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Preface

The theory of figures of equilibrium of rotating, self-gravitating fluids was
developed in the context of questions concerning the shape of the Earth and celestial
bodies. Many famous physicists and mathematicians such as Newton, Maclaurin,
Jacobi, Liouville, Dirichlet, Dedekind, Riemann, Roche, Poincaré, H. Cartan,
Lichtenstein and Chandrasekhar made important contributions. Within Newton’s
theory of gravitation, the shape of the body can be inferred from the requirement
that the force arising from pressure, the gravitational force and the centrifugal
force (in the corotating frame) be in equilibrium. Basic references are the books by
Lichtenstein (1933) and Chandrasekhar (1969).

Our intention with the present book is to treat the general relativistic theory of
equilibrium configurations of rotating fluids. This field of research is also motivated
by astrophysics: neutron stars are so compact that Einstein’s theory of gravitation
must be used for calculating the shapes and other physical properties of these
objects. However, as in the books mentioned above, which inspired this book to a
large extent, we want to present the basic theoretical framework and will not go
into astrophysical detail. We place emphasis on the rigorous treatment of simple
models instead of trying to describe real objects with their many complex facets,
which by necessity would lead to ephemeral and inaccurate models.

The basic equations and properties of equilibrium configurations of rotating fluids
within general relativity are described in Chapter 1. We start with a discussion of the
concept of an isolated body, which allows for the treatment of a single body without
the need for dealing with the ‘rest of the universe’. In fact, the assumption that
the distant external world is isotropic, makes it possible to justify the condition of
‘asymptotic flatness’ in the body’s far field region. Rotation ‘with respect to infinity’
then means nothing more than rotation with respect to the distant environment
(the ‘fixed stars’) – very much in the spirit of Mach’s principle. The main part of
Chapter 1 provides a consistent mathematical formulation of the rotating fluid body
problem within general relativity including its thermodynamic aspects. Conditions

vii



viii Preface

for parametric (quasi-stationary) transitions from rotating fluid bodies to black holes
are also discussed.

Chapter 2 is devoted to the careful analytical treatment of limiting cases: (i)
the Maclaurin spheroids, a well-known sequence of axisymmetric equilibrium
configurations of homogeneous fluids in the Newtonian limit; (ii) the Schwarzschild
spheres, representing non-rotating, relativistic configurations with constant mass-
energy density; and (iii) the relativistic solution for a uniformly rotating disc of dust.
The exact solution to the disc problem is rather involved and a detailed derivation
of it will be provided here, which includes a discussion of aspects that have not been
dealt with elsewhere. The solution is derived by applying the ‘inverse method’– first
used to solve the Korteweg–de Vries equation in the context of soliton theory – to
Einstein’s equations. The mathematical and physical properties of the disc solution
including its black hole limit (extreme Kerr metric) are discussed in some detail.
At the end of Chapter 2, we show that the inverse method also allows one to derive
the general Kerr metric as the unique solution to the Einstein vacuum equations for
well-defined boundary conditions on the horizon of the black hole.

In Chapter 3, we demonstrate how one can solve general fluid body problems
by means of numerical methods. We apply them to give an overview of
relativistic, rotating, equilibrium configurations of constant mass-energy density.
Configurations with other selected equations of state as well as ring-like bodies with
a central black hole are treated summarily. A related website provides the reader
with, amongst other things, a computer code based on a highly accurate spectral
method for calculating various equilibrium figures.

Finally, we discuss some aspects of stability of equilibrium configurations and
their astrophysical relevance.

We hope that our book – with its presentation of analytical and numerical
methods – will be of value to students and researchers in general relativity,
mathematical physics and astrophysics.
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Notation

Units: G = c = 1 (G: Newton’s gravitational constant, c: speed of light)

Complex conjugation: a + ib = a − ib (a, b real)

Greek indices (α, β, . . . ): run from 1 to 3

Latin indices (a, b, . . . ): run from 1 to 4

Minkowski space: ds2 = ηabdxadxb = dx2 + dy2 + dz2 − dt2

(x1 = x, x2 = y, x3 = z, x4 = t)

