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of the different forces. The textbook concludes with a brief discussion on the

recent discoveries in physics beyond the Standard Model, and its connections with

cosmology.

Quantitative examples are given throughout the book, and the reader is guided

through the necessary calculations. Each chapter ends in exercises so readers can test

their understanding of the material. Solutions to some problems are included in the

book, and complete solutions are available to instructors at www.cambridge.org/

9780521880213. This textbook is suitable for advanced undergraduate students and

graduate students.
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Preface

This book is mainly intended to be a presentation of subnuclear physics, at an

introductory level, for undergraduate physics students, not necessarily for those

specialising in the field. The reader is assumed to have already taken, at an intro-

ductory level, nuclear physics, special relativity and quantum mechanics, including

the Dirac equation. Knowledge of angular momentum, its composition rules and the

underlying group theoretical concepts is also assumed at a working level. No prior

knowledge of elementary particles or of quantum field theories is assumed.

The Standard Model is the theory of the fundamental constituents of matter and

of the fundamental interactions (excluding gravitation). A deep understanding of

the ‘gauge’ quantum field theories that are the theoretical building blocks of this

model requires skills that the readers are not assumed to have. However, I believe it

to be possible to convey the basic physics elements and their beauty even at an

elementary level. ‘Elementary’ means that only knowledge of elementary concepts

(in relativistic quantum mechanics) is assumed. However it does not mean a

superficial discussion. In particular, I have tried not to cut corners and I have

avoided hiding difficulties, whenever was the case. I have included only well-

established elements with the exception of the final chapter, in which I survey the

main challenges of the present experimental frontier.

The text is designed to contain thematerial that may be accommodated in a typical

undergraduate course. This condition forces the author to hard, and sometimes

difficult, choices. The chapters are ordered in logical sequence. However, for a short

course, a number of sections, or even chapters, can be left out. This is achieved at

the price of a few repetitions. In particular, the treatments of oscillation and of the

CP violation phenomena are given in an increasingly advanced way, first for the

K mesons, then for the B mesons and finally for neutrinos.

The majority of the texts on elementary particles place special emphasis on

theoretical aspects. However, physics is an experimental science and only

experiment can decide which of the possible theoretical schemes has been chosen
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by Nature. Moreover, the progress of our understanding is often due to the

discovery of unexpected phenomena. I have tried to select examples of basic

experiments first, and then to go on to the theoretical picture.

A direct approach to the subject would start from leptons and quarks and their

interactions and explain the properties of hadrons as consequences. A historical

approach would also discuss the development of ideas. The former is shorter, but is

lacking in depth. I tried to arrive at a balance between the two views.

The necessary experimental and theoretical tools are presented in the first

chapter. From my experience, students have a sufficient knowledge of special

relativity, but need practical exercise in the use of relativistic invariants and

Lorentz transformations. In the first chapter I also include a summary of the arti-

ficial and natural sources of high-energy particles and of detectors. This survey is

far from being complete and is limited to what is needed for the understanding of

the experiments described in the following chapters.

The elementary fermions fall into two categories: the leptons, which can be

found free, and the quarks, which always live inside the hadrons. Hadrons are non-

elementary, compound structures, rather like nuclei. Three chapters are dedicated

to the ground-level hadrons (the S wave nonets of pseudoscalar and vector mesons

and the S wave octet and decimet of baryons), to their symmetries and to the

measurement of their quantum numbers (over a few examples). The approach is

partly historical.

There is a fundamental difference between hadrons on the one hand and atoms

and nuclei on the other. While the electrons in atoms and nucleons in nuclei move

at non-relativistic speeds, the quarks in the nucleons move almost at the speed of

light. Actually, their rest energies are much smaller than their total energies.

Subnuclear physics is fundamentally relativistic quantum mechanics.

The mass of a system can be measured if it is free from external interaction. Since

the quarks are never free, for them the concept ofmassmust be extended. This can be

done in a logically consistent way only within quantum chromodynamics (QCD).

The discoveries of an ever-increasing number of hadrons led to a confused

situation at the beginning of the 1960s. The development of the quark model

suddenly put hadronic spectroscopy in order in 1964. An attempt was subsequently

made to develop the model further to explain the hadron mass spectrum. In this

programme the largest fraction of the hadron mass was assumed to be due to the

quark masses. Quarks were supposed to move slowly, at non-relativistic speeds

inside the hadrons. This model, which was historically important in the develop-

ment of the correct description of hadronic dynamics, is not satisfactory however.

Consequently, I will limit the use of the quark model to classification.

The second part of the book is dedicated to the fundamental interactions and the

Standard Model. The approach is substantially more direct. The most important
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experiments that prove the crucial aspects of the theory are discussed in some

detail. I try to explain at an elementary level the space-time and gauge structure of

the different types of ‘charge’. I have included a discussion of the colour factors,

giving examples of their attractive or repulsive character. I try to give some hint of

the origin of hadron masses and of the nature of vacuum. In the weak interaction

chapters the chiralities of the fermions and their weak couplings are discussed. The

Higgs mechanism, the theoretical mechanism that gives rise to the masses of the

particles, has not yet been tested experimentally. This will be done at the new high-

energy large-hadron collider, LHC, now becoming operational at CERN. I shall

only give a few hints about this frontier challenge.

In the final chapter I touch on the physics that has been discovered beyond the

Standard Model. Actually, neutrino mixing, masses, oscillations and flavour

transitions in matter make a beautiful set of phenomena that can be properly

described at an elementary level, namely using only the basic concepts of quantum

mechanics. Other clues to the physics beyond the Standard Model are already

before our eyes. They are due mainly to the increasing interplay between particle

physics and cosmology, astrophysics and nuclear physics. The cross fertilisation

between these sectors will certainly be one of the main elements of fundamental

research over the next few years. I limit the discussion to a few glimpses to give a

flavour of this frontier research.

Problems

Numbers in physics are important; the ability to calculate a theoretical prediction

on an observable or an experimental resolution is a fundamental characteristic of

any physicist. More than 200 numerical examples and problems are presented. The

simplest ones are included in the main text in the form of questions. Other problems

covering a range of difficulty are given at the end of each chapter (except the last

one). In every case the student can arrive at the solution without studying further

theoretical material. Physics rather than mathematics is emphasised.

The physical constants and the principal characteristics of the particles are not

given explicitly in the text of the problems. The student is expected to look for them

in the tables given in the appendices. Solutions for about half of the problems are

given at the end of the book.

Appendices

One appendix contains the dates of the main discoveries in particle physics, both

experimental and theoretical. It is intended to give a bird’s-eye view of the history

of the field. However, keep inmind that the choice of the issues is partially arbitrary
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and that history is always a complex, non-linear phenomenon. Discoveries are

seldom due to a single person and never happen instantaneously.

Tables of the Clebsch–Gordan coefficients, the spherical harmonics and the

rotation functions in the simplest cases are included in the appendices. Other tables

give the main properties of gauge bosons, of leptons, of quarks and of the ground

levels of the hadronic spectrum.

The principal source of the data in the tables is the ‘Review of Particle Prop-

erties’ (Yao et al. 2006). This ‘Review’, with its website http://pdg.lbl.gov/, may be

very useful to the reader too. It includes not only the complete data on elementary

particles, but also short reviews of topics such as tests of the Standard Model,

searches for hypothetical particles, particle detectors, probability and statistical

methods, etc. However, it should be kept in mind that these ‘mini-reviews’ are

meant to be summaries for the expert and that a different literature is required for a

deeper understanding.

