applied to the case study of the gas burner.

Chapter 3 presents advanced topics on the Duration Calculus. First,

decidability results are discussed for the cases of discrete and continuous

time domains. Then a subset of the Duration Calculus that is closer to

the implementation level is presented, the so-called DC implementables.

Finally, Constraint Diagrams are introduced as a graphic representation for

requirements with a semantics in the Duration Calculus.

Chapter 4 presents the basic facts of timed automata. In particular, the

most prominent result of timed automata is shown: the decidability of the

reachability problem. It is then explained which variant of timed automata

and properties the model checker UPPAAL can decide.

Chapter 5 introduces PLC-Automata as a class of implementable real-time

automata. First, these automata are motivated using an example of a real-

time filter. Then it is described how PLC-Automata can be compiled into

code that is executable on Programmable Logic Controllers (PLCs). To link

the PLC-Automata with the Duration Calculus, their semantics are defined

in terms of this logic. As a consequence, a general result estimating the

reaction times of PLC-Automata to input stimuli can be proved. Also, an

x Preface

algorithm is discussed that synthesises a PLC-Automaton from a given set

of DC implementables provided this set is consistent. Finally, hierarchical

PLC-Automata are defined.

Chapter 6 ties together the results of Chapters 4 and 5 for the purposes of

automatic verification. It turns out that certain real-time properties of PLC-

Automata can be proven automatically using the model checker UPPAAL

for timed automata. To this end, an alternative and equivalent semantics

of PLC-Automata in terms of timed automata is defined. Then it is shown

that real-time requirements expressed in a subset of Constraint Diagrams

can be verified against PLC-Automata by checking the reachability of certain

states with UPPAAL. This is all supported by the tool Moby/RT, which

is described briefly as well. Also, Moby/RT enables the user to compile

PLC-Automata into PLC code or C code.

1 Introduction

2 Duration Calculus

3 Properties and subsets

4 Timed automata

5 PLC-Automata

6 Automatic verification

Fig. 0.2. Dependency of chapters

Actually, only Section 5.5 (Synthesis) of Chapter 5 depends on Section 3.2

(DC implementables) of Chapter 3. The remainder of Chapter 5 can thus

also be read immediately after Chapter 2.

Intended audience

This textbook is appropriate for either a course on formal methods for real-

time systems in the upper division of undergraduate studies or for graduate

Preface xi

studies in computer science and engineering. It can also be used for self

study, and will be of interest for engineers of embedded real-time systems.

Readers are expected to have a basic understanding of mathematical and

logical notations.

Courses based on this book

Our own course on real-time systems at the University of Oldenburg is for

M.Sc. and advanced B.Sc. students in computer science with an interest in

embedded systems; it proceeds as follows:

Course at Oldenburg

Introduction 1

Duration Calculus 2

Properties and subsets 3.1–3.2

Timed automata 4

PLC-Automata 5.1–5.5

Automatic verification 6 (only short indication)

The course takes one semester with three hours of lectures and one hour of

exercises per week.

At Oldenburg an in-depth study of Chapter 6 (Automatic verification)

with the use of the tools UPPAAL and Moby/RT is delegated to practical

work of the students in separate labs on real-time systems. There LEGO

Mindstorm robots are used for implementing the systems. Once desirable

real-time properties have been verified, the compiler from PLC-Automata

to C is applied to generate code for the LEGO Mindstorms.

An alternative usage of the material of this book could be in (part of) a

course on timed automata as follows:

Course based on timed automata

Introduction 1

Timed automata 4

PLC-Automata 5.1–5.3 and 5.6

Automatic verification 6

Further information and additional material can be found on the webpage

http://csd.informatik.uni-oldenburg.de/rt-book.

Acknowledgements

Our first inspiring contacts with real-time systems were in the context of

the basic research project ProCoS (Provably Correct Systems) funded by

the European Commission from 1989 to 1995. This project was planned

by Dines Bjørner (Technical University of Denmark), Tony Hoare (Oxford

University), and Hans Langmaack (University of Kiel). Its goal was to

develop a mathematical basis for the development of embedded, real-time,

computer systems.

Returning from a sabbatical at the University of Austin at Texas, Tony

Hoare was impressed by the work of Robert S. Boyer and J Strother Moore

on mechanical verification exemplified in a case study known as the “CLInc

Stack”. Talking to Dines Bjørner and Hans Langmaack, a project on the

foundation of verification of many-layered systems was conceived: ProCoS.

The different levels of abstraction studied in this project became known

as the “ProCoS Tower”. They comprise (informal) expectations, (formal)

requirements, (formal) system specifications, programs (occam), machine

code (for transputers), and circuit diagrams (netlists). During the project

the case study of a gas burner was defined in collaboration with a Danish

gas burner manufacturer.