Metric of a rotating fluid body in equilibrium:

ds2 = e−2U
[
e2k(d�2 + dζ 2) + W 2dϕ2

]
− e2U (dt + a dϕ)2

= e2α(d�2 + dζ 2) + W 2e−2ν(dϕ − ω dt)2 − e2νdt2

Killing vectors: ξ = ∂/∂t and η = ∂/∂ϕ

Four-velocity of the fluid: ui = e−V (ξ i + � ηi), � = constant

Energy-momentum tensor: Tik = (ε + p) uiuk + p gik

Equation of state: ε = ε(p)

ix





1

Rotating fluid bodies in equilibrium: fundamental
notions and equations

1.1 The concept of an isolated body

An important and successful approach to solving problems throughout physics is
to split the world into a system to be considered, its ‘surroundings’ and the ‘rest
of the universe’, where the influence of the latter on the system being considered
is neglected. The applicability of this concept to general relativity is not a trivial
matter, since the spacetime structure at every point depends on the overall energy-
momentum distribution.

Our aim is to find a description of a single fluid body (modelling a celestial body,
e.g. a neutron star) under the influence of its own gravitational field. Fortunately,
one often encounters such a body surrounded by a vacuum, where the closest other
bodies are so far away that an intermediate region with a weak gravitational field
exists. In such a situation (see Fig. 1.1) one can discuss the far field of the body. If the
distant outside world (the ‘rest of the universe’) is isotropic, which it is according
to astronomical observations and the standard cosmological models, then the line
element corresponding to the far field of an arbitrary stationary body can be written
as follows (see Stephani 2004):

ds2 = gabdxadxb = gαβdxαdxβ + 2gα4dxαdt + g44dt2,

with

gαβ = (1 + 2M /r)ηαβ + O(r−2),

gα4 = 2r−3εαβγ xβJ γ + O(r−3), (1.1)

g44 = −(1 − 2M /r) + O(r−2),

1



2 Rotating fluid bodies in equilibrium

Fig. 1.1. The far field of an isolated body (adapted from Stephani 2004).

where r2 = ηαβxαxβ = x2+y2+z2. For r → ∞ the metric acquires the Minkowski
form, i.e. the spacetime is ‘asymptotically flat’. We stress that the condition of
asymptotic flatness as discussed here is a consequence of the assumption of an
isotropic outside world.1

M is the gravitational mass of the body and J α its angular momentum. The
gα4-term represents the famous Lense–Thirring effect of a rotating source on
the gravitational field, also called the ‘gravitomagnetic’ effect – in analogy to the
magnetic field generated by a rotating electric charge distribution in Maxwell’s
electrodynamics.

In the next section, we shall provide arguments suggesting that the metric of
a rotating fluid body in equilibrium is axially symmetric. Therefore, throughout
this book, we shall deal with stationary and axisymmetric spacetimes. Under these
conditions, the exterior (vacuum) Einstein equations can be reduced to the so-called
Ernst equation, which can be attacked by analytic solution methods from soliton
theory. However, the full rotating body problem requires the simultaneous solution
of the inner equations, including the correct matching conditions. Note that the
shape of the body’s surface is not known in advance! The final result must be a
globally regular and asymptotically flat solution to the Einstein equations, which
can only be found by numerical methods in general (see Chapter 3). But, fortunately,
there are a few interesting limiting cases that can be solved completely analytically
(see Chapter 2).

1 For an anisotropic outside world, it would be necessary to add a series with increasing powers of r to (1.1). The
expressions (1.1), without these extra terms, would nevertheless be a good approximation to the body’s far field
as long as r is not too large (‘local inertial system’ on cosmic scales). However, for an isotropic outside world,
the notion of a body’s rotation with respect to the local inertial system coincides with the notion of rotation with
respect to the external environment (the ‘fixed stars’). Later, we shall simply speak of a rotation ‘with respect
to infinity’.



1.3 The metric of an axisymmetric perfect fluid body 3

1.2 Fluid bodies in equilibrium

We want to consider configurations that are strictly stationary, thus implying
thermodynamic equilibrium and the absence of gravitational radiation. This leads
us, more or less stringently, to the conditions of

(i) zero temperature,
(ii) rigid rotation, and

(iii) axial symmetry.

Thermodynamic equilibrium would also permit a non-zero constant temperature.2

However, as discussed for example in Landau and Lifshitz (1980), such
configurations are unrealistic. Normal stars are hot, but not in global thermal
equilibrium: their central temperature is much higher than their surface temperature
and they emit a significant amount of electromagnetic radiation. Fortunately,
neutron stars – the most interesting stars from the general relativistic point of
view – can indeed be considered to be ‘cold matter’objects, since their temperature
is much lower than the Fermi temperature. Hence, our idealized assumption of zero
temperature fits very well for neutron stars.