Reference material on the Internet

There are several URLs present on the Internet that contain useful material for

further reading and data on elementary particles, which are systematically

adjourned. The URLs cited in this work were correct at the time of going to press,

but the publisher and the author make no undertaking that the citations remain live

or accurate or appropriate.
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1

Preliminary notions

1.1 Mass, energy, linear momentum

Elementary particles have generally very high speeds, close to that of light.

Therefore, we recall a few simple properties of relativistic kinematics and

dynamics in this section and in the next three.

Let us consider two reference frames in rectilinear uniform relative motion

S(t,x,y,z) and S0(t0,x0,y0,z0). We choose the axes as represented in Fig. 1.1. At a

certain moment, which we take as t0 ¼ t¼ 0, the origins and the axes coincide. The

frame S0 moves relative to S with speed V, in the direction of the x-axis.

We introduce the following two dimensionless quantities relative to the motion

in S of the origin of S0

b � V

c
ð1:1Þ

and

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ð1:2Þ

called the ‘Lorentz factor’. An event is defined by the four-vector of the coord-

inates (ct,r). Its components in the two frames (t,x,y,z) and (t0,x0,y0,z0) are linked by
the Lorentz transformations (Lorentz 1904, Poincaré 1905)

x0 ¼ c x� bctð Þ
y0 ¼ y

z0 ¼ z

ct0 ¼ c ct � bxð Þ:

ð1:3Þ

The Lorentz transformations form a group that H. Poincaré, who first recognised

this property in 1905, called the Lorentz group. The group contains the parameter c,
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a constant with the dimensions of the velocity. A physical entity moving at speed c

in a reference frame moves with the same speed in any other frame. In other words,

c is invariant under Lorentz transformations. It is the propagation speed of all the

fundamental perturbations: light and gravitational waves (Poincaré 1905).

The same relationships are valid for any four-vector. Of special importance is

the energy-momentum vector (E/c, p) of a free particle

px0 ¼ c px � b
E

c

� �
py0 ¼ py

pz0 ¼ pz

E0

c
¼ c

E

c
� bpx

� �
:

ð1:4Þ

The transformations that give the components in S as functions of those in S0, the
inverse of (1.3) and (1.4), can be most simply obtained by changing the sign of the

speed V.

The norm of the energy-momentum vector is, as for all the four-vectors, an

invariant; the square of the mass of the system multiplied by the invariant factor c4

m2c4 ¼ E2 � p2c2: ð1:5Þ
This is a fundamental expression: it is the definition of the mass. It is, we repeat,

valid only for a free body but is completely general: for point-like bodies, such as

elementary particles, and for composite systems, such as nuclei or atoms, even in

the presence of internal forces.

The most general relationship between the linear momentum (we shall call it

simply momentum) p, the energy E and the speed v is

p ¼ E

c2
v ð1:6Þ

x

y

x'

y'

r,t r',t'

O O'

VS S'

P

Fig. 1.1. Two reference frames in rectilinear relative motion.
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which is valid both for bodies with zero and non-zero mass.

For massless particles (1.5) can be written as

pc ¼ E: ð1:7Þ
The photon mass is exactly zero. Neutrinos have non-zero but extremely small

masses in comparison to the other particles. In the kinematic expressions involving

neutrinos, their mass can usually be neglected.

If m 6¼ 0 the energy can be written as

E ¼ mcc2 ð1:8Þ
and (1.6) takes the equivalent form

p ¼ mcv: ð1:9Þ
We call the reader’s attention to the fact that one can find in the literature, and not

only in that addressed to the general public, concepts that arose when the theory

was not yet well understood and that are useless and misleading. One of these is the

‘relativistic mass’ that is the product mc, and the dependence of mass on velocity.

The mass is a Lorentz invariant, independent of the speed; the ‘relativistic mass’ is

simply the energy divided by c2 and as such the fourth component of a four-vector;

this of course if m 6¼ 0, while for m¼ 0 relativistic mass has no meaning at all.

Another related term to be avoided is the ‘rest mass’, namely the ‘relativistic mass’

at rest, which is simply the mass.

The concept of mass applies, to be precise, only to the stationary states, i.e. to

the eigenstates of the free Hamiltonian, just as only monochromatic waves have a

well-defined frequency. Even the barely more complicated wave, the dichromatic

wave, does not have a well-defined frequency. We shall see that there are two-

state quantum systems, such as K0 and B0, which are naturally produced in states

different from stationary states. For the former states it is not proper to speak of

mass and of lifetime. As we shall see, the nucleons, as protons and neutrons are

collectively called, are made up of quarks. The quarks are never free and con-

sequently the definition of quark mass presents difficulties, which we shall dis-

cuss later.

Example 1.1 Consider a source emitting a photon with energy E0 in the frame of

the source. Take the x-axis along the direction of the photon. What is the energy

E of the photon in a frame in which the source moves in the x direction at the

speed t¼ bc? Compare with the Doppler effect.

Call S0 the frame of the source. Remembering that photon energy and

momentum are proportional, we have p0x ¼ p0 ¼ E0=c. The inverse of the last

1.1 Mass, energy, linear momentum 3



equation in (1.4) gives

E

c
¼ c

E0

c
þ bp0x

� �
¼ c

E0

c
1þ bð Þ

and we have
E

E0

¼ c 1 þ bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b
1 � b

s
:

Doppler effect theory tells us that, if a source emits a light wave of frequency

m0, an observer who sees the source approaching at speed t¼ bc measures the

frequency m, such that
m
m0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b
1 � b

s
: This is no wonder, in fact quantum

mechanics tells us that E¼ hm.

1.2 The law of motion of a particle

The ‘relativistic’ law of motion of a particle was found by Planck in 1906 (Planck

1906). As in Newtonian mechanics, a force F acting on a particle of mass m 6¼ 0

results in a variation in time of its momentum. Newton’s law in the form F¼ dp/dt

(the form used by Newton himself) is also valid at high speed, provided the

momentum is expressed by Eq. (1.9). The expression F¼ma, used by Einstein in

1905, on the contrary, is wrong. It is convenient to write explicitly

F ¼ dp

dt
¼ mcaþ m

dc
dt

v: ð1:10Þ

Taking the derivative, we obtain

m
dc
dt

v ¼ m
d 1 � t2

c2

� ��1=2

dt
v ¼ �m

1

2
1 � t2

c2

� ��3=2

�2
t
c2

at

� �
v

¼ mc3ða � bÞb:

Hence

F ¼ mca þ mc3ða � bÞb: ð1:11Þ
We see that the force is the sum of two terms, one parallel to the acceleration and

one parallel to the velocity. Therefore, we cannot define any ‘mass’ as the ratio

between acceleration and force. At high speeds, the mass is not the inertia to motion.

To solve for the acceleration we take the scalar product of the two members of

Eq. (1.11) with b. We obtain

F � b ¼ mca � b þ mc3b2a � b ¼ mc 1 þ c2b2
� �

a � b ¼ mc3a � b:
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Hence

a � b ¼ F � b
mc3

and, by substitution into (1.11)

F� F � bð Þb ¼ mca:

The acceleration is the sum of two terms, one parallel to the force, and one

parallel to the speed.

Force and acceleration have the same direction in two cases only: (1) force and

velocity are parallel: F¼mc3a; (2) force and velocity are perpendicular: F¼mca.
Notice that the proportionality constants are different.

In order to have simpler expressions in subnuclear physics the so-called

‘natural units’ are used. We shall discuss them in Section 1.5, but we anticipate

here one definition: without changing the SI unit of time, we define the unit of

length in such a way that c¼ 1. In other words, the unit length is the distance the

light travels in a second in vacuum, namely 299 792 458 m, a very long distance.