At the project start in 1989 the first author of this book moved from Kiel

to Oldenburg to take up a professorship in computing science at the Univer-

sity of Oldenburg and became one of the site leaders of ProCoS. He is very

grateful for six rewarding years of research contacts with the members of the

ProCoS project group, in particular Hans Langmaack, Tony Hoare, Dines

Bjørner, Zhou Chaochen, He Jifeng, Jonathan Bowen, Michael R. Hansen,

Anders P. Ravn, Hans Rischel, Kirsten M. Hansen, Martin Fränzle, Markus

Müller-Olm, Stephan Rössig, and Michael Schenke. Two highlights evolved

during the ProCoS project: the case study of the gas burner and the Dura-

tion Calculus, both featuring prominently in this book.

xii

Acknowledgements xiii

In the first years of ProCoS the second author of this book was a student

of computing science and mathematics at Oldenburg. His first contact with

the real-time systems of ProCoS was during his master thesis on “The pro-

duction cell as a verified real-time system” – formalised using the Duration

Calculus.

The next decisive step was the collaborative project UniForM (Universal

Workbench for Formal Methods) together with Bernd Krieg-Brückner and

Jan Peleska (University of Bremen) as well as Alexander Baer and Wolf-

gang Nowak (company Elpro AG in Berlin). One of the challenges of this

project was to develop a formal method to support the real-time program-

ming of tram control systems targeted at Programmable Logic Controllers.

Motivated by this challenge the second author developed the concept of a

PLC-Automaton, which serves for design specifications in this book.

Inspired by ProCoS and UniForM the research on specification and verifi-

cation of real-time systems gained momentum at our group on “Correct Sys-

tem Design” at Oldenburg. In particular, we wish to thank Cheryl Kleuker,

who contributed Constraint Diagrams, Jochen Hoenicke, who can spot even

subtle errors in a minute, and Andreas Schäfer, who saw how to extend the

Duration Calculus to cope with space and time. Under the guidance of Josef

Tapken the tool Moby/RT was developed to provide support for the theory

presented in this book. We are particularly grateful to the following peo-

ple who helped create this tool: Hans Fleischhack, Marc Lettrari, Michael

Möller, Marco Oetken, Josef Tapken, and Tobe Toben.

The second author spent an extended research visit at the Aalborg Uni-

versity to work with the UPPAAL group on automatic verification and

planning of timed automata. He would like to thank Kim Larsen, Gerd

Behrmann, Alexandre David, Anders P. Ravn, Wang Yi, and Paul Petter-

son for inspiring cooperation.

Both authors are pleased to acknowledge the research momentum gained

by the Collaborative Research Center AVACS (Automatic Verification and

Analysis of Complex Systems) which has been funded by the German Re-

search Council (DFG) since 2004. AVACS groups at the universities of

Oldenburg, Freiburg and Saarbrücken, as well as the Max-Planck Institute

for Informatics in Saarbrücken, address automatic verification and analysis

of real-time systems, hybrid systems, and systems of systems. In the re-

search area of real-time systems we would like to thank our close colleagues

Werner Damm, Bernd Becker, Reinhard Wilhelm, Johannes Faber, Roland

Meyer, Ingo Brückner, Heike Wehrheim, Bernd Finkbeiner, Andreas Podel-

ski, Andrey Rybalchenko, Viorica Sofroni-Stokkermans, Bernhard Nebel,

Jörg Hoffmann, and Sebastian Kupferschmid. We also thank Willem-Paul

xiv Acknowledgements

de Roever for his support of this large-scale project and for many refreshing

remarks and suggestions over the years.

Everyone who has written a book knows how difficult it is to find the time

to work intensively on the manuscript. Very helpful in this respect was a

sabbatical of the first author in the winter semester 2004/05 at ETH Zürich.

Many thanks to my perfect hosts David Basin and Barbara Geiser. The first

author would also like to thank Krzysztof R. Apt, with whom he wrote his

first book, for setting a lucid example of how a book should look and for

many pieces of invaluable advice during the past years.

We are very grateful to Michael Möller for creating a draft on which the

cover design of this book is based. Last but not least we wish to thank David

Tranah and his team from Cambridge University Press who have been very

supportive throughout this book project.