Provided that some (arbitrarily small) viscosity is present, any deviation from
rigid rotation will vanish in an equilibrium state of a rotating star. For the calculation
of the rigidly rotating equilibrium state itself, we may then adopt the model of a
perfect fluid, since viscosity has no effect in the absence of any shear or expansion.
It will, however, affect stability properties.

Moreover, within general relativity, any deviation of a uniformly rotating
star from axial symmetry will result in gravitational radiation, which is also
incompatible with a strict equilibrium state. For a more in-depth discussion of
points (ii) and (iii), see Lindblom (1992).

Therefore, in the next sections, we shall treat stationary and axisymmetric,
uniformly rotating, cold, perfect fluid bodies.

1.3 The metric of an axisymmetric perfect fluid body
in stationary rotation

In accordance with our assumptions of axisymmetry and stationarity, we shall use
coordinates t (time) and ϕ (azimuthal angle) adapted to the corresponding Killing
vectors:

ξ = ∂

∂t
, η = ∂

∂ϕ
, (1.2)

2 Note that in general relativity, the equilibrium condition of constant temperature T is replaced by the Tolman
condition T (−g′

tt)
1/2 = constant (Tolman 1934), where the prime denotes a corotating frame of reference.
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where ξ is normalized according to

ξ iξi → −1 at spatial infinity (1.3)

and the orbits of the spacelike Killing vector η are closed, with periodicity 2π . The
symmetry axis is characterized by

η = 0 along the symmetry axis. (1.4)

It can be shown that the metric of an axisymmetric perfect fluid body in stationary
rotation is orthogonally transitive, i.e. it admits 2-spaces orthogonal to the Killing
vectors ξ and η (Kundt and Trümper 1966). This allows us to write the metric in
the following form (Lewis 1932, Papapetrou 1966):

ds2 = e−2U
[
e2k(d
2 + dζ 2) + W 2dϕ2

]
− e2U (dt + a dϕ)2, (1.5)

or, equivalently,

ds2 = e2α(d
2 + dζ 2) + W 2e−2ν(dϕ − ω dt)2 − e2νdt2, (1.6)

where the functions U , a, k and W as well as ν, ω and α depend only on the
coordinates 
 and ζ . It can easily be verified that these functions are interrelated
according to

α = k − U , W −1e2ν ± ω =
(

W e−2U ∓ a
)−1

. (1.7)

We also note that U , a (or ν, ω) and W can be related to the scalar products of the
Killing vectors, thus providing a coordinate independent characterization:

ξ iξi = − e2U = −e2ν + ω2W 2e−2ν , (1.8a)

ηiηi = W 2e−2U − a2e2U = W 2e−2ν , (1.8b)

ξ iηi = − ae2U = −ωW 2e−2ν . (1.8c)

We call U the ‘generalized Newtonian potential’ and a the ‘gravitomagnetic
potential’. Without loss of generality, the symmetry axis can be identified with
the ζ -axis, i.e. it is characterized by 
 = 0 and we have

0 ≤ 
 < ∞, −∞ < ζ < ∞. (1.9)

On the axis, the following conditions hold, see Stephani et al. (2003):


 → 0 : a → 0, W → 0, W/(
 ek) → 1. (1.10)



1.4 Einstein’s field equations inside and outside the body 5

At spatial infinity, i.e. for 
2+ζ 2 → ∞, the line element approaches the Minkowski
metric in cylindrical coordinates 
, ζ and ϕ:

ds2 = d
2 + dζ 2 + 
2dϕ2 − dt2, (1.11)

which means that

U → 0, a → 0, k → 0, W → 
 as 
2 + ζ 2 → ∞ (1.12)

as well as

ν → 0, ω → 0, α → 0 as 
2 + ζ 2 → ∞. (1.13)

Sometimes we shall use a ‘corotating coordinate system’ characterized by


′ = 
, ζ ′ = ζ , ϕ′ = ϕ − �t, t′ = t, (1.14)

where � is the constant angular velocity of the fluid body with respect to infinity.
It can easily be verified that the line element retains its form (1.5) or (1.6) with

e2U ′ = e2U [(1 + �a)2 − �2W 2e−4U ], (1.15a)

(1 − �a′)e2U ′ = (1 + �a)e2U , (1.15b)

k ′ − U ′ = k − U , W ′ = W (1.15c)

and

ν′ = ν, ω′ = ω − �, α′ = α. (1.16)

Note that

∂

∂t′
= ξ + �η,

∂

∂ϕ′ = η. (1.17)

We shall call the primed quantities U ′, a′, etc. ‘corotating potentials’.