With this choice, in particular, mass, energy and momentum have the same

physical dimensions. We shall often use as their unit the electronvolt (eV) and its

multiples.

1.3 The mass of a system of particles, kinematic invariants

The mass of a system of particles is often called ‘invariant mass’, but the

adjective is useless; the mass is always invariant.

The expression is simple only if the particles of the system do not interact

amongst themselves. In this case, for n particles of energies Ei and momenta pi,

the mass is

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � P2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Ei

 !2

�
Xn
i¼1

pi

 !2
vuut : ð1:12Þ

Consider the square of the mass which we shall indicate by s, obviously an

invariant quantity

s ¼ E2 � P2 ¼
Xn
i¼1

Ei

 !2

�
Xn
i¼1

pi

 !2

: ð1:13Þ

Notice that s cannot be negative

s � 0: ð1:14Þ
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Let us see its expression in the ‘centre of mass’ (CM) frame that is defined as the

reference in which the total momentum is zero. We see immediately that

s ¼
Xn
i¼1

E�
i

 !2

ð1:15Þ

where Ei
* are the energies in the centre of mass frame. In words, the mass

of a system of non-interacting particles is also its energy in the centre of mass

frame.

Consider now a system made up of two non-interacting particles. It is the

simplest system and also a very important one. Figure 1.2 defines the kinematic

variables.

The expression of s is

s ¼ E1 þ E2ð Þ2 � p1 þ p2ð Þ2 ¼ m2
1 þ m2

2 þ 2E1E2 � 2p1 � p2 ð1:16Þ
and, in terms of the velocity, b¼ p/E

s ¼ m2
1 þ m2

2 þ 2E1E2 1� b1 � b2ð Þ: ð1:17Þ
Clearly in this case, and as is also true in general, the mass of a system is not the

sum of the masses of its constituents, even if these do not interact. It is also clear

from Eq. (1.12) that energy and momentum conservation implies that the mass is

a conserved quantity: in a reaction such as a collision or decay, the mass of the

initial system is always equal to that of the final system. For the same reason the

sum of the masses of the bodies present in the initial state is generally different

from the sum of the masses of the final bodies.

Example 1.2 We find the expressions for the mass of the system of two photons

of the same energy E, if they move in equal or in different directions.

The energy and the momentum of the photon are equal, because its mass is

zero, p¼E. The total energy Etot¼ 2E.

If the photons have the same direction then the total momentum is ptot¼ 2E

and therefore the mass is m¼ 0.

p1
,E1

p
2 ,E

2

m1

m2 θ

Fig. 1.2. System of two non-interacting particles.
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If the velocities of the photons are opposite, Etot¼ 2E, ptot¼ 0, and hence

m¼ 2E.

In general, if h is the angle between the velocities, p2tot ¼ 2p2 þ 2p2 cos h ¼
2E2 1 þ cos hð Þ and hence m2 ¼ 2E2 1 � cos hð Þ:
Notice that the system does not contain any matter, but only energy. Contrary

to intuition, mass is not a measure of the quantity of matter in a body.

Now consider one of the basic processes of subnuclear physics, collisions. In the

initial state two particles, a and b, are present, in the final state we may have two

particles (not necessarily a and b) or more. Call these c, d, e, . . .The process is

a þ b ! c þ d þ e þ � � � : ð1:18Þ
If the final state contains the initial particles, and only them, then the collision is

said to be elastic.

a þ b ! a þ b: ð1:19Þ
We specify that the excited state of a particle must be considered as a different

particle.

The time spent by the particles in the interaction, the collision time, is

extremely short and we shall think of it as instantaneous. Therefore, the particles

in both the initial and final states can be considered as free.

We shall consider two reference frames, the centre of mass frame already defined

above and the laboratory frame (L). The latter is the frame in which, before the

collision, one of the particles called the target is at rest, while the other, called the

beam, moves against it. Let a be the beam particle, ma its mass, pa its momentum

and Ea its energy; let b be the target particle and mb its mass. Figure 1.3 shows the

system in the initial state.

In the laboratory frame, s is given by

s ¼ Ea þ mbð Þ2 � p2a ¼ m2
a þ m2

b þ 2mbEa: ð1:20Þ
In practice, the energy of the projectile is often, but not always, much larger than

both the projectile and the target masses. If this is the case, we can approximate

Eq. (1.20) by

s � 2mbEa Ea;Eb � ma;mbð Þ: ð1:21Þ

pa, Ea
ma

mb

Fig. 1.3. The laboratory frame (L).
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We are often interested in producing new types of particles in the collision, and

therefore in the energy available for such a process. This is obviously the total

energy in the centre of mass, which, as seen in (1.21), grows proportionally to the

square root of the beam energy.

Let us now consider the centre of mass frame, in which the two momenta are

equal and opposite, as in Figure 1.4. If the energies are much larger than the

masses, Ea
* � ma and Eb

* � mb, the energies are approximately equal to the

momenta: Ea
*� pa

* and Eb
*� pb

*, hence equal to each other, and we call them

simply E*. The total energy squared is

s � 2E�ð Þ2 E� � ma;mb

� �
: ð1:22Þ

We see that the total centre of mass energy is proportional to the energy of the

colliding particles. In the centre of mass frame, all the energy is available for the

production of new particles, in the laboratory frame only part of it is available,

because momentum must be conserved.

Now let us consider a collision with two particles in the final state: the two-

body scattering

a þ b ! c þ d: ð1:23Þ
Figure 1.5 shows the initial and final kinematics in the laboratory and in the

centre of mass frames. Notice in particular that in the centre of mass frame the

final momentum is in general different from the initial momentum; they are equal

only if the scattering is elastic.

Since s is an invariant it is equal in the two frames; since it is conserved it is

equal in the initial and final states. We have generically in any reference frame

s ¼ Ea þ Ebð Þ2 � pa þ pbð Þ2 ¼ Ec þ Edð Þ2 � pc þ pdð Þ2: ð1:24Þ

pa
*, Ea

* pb
*, Eb

*ma mb

Fig. 1.4. The centre of mass reference frame (CM).

ma,pa,Ea

ma,pa,Ea mb,pb,Ebm c
,p c

,E c m c
,p c

,E c

m
d ,p

d ,E
d

m d
,p d

,E d

mb

θad
θad

θac

θac
* *

*

*

* **

**

*

L CM
Fig. 1.5. Two-body scattering in the L and CM frames.
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These properties are useful to solve a number of kinematic problems, as we shall

see later in the ‘Problems’ section.

In a two-body scattering, there are two other important kinematic variables that

have the dimensions of the square of an energy: the a–c four-momentum transfer

t, and the a–d four-momentum transfer u. The first is defined as

t � Ec � Ea

� �2 � pc � pa
� �2

: ð1:25Þ

It is easy to see that the energy and momentum conservation implies

t ¼ Ec � Ea

� �2� pc � pa
� �2¼ Ed � Eb

� �2� pd � pb
� �2

: ð1:26Þ

In a similar way

u � Ed � Ea

� �2� pd � pa
� �2� Ec � Eb

� �2� pc � pb
� �2

: ð1:27Þ

The three variables are not independent. It is easy to show (see Problems) that

s þ t þ u ¼ m2
a þ m2

b þ m2
c þ m2

d: ð1:28Þ
Notice finally that

t � 0 u � 0: ð1:29Þ

1.4 Systems of interacting particles

Let us now consider a system of interacting particles. We immediately stress that

its total energy is not in general the sum of the energies of the single particles,

E 6¼ Pn
i¼1 Ei, because the field responsible for the interaction itself contains

energy. Similarly, the total momentum is not the sum of the momenta of the

particles, P 6¼ Pn
i¼1 pi, because the field contains momentum. In conclusion,

Eq. (1.12) does not in general give the mass of the system. We shall restrict

ourselves to a few important examples in which the calculation is simple.