List of symbols

[ν] (region) 159
[ϕ] (region) 159
−→ (followed-by) 98
−→0 (followed-by-initially) 99

θ−−−−→ (leads-to) 99
α−→ (discrete transition) 140, 142

t−→ (delay transition) 139, 142

≤θ−−−−→ (up-to) 100

≤θ−−−−→ 0 (up-to-initially) 101
� (provability) 54
; (chop) 39
◦ (relational composition) 140
∼= (region equivalence) 157
def

= (equality by definition) 37
def⇐⇒ (equivalence by definition) 9

� (everywhere) 44
�F (somewhere) 43
�P 	 (almost everywhere) 43

�P 	t
(variant with duration) 43

�P 	≤t
(variant with bound) 43

�	 43
I[[P]] 34
|= (models) 45
|=0 (models from 0) 46
|=1 241

 (isomorphism) 147
A (approaching) 9
Act (set of actions) 136
B?! (action set) 136
Chan (set of channels) 136
Cl (closed) 9
Cr (cross) 9

DNF (P) 86
Des-1 (requirement) 15
Des-2 (requirement) 15
E (empty) 9
FA (finite alternation) 65
GVar (set of global variables) 31
Intv (set of closed intervals) 36
Lab (set of labels) 136
N (natural numbers) 294
O (open) 9
Obs (set of observables) 31
Pred(π, t) 218
Pref (prefix operator) 114
Q (rational numbers) 294
R (real numbers) 294
R(X, V) (reset operations) 167
Req (requirement) 14
Time (time domain) 4
Track 9
Val (set of valuations) 32
X (set of clocks) 136
Z (integer) 294
a! (output action) 136
a? (input action) 136
appr 9
bounds(π) 215
chan (underlying channel) 136
chan b • A (restriction) 146
cross 9
delay[ν] (delay operation) 163
empty 9
first(π) 220
free (set of free global variables) 40
g (gate) 9
kern(L) (kernel) 88
〈�, ν〉 140

xv

xvi List of symbols

�� (control vector) 148, 173
〈�, ν〉, t (time-stamped config.) 142
max (maximum) 298
min (minimum) 298
obs (observable) 4
〈 r1, . . . , rn 〉 (reset operations) 167
�r (reset operations) 167
Φ(V) (integer constraint) 166
Φ(X) (clock constraint) 136
Φ(X, V) (guards) 167
Ψ(V) (integer expression) 166
α (complementary action) 136
λ (label) 136
ν (clock valuation) 138
ν + t (time shift) 139
ν[Y := t] (modification) 139
τ (internal action) 136
θ (DC term) 36
ξ (computation path) 142
C(A1, . . . ,An) (network) 173
D (data type) 4
I (interpretation) 32
N (network to timed automata) 148
P (power set) 295
R (structure of real numbers) 61
R(A) (region automaton) 160
X (formula variable) 72

1

Introduction

1.1 What is a real-time system?

This book is about the design of certain kinds of reactive systems. A re-

active system interacts with its environment by reacting to inputs from the

environment with certain outputs. Usually, a reactive system is not sup-

posed to stop but should be continuously ready for such interactions. In the

real world there are plenty of reactive systems around. A vending machine

for drinks should be continuously ready for interacting with its customers.

When a customer inputs suitable coins and selects “coffee” the vending ma-

chine should output a cup of hot coffee. A traffic light should continuously

be ready to react when a pedestrian pushes the button indicating the wish

to cross the street. A cash machine of a bank should continuously be ready

to react to customers’ desire for extracting money from their bank account.

Reactive systems are seen in contrast to transformational systems, which

are supposed to compute a single input–output transformation that satisfies

a certain relation and then terminate. For example, such a system could

input two matrices and compute its product.

We wish to design reactive systems that interact in a well-defined relation

to the real, physical time. A real-time system is a reactive system which, for

certain inputs, has to compute the corresponding outputs within given time

bounds. An example of a real-time system is an airbag. When a car is forced

into an emergency braking its airbag has to unfold within 300 milliseconds to

protect the passenger’s head. Thus there is a tight upper time bound for the

reaction. However, there is also a lower time bound of 100 milliseconds. If

the airbag unfolds too early, it will deflate and thus lose its protective impact

before the passenger’s head sinks into it. This shows that both lower and

upper time bounds are important. The outputs of a real-time system may

depend on the behaviour of its inputs over time. For instance, a watchdog

1

2 Introduction

has to raise an alarm (output) if an input signal is absent for a period of

t seconds.

Real-time constraints often arise indirectly out of safety requirements. For

example, a gas burner should avoid a critical concentration of unburned gas

in the air because this could lead to an explosion. This is an untimed safety

requirement. To achieve it, a controller for a gas burner could react to a

flame failure by shutting down the gas valve for a sufficiently large period of

time so that the gas can evaporate during that period. This way the safety

requirement is reduced to a real-time constraint.