1.4 Einstein’s field equations inside and outside the body

The stationary and rigid rotation of the fluid is characterized by the 4-velocity field

ui = e−V (ξ i + � ηi), � = constant, (1.18)

where � = dϕ/dt = uϕ/ut is the constant angular velocity with respect to infinity.
Using uiui = −1, the factor e−V = ut is given by

(ξ i + � ηi)(ξi + � ηi) = −e2V . (1.19)
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Note that V is equal to the corotating potential U ′,

V ≡ U ′, (1.20)

as defined in (1.15a). The energy-momentum tensor of a perfect fluid is

Tik = (ε + p) uiuk + p gik , (1.21)

where the mass-energy density ε and the pressure p, according to our assumptions
as discussed in Section 1.2, are related by a ‘cold’ equation of state ε = ε( p)

following from

ε = ε(µB), p = p(µB) (1.22)

at zero temperature, with the baryonic mass-density µB. Examples will be given in
Section 1.5.

The specific enthalpy3

h = ε + p

µB
(1.23)

can be calculated from ε( p) via the thermodynamic relation

dh = 1

µB
dp (zero temperature) (1.24)

leading to

dh

h
= dp

ε + p
⇒ h( p) = h(0) exp


 p∫

0

dp′

ε( p′) + p′


 . (1.25)

Note that h(0) = 1 for ordinary baryonic matter.4 From T ik
;k = 0 (a semicolon

denotes the covariant derivative), we obtain, as a first integral of the equations
inside the body,

h( p) eV = h(0) eV0 = constant. (1.26)

This means that surfaces of constant p coincide with surfaces of constant V . The
boundary of the fluid body is defined by p = 0, hence

V = V0 along the boundary of the fluid. (1.27)

3 Note that ε = µB + uint , where uint denotes the internal energy-density. Hence h = 1 + hN with hN being the
specific enthalpy as it is usually defined in the non-relativistic (Newtonian) theory.

4 An exception is strange quark matter as described by the MIT bag model, see Section 1.5.
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The constant V0 is related to the relative redshift z of zero angular momentum
photons5 emitted from the surface of the fluid and received at infinity via

z = e−V0 − 1. (1.28)

Equilibrium models, for a given equation of state, are fixed by two parameters, for
example � and V0.

The full set of equations that follows from Einstein’s field equations Rik−1
2Rgik =

8πTik for the metric in the form (1.6), with (1.18) and (1.21), can be written in the
following way, see e.g. Bardeen and Wagoner (1971):

∇ · (B∇ν) − 1

2

2B3e−4ν(∇ω)2 = 4πe2αB

[
(ε + p)

1 + v2

1 − v2
+ 2p

]
, (1.29a)

∇ · (
2B3e−4ν∇ω) = −16π
B2e2α−2ν (ε + p)
v

1 − v2
, (1.29b)

∇ · (
∇B) = 16π
Be2αp (1.29c)

with

B := W/
 and v := 
Be−2ν(� − ω), (1.29d)

together with two equations, which provide the possibility of determining α via a
line integral if the other three functions ν, ω and B are considered as given,


−1(α + ν),
 + B−1[B,
(α + ν),
 − B,ζ (α + ν),ζ ] − 1

2

−2B−1(
2B,
),


+ 1

2
B−1B,ζ ζ − (ν,
)

2 + (ν,ζ )
2 + 1

4

2B2e−4ν[(ω,
)

2 − (ω,ζ )
2] = 0, (1.30a)


−1(α + ν),ζ + B−1[B,
(α + ν),ζ + B,ζ (α + ν),
] − 1

2

−2B−1(
2B,ζ ),


− 1

2
B−1B,
ζ − 2ν,
 ν,ζ + 1

2

2B2e−4νω,
 ω,ζ = 0, (1.30b)

and (1.26), which allows us to express p and ε, via (1.25) and the equation of state,
in terms of

eV ≡ eU ′ = eν
√

1 − v2. (1.31)