Let us first consider a particle moving in an external, given field. This means

that we can consider the field independent of the motion of the particle.

Let us start with an atomic electron of charge qe at the distance r from a

nucleus of charge Zqe. The nucleus has a mass MN � me, hence it is not dis-

turbed by the electron motion. The electron then moves in a constant potential

� ¼ � 1
4pe0

Zqe
r
. The electron energy (in SI units) is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec
4 þ p2c2

q
� 1

4pe0

Zq2e
r

� mec
2 þ p2

2me

� 1

4pe0

Zq2e
r
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where, in the last member, we have taken into account that the atomic electron

speeds are much smaller than c. The final expression is valid in non-relativistic

situations, as is the case in an atom, and it is the non-relativistic expression of the

energy, apart from the irrelevant constant mec
2.

Let us now consider a system composed of an electron and a positron. The

positron, as we shall see, is the antiparticle of the electron. It has the same mass

and opposite charge. The difference from the hydrogen atom is that there is no

longer a fixed centre of force. We must consider not only the two particles but

also the electromagnetic field in which they move, which, in turn, depends on

their motion. If the energies are high enough, quantum processes happen at an

appreciable frequency: the electron and the positron can annihilate each other,

producing photons; inversely, a photon of the field can ‘materialise’ in a positron–

electron pair. In these circumstances, we can no longer speak of a potential.

In conclusion, the concept of potential is non-relativistic: we can use it if the

speeds are small in comparison to c or, in other words, if energies are much

smaller than the masses. It is correct for the electrons in the atoms, to first

approximation, but not for the quarks in the nucleons.

Example 1.3 Consider the fundamental level of the hydrogen atom. The energy

needed to separate the electron from the proton is DE¼ 13.6 eV. The mass of the

atom is smaller than the sum of the masses of its constituents by this quantity,

mH þ DE ¼ mp þ me. The relative mass difference is

mH � mp � me

mH

¼ 13:6

9:388· 108
¼ 1:4 · 10�8:

This quantity is extremely small, justifying the non-relativistic approximation.

Example 1.4 The processes we have mentioned above, of electron–positron

annihilation and pair production, can take place only in the presence of another

body. Otherwise, energy and momentum cannot be conserved simultaneously.

Let us now consider the following processes:

	 c ! eþ þ e�: Let E+ be the energy and p+ the momentum of e+, E� and p�
those of e�. In the initial state s¼ 0; in the final state s¼ (EþþE�)

2�
(pþþ p–)

2¼ 2me
2þ 2(EþE–� pþp– cosh)>2m2

e> 0. This reaction cannot occur.

	 eþ þ e� ! c. This is just the inverse reaction, it cannot occur either.

	 cþ e� ! e�. Let the initial electron be at rest, let Ec be the energy of the

photon, Ef, pf the energy and the momentum of the final electron. Initially

s¼ (Ecþme)
2� p2c ¼ 2meEcþm2

e , in the final state s¼E2
f � p2f ¼m2

e . Setting
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the two expressions equal we obtain 2meEc¼ 0, which is false. The same is true

for the inverse process e� ! e� þ c. This process happens in the Coulomb

field of the nucleus, in which the electron accelerates and radiates a photon.

The process is known by the German word bremsstrahlung.

Example 1.5 Macroscopically inelastic collision. Consider two bodies of the same

massmmoving initially one against the other with the same speed t (for example two

wax spheres). The two collide and remain attached in a single body of massM.

The total energy does not vary, but the initial kinetic energy has disappeared.

Actually, the rest energy has increased by the same amount. The energy con-

servation is expressed as 2cmc2 ¼ Mc2. The mass of the composite body is M >

2m, but by just a little.

Let us see by how much, as a percentage, for a speed of t¼ 300 m/s. This is

rather high by macroscopic standards, but small compared to c, b¼ t/c¼ 10–6.

Expanding in series: M ¼ 2cm ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q � 2mð1þ 1
2
b2Þ. The relative mass

difference is:
M � 2m

2m
� 1

2
b2 � 10�12.

It is so small that we cannot measure it directly; we do it indirectly by

measuring the increase in temperature with a thermometer.

Example 1.6 Nuclear masses. Let us consider a 4He nucleus, which has a mass

of mHe¼ 3727.41 MeV. Recalling that mp¼ 938.27 MeV and mn¼ 939.57 MeV,

the mass defect is DE ¼ 2mp þ 2mn

� �� mHe ¼ 28:3MeV, or, in relative

terms,
DE

mHe

¼ 28:3

3727:41
¼ 0:8%.

In general, the mass defects in the nuclei are much larger than in the atoms;

indeed, they are bound by a much stronger interaction.

1.5 Natural units

In the following, we shall normally use the so-called ‘natural units’ (NU).

Actually, we have already started to do so. We shall also use the electronvolt

instead of the joule as the unit of energy.

Let us start by giving �h and c in useful units:

�h ¼ 6:58 · 10�16 eV s: ð1:30Þ

c ¼ 3 · 1023 fm s�1: ð1:31Þ

1.5 Natural units 11



�hc ¼ 197MeV fm ðorGeV amÞ: ð1:32Þ
As we have already done, we keep the second as unit of time and define the unit

of length such that c¼ 1. Therefore, in dimensional equations we shall have

[L]¼ [T].

We now define the unit of mass in such a way as to have �h ¼ 1. Mass, energy

and momentum have the same dimensions: [M]¼ [E]¼ [P]¼ [L–1].

For unit conversions the following relationships are useful:

1MeV ¼ 1:52· 1021 s�1 1 MeV�1 ¼ 197 fm

1 s ¼ 3 · 1023 fm 1 s�1¼ 6:5· 10�16 eV 1 ps�1¼ 0:65meV

1m ¼ 5:07· 106 eV�1 1m�1¼ 1:97· 10�7 eV:

The square of the electron charge is related to the fine structure constant a by

the relation

q2e
4pe0

¼ a�hc � 2:3 · 10�28 Jm: ð1:33Þ

Being dimensionless, a has the same value in all unit systems (note that, unfor-

tunately, one can still find in the literature the Heaviside–Lorentz units, in which

e0 ¼ l0 ¼ 1),

a ¼ q2e
4pe0�hc

� 1

137
: ð1:34Þ

Notice that the symbol m can mean both the mass and the rest energy mc2, but

remember that the first is Lorentz-invariant, the second is the fourth component of

a four-vector. To be complete, the same symbol may also mean the reciprocal of

the Compton length times 2p,
2p�h
mc

.

Example 1.7 Measuring the lifetime of the p0 meson one obtains

sp0 ¼ 8:4 · 10�17 s; what is its width? Measuring the width of the g meson one

obtains Cg ¼ 1:3 keV; what is its lifetime? We simply use the uncertainty

principle:

Cp0 ¼ �h=sp0 ¼ 6:6· 10�16 eV s
� �

= 8:4 · 10�17 s
� � ¼ 8 eV

sg ¼ �h=sg ¼ 6:6 · 10�16 eV s
� �

= 1300 eVð Þ ¼ 5 · 10�19 s:
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In conclusion, lifetime and width are completely correlated. It is sufficient to

measure one of the two. The width of the p0 particle is too small to be measured,

and so we measure its lifetime; vice versa in the case of the g particle.