The gas burner is an example of a safety critical system: a malfunction of

such a system can cause loss of goods, money, or even life. Other examples

are the airbag in a car, traffic controllers, auto pilots, and patient monitors.

Real-time constraints are sometimes classified into hard and soft . Hard

constraints must be fulfilled without exception, whereas soft ones should not

be violated. For example, a car control system should meet the real-time

requirements for the air condition, but must meet the real-time constraints

for the airbag.

In constructing a real-time system the aim is to control a physically exist-

ing environment, the plant, in such a way that the controlled plant satisfies

all desired timing requirements: see Figure 1.1.

plant controller

sensors

actuators

Fig. 1.1. Real-time system

The controller is a digital computer that interacts with the plant through

sensors and actuators. By reading the sensor values the controller inputs

information about the current state of the plant. Based on this input the

controller can manipulate the state of the plant via the actuators. A precise

model of controller, sensors, and actuators has to take reaction times of

these components into account because they cannot work arbitrarily fast.

In many cases the plant is distributed over different physical locations.

Also the controller might be implemented on more than one machine. Then

one talks of distributed systems. For instance, a railway station consists of

many points and signals in the field together with several track sensors and

actuators. Often the controller is hidden to human beings. Such real-time

1.1 What is a real-time system? 3

systems are called embedded systems. Examples of embedded systems range

from controllers in washing machines to airbags in cars.

When we model the plant in Figure 1.1 in more detail we arrive at hy-

brid systems. These are defined as reactive systems consisting of continuous

and discrete components. The continuous components are time-dependent

physical variables of the plant ranging over a continuous value set, like tem-

perature, pressure, position, or speed. The discrete component is the digital

controller that should influence the physical variables in a desired way. For

example, a heating system should keep the room temperature within cer-

tain bounds. Real-time systems are systems with at least one continuous

variable, that is time. Often real-time systems are obtained as abstractions

from the more detailed hybrid systems. For example, the exact position

of a train relative to a railroad crossing may be abstracted into the values

far away, near by, and crossing.

Figure 1.2 summarises the main classes of systems discussed above and

shows their containment relations: hybrid systems are a special class of

real-time systems, which in turn are a special class of reactive systems.

reactive systems interact with their environment

real-time systems have to compute outputs
within certain time intervals

hybrid systems work with both
discrete and continuous compo-
nents

Fig. 1.2. Classes of systems

Since real-time systems often appear in safety-critical applications, their

design requires a high degree of precision. Here, formal methods based on

mathematical models of the system under design are helpful. They allow

the designer to specify the system at different levels of abstraction and to

formally verify the consistency of these specifications before implementing

4 Introduction

them. In recent years significant advances have been made in the maturity

of formal methods that can be applied to real-time systems.

When considering formal methods for specifying and verifying systems

we have the reverse set of inclusions of Figure 1.2, as shown in Figure 1.3:

formal methods for hybrid systems can also be used to analyse real-time sys-

tems, and formal methods for real-time systems can also be used to analyse

reactive systems.

methods for hybrid systems

methods for real-time systems

methods for reactive systems

Fig. 1.3. Formal methods for systems classes

1.2 System properties

To describe real-time systems formally, we start by representing them by

a collection of time-dependent state variables or observables obs, which are

functions

obs : Time −→ D

where Time denotes the time domain and D is the data type of obs. Such

observables describe an infinite system behaviour, where the current data

values are recorded at each moment of time.

For example, a gas valve might be described using a Boolean, i.e. {0,1}-
valued observable

G : Time −→ {0, 1}

indicating whether gas is present or not, a railway track by an observable

Track : Time −→ {empty, appr, cross}

where appr means a train is approaching and cross means that it is crossing

the gate, and the current communication trace of a reactive system by an

observable

trace : Time −→ Comm∗

1.2 System properties 5

where Comm∗ denotes the set of all finite sequences over a set Comm of

possible communications. Thus depending on the choice of observables we

can describe a real-time system at various levels of detail.

There are two main choices for time domain Time:

• discrete time: Time = N, the set of natural numbers, and

• continuous time: Time = R≥0, the set of non-negative real numbers.

A discrete-time model is appropriate for specifications which are close to

the level of implementation, where the time rate is already fixed. For higher

levels of specifications continuous time is well suited since the plant models

usually use continuous-state variables. Moreover, continuous-time models

avoid a too-early introduction of hardware considerations. Throughout this

book we shall use the continuous-time model and consider discrete time as

a special case.