5 Zero angular momentum means ηip
i = 0 ( pi : 4-momentum of the photon), i.e. the (conserved) component of

the orbital angular momentum with respect to the symmetry axis vanishes. In particular, this is satisfied for all
photons emitted from the poles of a body of spheroidal topology, since η vanishes on the axis of symmetry. For
other points on the surface, the condition ηip

i = 0 places a restriction on the directions of emission.
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In (1.29), the operator ∇ has the same meaning as in a Euclidean 3-space in which

, ζ and ϕ are cylindrical coordinates. Note that v as defined in (1.29d) is the linear
velocity of rotation with respect to ‘locally non-rotating observers’.6 Its invariant
definition is given by

v√
1 − v2

= ηiui√
ηkη

k
. (1.32)

In (1.30), we have made use of the comma notation for partial derivatives, e.g.
∂ν/∂
 = ν,
. Note that instead of (1.30), the second order equation for α

α,

 + α,ζ ζ − 1



ν,
 + ∇ν

(
∇ν − B−1∇B

)
− 1

4

2B2e−4ν(∇ω)2

= −4πe2α(ε + p),

(1.33)

which follows from (1.29), (1.30) and (1.26), see Trümper (1967), can be used.
For the metric in the form (1.5), the equations take a simpler form if one uses

the corotating potentials U ′, a′, k ′ and W ′. With W ′ = W , see (1.15c), they read

∇2U ′ − 1



U ′

,
 + ∇U ′ · ∇W

W
+ e4U ′

(∇a′)2

2W 2
= 4π(ε + 3p)e2k ′−2U ′

, (1.34a)

(W −1e4U ′
a′

,
),
 + (W −1e4U ′
a′

,ζ ),ζ = 0, (1.34b)

W,

 + W,ζ ζ = 16πpW e2k ′−2U ′
(1.34c)

together with

W,
k ′
,
 − W,ζ k ′

,ζ = 1

2
(W,

 − W,ζ ζ ) + W [(U ′

,
)
2 − (U ′

,ζ )
2]

+ e4U ′

4W
[(a′

,ζ )
2 − (a′

,
)
2], (1.35a)

W,ζ k ′
,
 + W,
k ′

,ζ = W,
ζ + 2WU ′
,
U ′

,ζ − e4U ′

2W
a′

,
a′
,ζ (1.35b)

and (1.26).

6 Locally non-rotating observers (also called ‘zero angular momentum observers’) have a 4-velocity field
ui

zamo = e−ν(ξ i + ωηi). They rotate with the angular velocity ω with respect to infinity, but their angular
momentum ηiu

i
zamo vanishes, see Bardeen et al. (1972). This provides a nice interpretation for the metric

functions ω and ν.
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The vacuum case: the Ernst equation

Outside the body, the source terms on the right hand sides of Equations (1.34)
vanish. Equation (1.34c) becomes a two-dimensional Laplace equation:

W,

 + W,ζ ζ = 0. (1.36)

By means of a conformal transformation in 
-ζ space, it is always possible to
choose

W ≡ 
. (1.37)

In these ‘canonical Weyl coordinates’ the remaining field equations, written down
for the functions U , a and k, are7

∇2U = −e4U

2
2
(∇a)2, (1.38)

(
−1e4U a,
),
 + (
−1e4U a,ζ ),ζ = 0 (1.39)

together with the two equations

k,
 = 
[(U,
)
2 − (U,ζ )

2] + e4U

4

[(a,ζ )

2 − (a,
)
2], (1.40a)

k,ζ = 2
U,
U,ζ − e4U

2

a,
a,ζ , (1.40b)

which allow us to calculate k via a path-independent8 line integral.
Equation (1.39) implies that a function b can be introduced according to

a,
 = 
e−4U b,ζ , a,ζ = −
e−4U b,
 , (1.41)

satisfying the equation

(
e−4U b,
 ),
 + (
e−4U b,ζ ),ζ = 0. (1.42)

It can easily be verified that the two Equations (1.38) and (1.42) can be combined
into the Ernst equation (Ernst 1968, Kramer and Neugebauer 1968).


f ∇2f = (∇f )2 (1.43)

7 As a consequence of the form invariance of the line element (1.5) under a coordinate transformation (1.14), the
vacuum equations for U , a, k and W are the same as those for U ′, a′, k ′ and W ′ (= W ), and can be read off
from Equations (1.34) and (1.35) for ε = p = 0.