Example 1.8 Evaluate the Compton wavelength of the proton.

kp ¼ 2p=m ¼ 6:28=938ð ÞMeV�1 ¼ 6:7 · 10�3 MeV�1

¼ 6:7· 10�3 · 197 fm ¼ 1:32 fm:

1.6 Collisions and decays

As we have already stated, subnuclear physics deals with two types of processes:

collisions and decays. In both cases the transition amplitude is given by the matrix

element of the interaction Hamiltonian between final |f i and initial |i i states
Mfi ¼ fh jHint ij i: ð1:35Þ

We shall now recall the basic concepts and relations.

Collisions Consider the collision aþ b! cþ d. Depending on what we measure,

we can define the final state with more or fewer details: we can specify or not

specify the directions of c and d, we can specify or not specify their polarisations,

we can say that particle c moves in a given solid angle around a certain direction

without specifying the rest, etc. In each case, when computing the cross section

of the observed process we must integrate on the non-observed variables.

Given the two initial particles a and b, we can have different particles in the

final state. Each of these processes is called a ‘channel’ and its cross section is

called the ‘partial cross section’ of that channel. The sum of all the partial cross

sections is the total cross section.

Decays Consider, for example, the three-body decay a! bþ cþ d: again, the

final state can be defined with more or fewer details, depending on what is

measured. Here the quantity to compute is the decay rate in the measured final

state. Integrating over all the possible kinematic configurations, one obtains the

partial decay rate Cbcd, or partial width, of a into the b c d channel. The sum of all

the partial decay rates is the total width of a. The latter, as we have anticipated in

Example 1.7, is the reciprocal of the lifetime: C ¼ 1=s.
The branching ratio of a into b c d is the ratio Rbcd¼Cbcd/C.
For both collisions and decays, one calculates the number of interactions per

unit time, normalising in the first case to one target particle and one beam

particle, in the second case to one decaying particle.
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Let us start with the collisions, more specifically with ‘fixed target’ collisions.

There are two elements:

1. The beam, which contains particles of a definite type moving, approximately,

in the same direction and with a certain energy spectrum. The beam intensity

Ib is the number of incident particles per unit time, the beam flux Ub is the

intensity per unit normal section.

2. The target, which is a piece of matter. It contains the scattering centres of

interest to us, which may be the nuclei, the nucleons, the quarks or the

electrons, depending on the case. Let nt be the number of scattering centres per

unit volume and Nt be their total number (if the beam section is smaller than

that of the target, Nt is the number of centres in the beam section).

The interaction rate Ri is the number of interactions per unit time (the quantity

that we measure). By definition of the cross section r of the process, we have

Ri ¼ rN tUb ¼ WN t ð1:36Þ
where W is the rate per particle in the target. To be rigorous, one should consider

that the incident flux diminishes with increasing penetration depth in the target,

due to the interactions of the beam particles. We shall consider this issue soon.

We find Nt by recalling that the number of nucleons in a gram of matter is in all

cases, with sufficient accuracy, the Avogadro number NA. Consequently, if M is

the target mass in kg we must multiply by 103, obtaining

Nnucleons ¼ M kgð Þ 103kg=g
� �

NA: ð1:37Þ

If the targets are nuclei of mass number A

Nnuclei ¼ M kgð Þ 103kg=gð ÞNA

A mol=gð Þ : ð1:38Þ

The cross section has the dimensions of a surface. In nuclear physics one uses as a

unit the barn¼ 10–28 m2. Its order of magnitude is the geometrical section of a

nucleus with A� 100. In subnuclear physics the cross sections are smaller and

submultiples are used: mb, lb, pb, etc.
In NU, the following relationships are useful

1 mb ¼ 2:5GeV �2; 1GeV�2 ¼ 389 lb: ð1:39Þ
Consider a beam of initial intensity I0 entering a long target of density q (kg/m3).

Let z be the distance travelled by the beam in the target, measured from its

entrance point. We want to find the beam intensity I(z) as a function of this

distance. Consider a generic infinitesimal layer between z and zþ dz. If dRi is the
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total number of interactions per unit time in the layer, the variation of the

intensity in crossing the layer is dI(z)¼ –dRi. If R is the normal section of

the target, UbðzÞ ¼ IðzÞ=R is the flux and rtot is the total cross section, we have

dI zð Þ ¼ �dRi ¼ �rtotUb zð Þ dNt ¼ � rtot
I zð Þ
R

ntR dz

or

dI zð Þ
I zð Þ ¼ �rtotnt dz:

In conclusion, we have

I zð Þ ¼ I0e
�ntrtotz: ð1:40Þ

The ‘absorption length’, defined as the distance at which the beam intensity is

reduced by the factor 1/e, is

Labs ¼ 1=ðntrtotÞ: ð1:41Þ
Another related quantity is the ‘luminosity’ L [m�2 s�1], often given in

[cm�2 s�1], defined as the number of collisions per unit time and unit cross section

L ¼ Ri=r: ð1:42Þ
Let Nb be the number of incident particles per unit time and R the beam section;

then Nb¼UbR. Equation (1.36) gives

L ¼ Ri

r
¼ UbNt ¼ NbNt

R
: ð1:43Þ

We see that the luminosity is given by the product of the number of incident

particles in a second times the number of target particles divided by the beam

section. This expression is somewhat misleading because the number of particles in

the target seen by the beam depends on its section. We then express the luminosity

in terms of the number of target particles per unit volume nt and in terms of the

length l of the target (Nt¼ ntR l). Equation (1.43) becomes

L ¼ Nbntl ¼ NbqNA10
3l ð1:44Þ

where q is the target density.

Example 1.9 An accelerator produces a beam of intensity I¼ 1013 s�1. The target is

made up of liquid hydrogen (q¼ 60 kg m�3) and l¼ 10 cm. Evaluate its luminosity.

L ¼ Iq103lNA ¼ 1013 · 60 · 103 · 0:1 · 6· 1023 ¼ 3:6· 1040 m�2 s�1:
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We shall now recall a few concepts that should already be known to the reader.

We start with the Fermi ‘golden rule’, which gives the interaction rate W per target

particle

W ¼ 2pjMfij2qðEÞ ð1:45Þ
where E is the total energy and q(E) is the phase-space volume (or simply the

phase space) available in the final state.

There are two possible expressions of phase space: the ‘non-relativistic’

expression used in atomic and nuclear physics, and the ‘relativistic’ one used in

subnuclear physics. Obviously the rates W must be identical, implying that the

matrix element M is different in the two cases. In the non-relativistic formalism

neither the phase space nor the matrix element are Lorentz-invariant. Both factors

are invariant in the relativistic formalism, a fact that makes things simpler.

We recall that in the non-relativistic formalism the probability that a particle i

has the position ri is given by the square modulus of its wave function, jw (ri)j2.
This is normalised by putting its integral over all volume equal to one.

The volume element dV is a scalar in three dimensions, but not in space-time.

Under a Lorentz transformation r! r0 the volume element changes as dV!
dV0 ¼ c dV. Therefore, the probability density w rið Þj j2 transforms as

w rið Þj j2! w0 rið Þj j2 ¼ w rið Þj j2=c. To have a Lorentz-invariant probability density,

we profit from the energy transformation E!E0 ¼ cE and define the probability

density as j 2Eð Þ�1=2w rið Þj2 (the factor 2 is due to a historical convention).