To describe desirable properties of a real-time system, we constrain the

values of their observables over time, using formulas of a suitable logic. In

this introduction we simply take predicate logic involving the usual logical

connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), =⇒ (implica-

tion), and ⇐⇒ (equivalence) as well as the quantifiers ∀ (for all) and ∃
(there exists). When expressing properties of real-time systems quantifica-

tion will typically range over time points, i.e. elements of the time domain

Time. Later in this book we introduce dedicated notations for specifying

real-time systems.

In the following we discuss some typical types of properties. For reactive

systems properties are often classified into safety and liveness properties.

For real-time systems these concepts can be refined.

Safety properties. Following L. Lamport, a safety property states that

something bad must never happen. The “bad thing” represents a

critical system state that should never occur, for instance a train

being inside a crossing with the gates open. Taking a Boolean ob-

servable C : Time −→ {0, 1}, where C(t) = 1 expresses that at

time t the system is in the critical state, this safety property can be

expressed by the formula

∀t ∈ Time • ¬C(t). (1.1)

Here C(t) abbreviates C(t) = 1 and thus ¬C(t) denotes that at time

t the system is not in the critical state. Thus for all time points it

is not the case that the system is in the critical state.

In general, a safety property is characterised as a property that

6 Introduction

can be falsified in bounded time. In case of (1.1) exhibiting a single

time point t0 with C(t0) suffices to show that (1.1) does not hold.

In the example, a crossing with permanently closed gates is safe,

but it is unacceptable for the waiting cars and pedestrians. Therefore

we need other types of properties.

Liveness properties. Safety properties state what may or may not occur,

but do not require that anything ever does happen. Liveness prop-

erties state what must occur. The simplest form of a liveness prop-

erty guarantees that something good eventually does happen. The

“good thing” represents a desirable system state, for instance the

gates being open for the road traffic. Taking a Boolean observable

G : Time −→ {0, 1}, where G(t) = 1 expresses that at time t the

system is in the good state, this liveness property can be expressed

by the formula

∃t ∈ Time • G(t). (1.2)

In other words, there exists a time point in which the system is in the

good state. Note that this property cannot be falsified in bounded

time. If for any time point t0 only ¬G(t) has been observed for

t ≤ t0, we cannot complain that (1.2) is violated because eventually

does not say how long it will take for the good state to occur.

Such liveness property is not strong enough in the context of real-

time systems. Here one would like to see a time bound when the

good state occurs. This brings us to the next kind of property.

Bounded response properties. A bounded response property states that

a desired system reaction to an input occurs within a time interval

[b, e] with lower bound b ∈ Time and upper bound e ∈ Time where

b ≤ e. For example, whenever a pedestrian at a traffic light pushes

the button to cross the road, the light for pedestrians should turn

green within a time interval of, say, [10, 15]. The need for an upper

bound is clear: the pedestrian wants to cross the road within a short

time (and not eventually). However, also a lower bound is needed

because the traffic light must not change from green to red instan-

taneously, but only after a yellow phase of, say, 10 seconds to allow

cars to slow down gently.

With P (t) representing the pushing of the button at time t and

G(t) representing a green traffic light for the pedestrians at time t,

we can express the desired property by the formula

∀t1 ∈ Time • (P (t1) =⇒ ∃t2 ∈ [t1 + 10, t1 + 15] •G(t2)). (1.3)

1.3 Generalised railroad crossing 7

Note that this property can be falsified in bounded time. When

for some time point t1 with P (t1) we find out that during the time

interval [t1 +10, t1 +15] no green light for the pedestrians appeared,

property (1.3) is violated.

Duration properties. A duration property is more subtle. It requires that

for observation intervals [b, e] satisfying a certain condition A(b, e)

the accumulated time in which the system is in a certain critical

state has an upper bound u(b, e). For example, the leak state of a

gas burner, where gas escapes without a flame burning, should occur

at most 5% of the time of a whole day.

To measure the accumulated time t of a critical state C(t) in a

given interval [b, e] we use the integral notion of mathematical cal-

culus: ∫ e

b
C(t)dt.

Then the duration property can be expressed by a formula

∀b, e ∈ Time •
(
A(b, e) =⇒

∫ e

b
C(t)dt ≤ u(b, e)

)
. (1.4)

Again this property can be falsified in finite time. If we can point

out an interval [b, e] satisfying the condition A(b, e) where the value

of the integral is too high, property (1.4) is violated.

1.3 Generalised railroad crossing

This case study is due to C. Heitmeyer and N. Lynch [HL94]. It concerns a

railroad crossing with a physical layout as shown in Figure 1.4, for the case of

two tracks. In the safety-critical area “Cross” the road and the tracks inter-

sect. The gates (indicated by “Gate”) can move from fully “closed” (where

the angle is 0◦) to fully “open” (where the angle is 90◦). Moving the gates

up and down takes time. Sensors at the tracks will detect whether a train

is approaching the crossing, i.e. entering the area marked by “Approach”.