8 The integrability condition is satisfied by virtue of (1.38) and (1.39).
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for the complex ‘Ernst potential’

f := e2U + ib. (1.44)

The Ernst equation (1.43), together with (1.41), (1.40) and (1.37), is equivalent to
the vacuum Einstein equations in the stationary and axisymmetric case.

As already mentioned, the vacuum equations for the corotating potentials U ′ and
a′ have the same form as those for U and a. Therefore, the Ernst potential can also
be introduced in the corotating system and the Ernst equation retains its form as
well. This remarkable fact will be used later.

The global problem

For genuine fluid body problems, we shall not make use of canonical Weyl
coordinates and the Ernst formalism in the exterior region. It is of greater advantage
to have a global coordinate system 
, ζ in which all metric functions and their first
derivatives are continuous at the surface of the body. In particular, this requirement
leads to a unique solution W (
, ζ ), which differs from W ≡ 
 in the vacuum
region.9 The global problem consists in finding a regular, asymptotically flat
solution to Equations (1.29) and (1.30) with source terms inside the fluid and
without source terms in the vacuum region. We stress that the shape of the surface,
characterized by p = 0, is not known from the outset.

1.5 Equations of state

In this section, we shall provide some examples of equations of state ε = ε( p),
which will be used in this book. The relation to the baryonic mass-density µB,
consistent with Equations (1.23) and (1.25), will also be given. Note that in our
units (with c = 1), there is no difference between energy-density ε and (total)
mass-density µ, i.e. ε = µ = µB + uint, where uint is the internal energy-density.

Homogeneous fluids

This simple model is characterized by the equation of state (EOS)

ε = constant. (1.45)

Assuming h(0) = 1, we obtain from (1.23) and (1.25) that ε = µ = µB, i.e. the
internal energy density is zero.

9 An important exception is given by the disc limit, where it turns out that W ≡ 
 holds globally, see Subsection
1.7.3. Another application of the Ernst formalism will be the derivation of the Kerr metric in Section 2.4.
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Relativistic polytropes

This model is defined by

p = KµB
γ , γ = 1 + 1

n
(n > 0), (1.46)

see Tooper (1965). Here K is called the ‘polytropic constant’, γ the ‘polytropic
exponent’, and n the ‘polytropic index’. With h(0) = 1, we obtain from (1.23) and
(1.25) the relation

ε = µB + np, (1.47)

i.e. p = (γ − 1)uint and the EOS reads ε = ( p/K)1/γ + p/(γ − 1). Note that
the homogeneous case ε = constant is contained as the limit n → 0. It should,
however, be noted that this EOS – if applied in the dynamic case – guarantees a
speed of sound less than the speed of light only for n ≥ 1.

Completely degenerate, ideal gas of neutrons

The general EOS for a completely degenerate, ideal Fermi gas (a genuine zero-
temperature EOS!) was derived by Stoner (1932) in the framework of special-
relativistic Fermi–Dirac statistics. The two limiting cases, the non-relativistic and
ultra-relativistic limit, lead to polytropic relations (1.46) with exponents γ = 5/3
and γ = 4/3 respectively. This EOS, applied to an electron gas, plays a crucial role
in the theory of white dwarfs, see Chandrasekhar (1939). Here we have in mind
the application to a neutron gas, first considered by Landau (1932), and used in the
famous work by Oppenheimer and Volkoff (1939) to calculate models of neutron
stars. Pressure, energy-density and baryonic mass-density are related as follows:

p = m4
n

24π2�3
f (x), (1.48a)

ε = µB + m4
n

24π2�3
g(x), (1.48b)

µB = m4
n

3π2�3
x3, (1.48c)

where

f (x) = x(2x2 − 3)(x2 + 1)1/2 + 3 arcsinh x,

g(x) = 8x3
[
(x2 + 1)1/2 − 1

]
− f (x),

see, for example, Kippenhahn and Weigert (1990). Here mn is the mass of a neutron
and � is the reduced Planck constant (remember that we use units with c = 1).
It can easily be verified that h(0) = 1 and that (1.25) is satisfied.