The number of phase-space states per unit volume is d3pi/h for each particle i in the

final state.With n particles in the final state, the volume of the phase space is therefore

qn Eð Þ ¼ ð2pÞ4
Z Yn

i¼1

d3pi

ðhÞ32Ei

d
Xn
i¼1

Ei � E

 !
d3

Xn
i¼1

pi � P

 !
ð1:46Þ

or, in NU (be careful! �h ¼ 1 implies h¼ 2p)

qn Eð Þ ¼ ð2pÞ4
Z Yn

i¼1

d3pi

2Eið2pÞ3
d
Xn
i¼1

Ei � E

 !
d3

Xn
i¼1

pi � P

 !
ð1:47Þ

where d is the Dirac function. Now we consider the collision of two particles, say a

and b, resulting in a final state with n particles. We shall give the expression for the

cross section.

The cross section is normalised to one incident particle; therefore, we must

divide by the incident flux. In the laboratory frame the target particles b are at

rest, the beam particles a move with a speed of, say, ba. The flux is the number of

particles inside a cylinder of unitary base and height ba.
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Let us consider, more generally, a frame in which particles b also move, with

velocity bb, that we shall assume parallel to ba. The flux of particles b is their

number inside a cylinder of unitary base of height bb. The total flux is the number

of particles in a cylinder of height ba� bb (i.e. the difference between the speeds,

which is not, as is often written, the relative speed). If Ea and Eb are the initial

energies the normalisation factors of the initial particles are 1= 2Eað Þ and 1= 2Ebð Þ.
It is easy to show, but we shall only give the result, that the cross section is

r ¼ 1

2Ea2Eb ba � bbj j
Z

Mfi

�� ��2ð2pÞ4Yn
i¼1

d3pi

ð2pÞ32Ei

· d
Xn
i¼1

Ei � E

 !
d3

Xn
i¼1

pi � P

 !
:

ð1:48Þ

The case of a decay is simpler, because in the initial state there is only one

particle of energy E. The probability of transition per unit time to the final state f

of n particles is

Cif ¼ 1

2E

Z
Mfi

�� ��2ð2pÞ4Yn
i¼1

d3pi

ð2pÞ32Ei

d
Xn
i¼1

Ei � E

 !
d3

Xn
i¼1

pi � P

 !
: ð1:49Þ

With these expressions, we can calculate the measurable quantities, cross sections

and decay rates, once the matrix elements are known. The Standard Model gives

the rules to evaluate all the matrix elements in terms of a set of constants. Even if

we do not have the theoretical instruments for such calculations, we shall be able

to understand the physical essence of the principal predictions of the model and to

study their experimental verification.

Now let us consider an important case, the two-body phase space. Let c and d

be the two final-state particles of a collision or decay. We choose the centre of

mass frame, in which calculations are easiest. Let Ec and Ed be the energies of the

two particles, E¼EcþEd the total energy, and pf¼ pc¼�pd the momentum. We

must evaluate the integralZ
Mfi

�� ��2 d3pc

ð2pÞ32Ec

d3pd

ð2pÞ32Ed

2pð Þ4d Ec þ Ed � Eð Þd3 pc þ pdð Þ:

Having the energies and the absolute values of the momenta of the final particles

fixed, the matrix element can depend only on the angles. Consider the

phase-space integral

q2 ¼
Z

d3pc

ð2pÞ32Ec

d3pd

ð2pÞ32Ed

2pð Þ4d Ec þ Ed � Eð Þd3 pc þ pdð Þ:
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Integrating over d3pd we obtain

q2 ¼
1

4pð Þ2
Z

d3pc

EcEd pcð Þ d Ec þ Ed pcð Þ � Eð Þ

¼ 1

4pð Þ2
Z

p2f dpf dXf

EcEd pf
� � d Ec þ Ed pf

� �� E
� �

:

Using the remaining d-function we obtain straightforwardly

1

4pð Þ2
p2f

EcEd pf
� � d pf

d Ec þ Ed pf
� �� � dXf ¼ 1

4pð Þ2
p2f

EcEd pf
� � 1

d

dpf
Ec þ Ed pf

� �� � dXf :

But
dEc

dpf
¼ pf

Ec

and
dEd

dpf
¼ pf

Ed

, hence
1

4pð Þ2
p2f

EcEd

1
pf

Ec

þ pf

Ed

dXf ¼ pf

E

dXf

4pð Þ2: Now let

us consider the decay of a particle of mass m. With E¼m, (1.49) gives

Ca;cd ¼ 1

2m

pf

E

Z
Ma;cd

�� ��2 dXf

4pð Þ2: ð1:50Þ

By integrating the above equation on the angles, we obtain

Ca;cd ¼ pf

8pm2
Ma;cd

�� ��2 ð1:51Þ
where the angular average of the absolute square of the matrix element appears.

Now let us consider the cross section of the process aþ b! cþ d, in the centre

of mass frame. Again let Ea and Eb be the initial energies, Ec and Ed the final

ones. The total energy is E¼EaþEb¼EcþEd. Let pi¼ pa¼ –pb be the initial

momenta and pf¼ pc¼�pd the final ones.

Let us restrict ourselves to the case in which neither the beam nor the target is

polarised and in which the final polarisations are not measured. Therefore, in the

evaluation of the cross section we must sum over the final spin states and average

over the initial ones. Using (1.48) we have

dr
dXf

¼ 1

2Ea2Eb ba � bbj j
X
initial

X
final

Mfi

�� ��2 1

4pð Þ2
pf

E
: ð1:52Þ

We evaluate the difference between the speeds

ba � bbj j ¼ ba þ bb ¼
pi

Ea

þ pi

Eb

¼ piE

EaEb

:

Hence

dr
dXf

¼ 1

8pð Þ2
1

E2

pf

pi

X
initial

X
final

Mfi

�� ��2: ð1:53Þ
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The average over the initial spin states is the sum over them divided by their

number. If sa and sb are the spins of the colliding particles, then the spin

multiplicities are 2saþ 1 and 2sbþ 1. Hence

dr
dXf

¼ 1

8pð Þ2
1

E2

pf

pi

1

2sa þ 1ð Þ 2sb þ 1ð Þ
X
initial

X
final

Mfi

�� ��2: ð1:54Þ

1.7 Hadrons, leptons and quarks

The particles can be classified, depending on their characteristics, into different

groups. We shall give here the names of these groups and summarise their

properties.

The particles of a given type, the electrons for example, are indistinguishable.

Take for example a fast proton hitting a stationary one. After the collision, that

we assume to be elastic, there are two protons moving in general in different

directions with different energies. It is pointless to try to identify one of these as,

say, the incident proton.

First of all, we can distinguish the particles of integer spin, in units �h

0; �h; 2�h; . . .ð Þ, that follow Bose statistics and are called bosons and the semi-

integer spin particles 1
2
�h; 3

2
�h; 5

2
�h; . . .Þ�

that follow Fermi–Dirac statistics and are

called fermions. We recall that the wave function of a system of identical bosons

is symmetric under the exchange of any pair of them, while the wave function of

a system of identical fermions is antisymmetric.

Matter is made up of atoms. Atoms are made of electrons and nuclei bound by

the electromagnetic force, whose quantum is the photon.

The photons (from the Greek word phos meaning light) are massless. Their

charge is zero and therefore they do not interact among themselves. Their spin is

equal to one; they are bosons.

The electrons have negative electric charge and spin 1/2; they are fermions.

Their mass is small, me¼ 0.511 MeV, in comparison with that of the nuclei. As

far as we know they do not have any structure, they are elementary.