1.3.1 The problem

Given are two time parameters ξ1, ξ2 > 0 describing the reaction times

needed to open and close the gates, respectively. In the following problem

description time intervals are used that collect all time points in which at

least one train is in the area “Cross”. These are called occupancy intervals

and denoted by [τi, νi] where the subscripts i ∈ N enumerate their successive

8 Introduction

Cross
Approach

Approach
� �

� �

Gate

Gate

Fig. 1.4. Generalised railroad crossing

occurrences. As usual, a closed interval [τi, νi] is the set of all time points t

with τi ≤ t ≤ νi. Moreover, for a time point t let g(t) denote the angle of

the gates, ranging from 0 (closed) to 90 (open).

The task is to construct a controller that operates the gates of the railroad

crossing such that the following two properties hold for all time points t:

• Safety: t ∈
⋃

i∈N [τi, νi] =⇒ g(t) = 0, i.e. the gates are closed inside all

occupancy intervals.

• Utility: t /∈
⋃

i∈N [τi−ξ1, νi+ξ2] =⇒ g(t) = 90, i.e. outside the occupancy

intervals extended by the reaction times ξ1 and ξ2 the gates are open.

This problem statement is taken from the article of Heitmeyer and Lynch

[HL94]. Note that the safety and utility properties are consistent, i.e. the

gate is never required to be simultaneously open and closed. To see this,

take a time point t satisfying the precondition (the left-hand side of the

implication) of the utility property. Then in particular,

t /∈
⋃
i∈N

[τi, νi],

which implies that t does not satisfy the precondition of the safety property.

Thus never both g(t) = 0 and g(t) = 90 are required.

Note, however, that depending on the choice of the time parameters ξ1, ξ2
and the timing of the trains it may well be that in between two successive

trains there is not enough time to open the gate, i.e. two successive time

intervals

[τi − ξ1, νi + ξ2] and [τi+1 − ξ1, νi+1 + ξ2]

may overlap (see also Figure 1.5).

1.3 Generalised railroad crossing 9

In the following we formalise and analyse this case study in terms of

predicate logic over suitable observables.

1.3.2 Formalisation

The railroad crossing can be described by two observables:

Track : Time −→ {empty, appr, cross} (state of the track)

g : Time −→ [0, 90] (angle of the gate).

Note that via the three values of the observable Track we have abstracted

from further details of the plant like the exact position of the train on the

track. The value empty expresses that no train is in the areas “Approach”

or “Cross”, the value appr expresses that a train is in the area “Approach”

and none is in “Cross”, and the value cross expresses that a train is in the

area “Cross”. The observable g ranges over all values of the gate angle in

the interval [0, 90]. We will use the following abbreviations:

E(t) stands for Track(t) = empty

A(t) stands for Track(t) = appr

Cr(t) stands for Track(t) = cross

O(t) stands for g(t) = 90

Cl(t) stands for g(t) = 0.

Requirements. With these observables and abbreviations we can specify

the requirements of the generalised railroad crossing in predicate logic. The

safety requirement is easy to specify:

Safety
def⇐⇒ ∀t ∈ Time • Cr(t) =⇒ Cl(t) (1.5)

where
def⇐⇒ means equivalence by definition. Thus whenever a train is in the

crossing the gates are closed. Note that this formula is logically equivalent

to the property Safety above because by the definition of Cr(t) we have

∀t ∈ Time • Cr(t) ⇐⇒ t ∈
⋃
i∈N

[τi, νi],

i.e. Cr(t) holds if and only if t is in one of the occupancy intervals.

Without the reaction times ξ1 and ξ2 of the gate the utility requirement

could simply be specified as

∀t ∈ Time • ¬Cr(t) =⇒ O(t).

10 Introduction

However, the property Utility refers to (the complements of) the intervals

[τi − ξ1, νi + ξ2], which are not directly expressible by a certain value of the

observable Track. In Figure 1.5 the occupancy intervals [τi, νi] and their

extensions to [τi − ξ1, νi + ξ2] are shown for i = 0, 1, 2. Only outside of the

latter intervals, in the areas exhibited by the thick line segments, are the

gates required to be open.

0

ξ1

τ0 ν0

ξ2 ξ1

τ1 ν1

ξ2 ξ1

τ2 ν2

ξ2

Fig. 1.5. Utility requirement

We specify this as follows. Consider a time point t. If in a suitable time

interval containing t there is no train in the crossing then O(t) should hold.

Calculations show that this interval is given by [t− ξ2, t+ ξ1]. Thus ¬Cr(t̃)
should hold for all time points t̃ with t− ξ2 ≤ t̃ ≤ t+ ξ1. This is expressed

by the following formula:

Utility
def⇐⇒ ∀t ∈ Time • (1.6)

(∀t̃ ∈ Time • t− ξ2 ≤ t̃ ≤ t+ ξ1 =⇒ ¬Cr(t̃))
=⇒ O(t).

Note the subtlety that t − ξ2 may be negative whereas t̃ ∈ Time is by defi-

nition non-negative. It can be shown that this formula Utility is equivalent

to the property Utility above (see Exercise 1.2).

For the generalised railroad crossing all functions Track and g are admissi-

ble that satisfy the two requirements above. These functions can be seen as

interpretations of the observables Track and g. They are presented as timing

diagrams. Figure 1.6 shows an admissible interpretation of Track and g.

Assumptions. In this case study Track is an input observable which can

be read but not influenced by the controller. By contrast, g is an output

observable since it can be influenced by the controller via actuators. The

correct behaviour of the controller often depends on some assumptions about

the input observables. Here we make the following assumptions about Track:

• Initially the track is empty: Init
def⇐⇒ E(0).

1.3 Generalised railroad crossing 11

cross

appr

empty

Track

Time

90

0

g

Time
≤ ξ1 ≤ ξ2 ≤ ξ1

Fig. 1.6. An admissible interpretation of the observables Track and g

• Trains cannot enter the crossing without approaching it:

E-to-Cr
def⇐⇒ ∀b, e ∈ Time • (b ≤ e ∧ E(b) ∧ Cr(e))

=⇒ ∃t ∈ Time • b < t < e ∧A(t).

• Approaching trains eventually cross:

A-to-E
def⇐⇒ ∀b, e ∈ Time • (b ≤ e ∧A(b) ∧ E(e))

=⇒ ∃t ∈ Time • b < t < e ∧ Cr(t).

Some assumptions about the speed of the approaching trains are also needed.

If a train could approach the crossing arbitrarily fast, a typical reaction time

of half a minute for the gates to close would not suffice. We assume that the

fastest train will take a time of ρ to reach the crossing after being detected

in the approaching area. Here ρ > 0 is another time parameter. On the

other hand, trains which are arbitrarily slow in the approaching area are

12 Introduction

not acceptable in the presence of the utility requirement. Therefore we

assume that trains need not more than ρ′ to pass through the approaching

area.

• Fastest train:

T-Fast
def⇐⇒ ∀c, d ∈ Time • (c < d ∧ E(c) ∧ Cr(d)) =⇒ d− c ≥ ρ.

• Slowest train:

T-Slow
def⇐⇒ ∀c ∈ Time • A(c) =⇒ (∃d ∈ Time• c < d < c+ρ′∧¬A(d)).

1.3.3 Design

For the design of the controller we stipulate that the gate is closed at most

ξ1 seconds after detection of an approaching train:

Des-G
def⇐⇒ ∀c, d ∈ Time • d− c ≥ ξ1∧

(∀t ∈ Time • c < t < d =⇒ ¬E(t)) =⇒ Cl(d).

Under the assumptions

Asm
def⇐⇒ Init ∧ T-Fast ∧ ρ ≥ ξ1

we can then prove that the following implication holds:

(Asm ∧ Des-G) =⇒ Safety.

Thus for all interpretations of Track and g satisfying Asm and Des-G, the

safety requirement Safety holds.

Proof:

See Exercise 1.3. �

1.4 Gas burner

This case study was introduced in [RRH93, HHF+94] during the EU project

ProCoS (Provably Correct Systems, 1989–95, [BHL+96]). The physical com-

ponents of the plant are shown in Figure 1.7.

1.4.1 The problem

The desired functionality of the gas burner is as follows:

• If the thermostat signals to switch on the heating the gas valve opens and

the burner tries to ignite it for a short period of time.

1.4 Gas burner 13

gas valve

flame sensor�

thermostat

Fig. 1.7. Gas burner

• If the thermostat signals to switch off the heating the gas valve closes.

Important is the following safety-critical aspect of the gas burner. If gas

effuses without a burning flame in front of the gas valve the concentration

of unburned gas can reach critical limits and thus cause an explosion. This

has to be avoided. To this end, the following real-time constraint on the

system is introduced:

• For each time interval with a duration of at least 60 seconds the (accu-

mulated) duration of gas leaks is at most 5% of the overall duration.