Nuclei contain most of the mass of the atoms, hence of the matter. They are

positively charged and made of protons and neutrons. Protons (from proton

meaning the first, in Greek) and neutrons have similar masses, slightly less than a

GeV. The charge of the proton is positive, opposite and exactly equal to the

electron charge; neutrons are globally neutral, but contain charges, as shown, for

example, by their non-zero magnetic moment. As anticipated, protons and neu-

trons are collectively called nucleons. Nucleons have spin 1/2; they are fermions.

Protons are stable, within the limits of present measurements; the reason is that
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they have another conserved ‘charge’ beyond the electric charge, the ‘baryonic

number’, which we shall discuss in Chapter 3.

In 1935, Yukawa formulated a theory of the strong interactions between

nucleons (Yukawa 1935). Nucleons are bound in nuclei by the exchange of a zero

spin particle, the quantum of the nuclear force. Given the finite range of this

force, its mediator must be massive. Given the value of the range, about 10–15 m,

its mass should be intermediate between the electron and the proton masses;

therefore it was called the meson (that which is in the middle). More specifically,

it is the p meson, also called the pion. We shall describe its properties in the next

chapter. Pions come in three charge states: pþ, p� and p0. Unexpectedly, from
1946 onwards, other mesons were discovered in cosmic radiation, the K mesons,

which come in two different charge doublets, Kþ and K0, and their antiparticles,

K� and �K0.

In the same period other particles were discovered that, like the nucleons, have

half-integer spin and baryonic number. They are somewhat more massive than

nucleons and are called baryons (that which is heavy or massive). Notice that

nucleons are included in this category.

Baryons and mesons are not point-like; instead they have structure and are

composite objects. The components of both of them are the quarks. In a first

approximation, the baryons are made up of three quarks, the mesons of a quark

and an antiquark. Quarks interact via one of the fundamental forces, the strong

force, that is mediated by the gluons (from glue). As we shall see, there are eight

different gluons; all are massless and have spin one. Baryons and mesons have a

similar structure and are collectively called hadrons (hard, strong in Greek). All

hadrons are unstable, with the exception of the lightest one, the proton.

Shooting a beam of electrons or photons at an atom we can free the electrons it

contains, provided the beam energy is large enough. Analogously we can break a

nucleus into its constituents by bombarding it, for example, with sufficiently

energetic protons. The two situations are similar with quantitative, not qualitative,

differences: in the first case a few eV are sufficient, in the second several MeV

are needed. However, nobody has ever succeeded in breaking a hadron and

extracting the quarks, whatever the energy and type of the bombarding particles.

We have been forced to conclude that quarks do not exist in a free state; they

exist only inside the hadrons. We shall see how the Standard Model explains this

property, which is called ‘quark confinement’.

The spin of the quarks is 1/2. There are three quarkswith electric chargeþ 2/3 (in

units of the elementary charge), called up-type, and three with charge �1/3 called

down-type. In order of increasingmass the up-type are: ‘up’ u, ‘charm’ c and ‘top’ t,

the down-type are: ‘down’ d, ‘strange’ s and ‘beauty’ b. Nucleons, hence nuclei, are

composed of up and down quarks, uud the proton, udd the neutron.
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The electrons are also members of a class of particles of similar properties, the

leptons (light in Greek, but there are also heavy leptons). Their spin is 1/2. There

are three charged leptons, the electron e, the muon l and the tau s, and three

neutral leptons, the neutrinos, one for each of the charged leptons. The electron

is stable, the l and the s are unstable, and all the neutrinos are stable.

For every particle there is an antiparticle with the same mass and the same

lifetime and all charges of opposite values: the positron for the electron, the

antiproton, the antiquarks, etc.

One last consideration: astrophysical and cosmological observations have

shown that ‘ordinary’ matter, baryons and leptons, makes up only a small fraction

of the total mass of the Universe, no more than 20%. We do not know what the

rest is made of. There is still a lot to understand beyond the Standard Model (see

Chapter 10).

1.8 The fundamental interactions

Each of the interactions is characterised by one, or more, ‘charge’ that, like the

electric charge, is the source and the receptor of the interaction. The Standard

Model is the theory that describes all the fundamental interactions, except

gravitation. For the latter, we do not yet have a microscopic theory, but only a

macroscopic approximation, so-called general relativity. We anticipate here that

the intensity of the interactions depends on the energy scale of the phenomena

under study.

The source and the receptor of the gravitational interaction is the energy-

momentum tensor; consequently this interaction is felt by all particles. However,

gravity is extremely weak at all the energy scales experimentally accessible and

we shall neglect its effects.

Let us find the orders of magnitude by the following dimensional argument.

The fundamental constants, the Newton constant GN of gravity, the speed of light

c, the Lorentz transformations, and the Planck constant �h of quantum mechanics,

can be combined in an expression with the dimensions of mass which is called the

Planck mass

MP ¼
ffiffiffiffiffiffiffi
�hc

GN

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:06 · 10�34 J s · 3 · 108 m s�1

6:67· 10�11 m3 kg�1 s�2

s

¼ 2:18· 10�8 kg ¼ 1:22 · 1019 GeV:

ð1:55Þ

It is enormous, not only in comparison to the energy scale of the Nature around us

on Earth (eV) but also of nuclear (MeV) and subnuclear (GeV) physics. We shall
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never be able to build an accelerator to reach such an energy scale. We must

search for quantum features of gravity in the violent phenomena naturally

occurring in the Universe.

All the known particles have weak interactions, with the exception of photons

and gluons. This interaction is responsible for beta decay and for many other

types of decays. The weak interaction is mediated by three spin one mesons,Wþ ,
W� and Z 0; their masses are rather large, in comparison to, say, the proton mass

(in round numbers MW� 80 GeV, MZ� 90 GeV). Their existence becomes evi-

dent at energies comparable to those masses.

All charged particles have electromagnetic interactions. This interaction is

transmitted by the photon, which is massless. Quarks and gluons have strong

interactions; the leptons do not. The corresponding charges are called ‘colours’.

The interaction amongst quarks in a hadron is confined inside the hadron. If two

hadrons, two nucleons for example, come close enough (typically 1 fm) they

interact via the ‘tails’ of the colour field that, shall we say, leaks out of the

hadron. The phenomenon is analogous to the van der Waals force that is due to

the electromagnetic field leaking out from a molecule. Therefore the nuclear

(Yukawa) forces are not fundamental.

As we have said, the charged leptons more massive than the electron are

unstable; the lifetime of the muon is about 2 ls, that of the s, 0.3 ps. These are

large values on the scale of elementary particles, characteristic of weak inter-

actions.

All mesons are unstable: the lifetimes of p± and of K± are 26 ns and 12 ns

respectively; they are weak decays. In the 1960s, other larger mass mesons were

discovered; they have strong decays and extremely short lifetimes, of the order of

10�23�10�24 s.

All baryons, except for the proton, are unstable. The neutron has a beta decay

into a proton with a lifetime of 886 s. This is exceptionally long even for the weak

interaction standard because of the very small mass difference between neutrons

and protons. Some of the other baryons, the less massive ones, decay weakly with

lifetimes of the order of 0.1 ns, others, the more massive ones, have strong decays

with lifetimes of 10�23–10�24 s.

Example 1.10 Consider an electron and a proton standing at a distance r.

Evaluate the ratio between the electrostatic and the gravitational forces. Does it

depend on r?

Felectrost: epð Þ ¼ 1

4pe0

q2e
r2

Fgravit: epð Þ ¼ GN

memp

r2
:
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Felectrost: epð Þ
Fgravit: epð Þ ¼ q2e

4pe0GNmemp

¼ 1:6· 10�19ð Þ2
4p · 8:8 · 10�12 · 6:67 · 10�11 · 9:1 · 10�31 · 1:7 · 10�27

� 1039

independent of r.