Note that this requirement does not exclude short gas leaks because they

are unavoidable before ignition. If the system satisfies this requirement the

gas burner is safe.

1.4.2 Formalisation

We concentrate on the safety aspect of the gas burner and introduce two

Boolean observables: G describes whether the gas valve is open, and F

whether the flame is burning as detected by the flame sensor.

G : Time −→ {0, 1}
F : Time −→ {0, 1}.

14 Introduction

The safety-critical state L describes when gas leaks, i.e. when G holds but F

does not. It is formalised by the Boolean expression L
def⇐⇒ G∧¬F , which

is time dependent just as G and F are:

L : Time −→ {0, 1}.

Figure 1.8 exhibits an example of interpretations for F and G and the re-

sulting value for L.

Time

G
0

1

F
0

1

L
0

1

≥ 60

Fig. 1.8. Interpretations for F , G, and L

The real-time requirement is that for each time interval of at least 60 sec-

onds duration the shaded periods do not exceed 5%, i.e. one-twentieth of

that duration. To measure in a given interval [b, e] the sum of the durations

of all subintervals in which L(t) = 1 holds, we use the integral notation

∫ e

b
L(t)dt.

Here L is considered as a function from real numbers to real numbers, which

is integrable under suitable assumptions. The requirement can now be for-

malised as follows:

Req
def⇐⇒ ∀b, e ∈ Time •

(
e− b ≥ 60 =⇒

∫ e

b
L(t)dt ≤ e− b

20

)
. (1.7)

Looking at this high-level requirement it is difficult to see how to construct

a controller that guarantees it.

1.5 Aims of this book 15

1.4.3 Design

As a step towards a controller we make the design decision to introduce two

real-time constraints that seem easier to implement and that together imply

the requirement Req.

(i) The controller can stop each leak within a second :

Des-1
def⇐⇒ ∀b, e ∈ Time • (∀t ∈ Time • b ≤ t ≤ e =⇒ L(t))

=⇒ e− b ≤ 1.

This constraint restricts the duration of each leak state to at most one

second.

(ii) After each leak the controller waits for 30 seconds before opening the

gas valve again:

Des-2
def⇐⇒ ∀b, e ∈ Time • (L(b) ∧ L(e)∧

∃t ∈ Time • (b < t < e ∧ ¬L(t)))

=⇒ e− b ≥ 30.

This constraint requests a distance of at least 30 seconds between any

two subsequent leak states. This is illustrated in Figure 1.9.

b

L ¬L

e

L

≥ 30

Fig. 1.9. Real-time constraint Des-2

From these design constraints it is possible to prove the desired requirement

because the following implication holds:

(Des-1 ∧ Des-2) =⇒ Req,

i.e. for all interpretations of G and F satisfying Des-1 and Des-2, the safety

requirement Req holds.

1.5 Aims of this book

Using predicate logic as a specification language for real-time systems has

several disadvantages. First, as we have seen in the examples above, we

16 Introduction

have to spell out explicitly all quantifications over time. Second, there is no

support for an automatic verification of properties that one might want to

prove about such specifications. Third, there is no obvious way to implement

a real-time system once it is specified in predicate logic.

To overcome these disadvantages we shall consider three dedicated for-

mal specification languages for real-time systems: Duration Calculus, timed

automata, and PLC-Automata.

1.5.1 Duration Calculus

The Duration Calculus (abbreviated DC) was introduced by Zhou Chaochen

in collaboration with M.R. Hansen, C.A.R. Hoare, A.P. Ravn, and H. Rischel.

The DC is a temporal logic and calculus for describing and reasoning about

properties that time-dependent observables satisfy over time intervals. In

particular, safety properties, bounded response, and duration properties

(hence the name of the calculus) can be expressed in DC.

Example 1.1

The safety requirement Req for the gas burner that we formalised in Section

1.4.2 using predicate logic can be expressed in DC more concisely by the

duration formula

�

(
� ≥ 60 =⇒

∫
L ≤ �

20

)
.

It states that for all observation intervals (�) of length at least 60 seconds

(� ≥ 60) the accumulated duration of a gas leak
(∫
L
)

is at most 5%, i.e. one-

twentieth of the length of the interval
(
≤ �

20

)
. Note that in contrast to the

formula in predicate logic this DC formula avoids any explicit quantification

over time points. �

An advantage of DC is that it enables us to express a high-level declarative

view of real-time systems without implementation bias. We shall therefore

use DC as a specification language for system requirements. The price to pay

is that for the continuous-time domain the satisfiability problem of the DC

is in general undecidable. Thus we cannot hope for automatic verification

procedures for the full DC. Also direct tool support for the DC is at present

rather limited.