1.9 The passage of radiation through matter

The Standard Model has been developed and tested by a number of experiments,

some of which we shall describe. This discussion is not possible without some

knowledge of the physics of the passage of radiation through matter, of the main

particle detectors and the sources of high-energy particles.

When a high-energy charged particle or a photon passes through matter, it

loses energy that excites and ionises the molecules of the material. It is through

experimental observation of these alterations of the medium that elementary

particles are detected. Experimental physicists have developed a wealth of

detectors aimed at measuring different characteristics of the particles (energy,

charge, speed, position, etc.). This wide and very interesting field is treated in

specialised courses and books. Here we shall only summarise the main conclu-

sions relevant for the experiments we shall discuss in the text and not including,

in particular, the most recent developments.

Ionisation loss

The energy loss of a relativistic charged particle more massive than the electron

passing through matter is due to its interaction with the atomic electrons. The

process results in a trail of ion–electron pairs along the path of the particle. These

free charges can be detected. Electrons also lose energy through bremsstrahlung in

the Coulomb fields of the nuclei.

The expression of the average energy loss per unit length of charged particles

other than electrons is known as the Bethe–Bloch equation (Bethe 1930). We give

here an approximate expression, which is enough for our purposes. If z is the

charge of the particle, q the density of the medium, Z its atomic number and A its

atomic mass, the equation is

� dE

dx
¼ K

qZ
A

z2

b2
ln

2mc2c2b2

I
� b2

� �	 

ð1:56Þ
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where m is the electron mass (the hit particle), the constant K is given by

K ¼ 4pa2 �hcð Þ2NA 103 kgð Þ
mc2

¼ 30:7 keVm2 kg�1 ð1:57Þ

and I is an average ionisation potential. For Z> 20 it is approximately I� 12 Z eV.

The energy loss is a universal function of bc in a very rough approximation, but

there are important differences in the different media, as shown in Fig. 1.6. The

curves are drawn for particles of charge z¼ 1; for larger charges, multiply by z2.

All the curves decrease rapidly at small momenta (roughly as 1/b2), reach a

shallow minimum for bc¼ 3–4 and then increase very slowly. The energy loss of

a minimum ionising particle (mip) is (0.1–0.2 MeV m2 kg�1)q.
The Bethe–Bloch formula is only valid in the energy interval corresponding to

approximately 0.05 < bc < 500. At lower momenta, the particle speed is com-

parable to the speed of the atomic electrons. In these conditions a, possibly large,

fraction of the energy loss is due to the excitation of atomic and molecular levels,

rather than to ionisation. This fraction must be detected as light, coming from the

de-excitation of those levels or, in a crystal, as phonons.

At energies larger than a few hundred GeV for pions or muons, much larger for

protons, another type of energy loss becomes more important than ionisation, the

bremsstrahlung losses in the nuclear fields. Consequently, dE/dx for muons and

pions grows dramatically at energies larger than or around one TeV.
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Fig. 1.6. Specific average ionisation loss for relativistic particles of unit charge.
(Simplified from Yao et al. 2006 by permission of Particle Data Group and the
Institute of Physics)
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Notice that the Bethe–Bloch formula gives the average energy loss, while the

measured quantity is the energy loss for a given length. The latter is a random variable

with a frequency function centred on the expectation-value given by the Bethe–Bloch

equation. The variance, called the straggling, is quite large. Figure 1.7 shows a set of

measurements of the ionisation losses as functions of the momentum for different

particles. Notice, in particular, the dispersion around the average values.

Energy loss of the electrons

Figure 1.7 shows that electrons behave differently from other particles. As

anticipated, electrons and positrons, due to their small mass, lose energy not only

by ionisation but also by bremsstrahlung in the nuclear Coulomb field. This

happens at several MeV.

As we have seen in Example 1.4, the process e�! e�þ c cannot take place in
vacuum, but can happen near a nucleus. The reaction is

e� þ N ! e� þ N þ c ð1:58Þ
where N is the nucleus. The case of positrons is similar

eþ þ N ! eþ þ N þ c: ð1:59Þ
Classically, the power radiated by an accelerating charge is proportional to the

square of its acceleration. In quantum mechanics, the situation is similar: the

probability of radiating a photon is proportional to the acceleration squared.
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Fig. 1.7. dE/dx measured in a TPC at SLAC. (Aihara et al. 1988)
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Therefore, this phenomenon is much more important close to a nucleus than to an

atomic electron. Furthermore, for a given external field, the probability is inversely

proportional to the mass squared. We understand that for the particle immediately

more massive than the electron, the muon that is 200 times heavier, the brems-

strahlung loss becomes important at energies larger by four orders of magnitude.

Comparing different materials, the radiation loss is more important if Z is

larger. More specifically, the materials are characterised by their radiation length

X0. The radiation length is defined as the distance over which the electron energy

decreases to 1/e of its initial value due to radiation, namely

� dE

E
¼ dx

X0

: ð1:60Þ

The radiation length is roughly inversely proportional to Z and hence to the

density. A few typical values are: air at n.t.p. X0� 300m; water X0� 0.36m;

carbon X0� 0.2m; iron X0� 2 cm; lead X0� 5.6mm. We show in Fig. 1.8 the

electron energy loss in lead; in other materials the behaviour is similar. At low

energies the ionisation loss dominates, at high energies the radiation loss becomes

more important. The crossover, when the two losses are equal, is called the

critical energy. With a good approximation it is given by

Ec ¼ 600MeV=Z: ð1:61Þ
For example, the critical energy of lead, which has Z¼ 82, is Ec¼ 7 MeV.

Energy loss of the photons

At energies of the order of dozens of electronvolts, the photons lose energy mainly

by the photoelectric effect on atomic electrons. Above a few keV, the Compton

effect becomes important. When the production threshold of the electron–positron
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Fig. 1.8. Relative energy loss of electrons in lead. (Adapted fromYao et al. 2006
by permission of Particle Data Group and the Institute of Physics)
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pairs is crossed, at 1.022 MeV, this channel rapidly becomes dominant. The

situation is shown in Fig. 1.9 in the case of lead.

In the pair production process

cþ N ! N þ e� þ eþ ð1:62Þ
a photon disappears, it is absorbed. The attenuation length of the material is

defined as the length that attenuates the intensity of a photon beam to 1/e of its

initial value. The attenuation length is closely related to the radiation length,

being equal to (9/7)X0. Therefore, X0 determines the general characteristics of the

propagation of electrons, positrons and photons.

Energy loss of the hadrons

High-energy hadrons passing through matter do not lose energy by ionisation only.

Eventually they interact with a nucleus by the strong interaction. This leads to the

disappearance of the incoming particle, the production of secondary hadrons and

the destruction of the nucleus. At energies larger than several GeV, the total cross

sections of different hadrons become equal within a factor of 2 or 3. For example, at

100 GeV the cross sections pþp, p�p, pþn, p�n are all about 25 mb, those for pp

and pn about 40 mb. The collision length k0 of a material is defined as the distance

over which a neutron beam (particles that do not have electromagnetic inter-

actions) is attenuated by 1/e in that material.
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Fig. 1.9. Photon cross sections in Pb versus energy; total and calculated
contributions of the three principal processes. (Adapted from Yao et al. 2006 by
permission of Particle Data Group and the Institute of Physics)
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Typical values are: air at n.t.p. k0� 750m; water k0� 0.85m; carbon

k0� 0.38m; iron k0� 0.17m; lead k0� 0.17m. Comparing with the radiation

length we see that collision lengths are larger and do not depend heavily on the

material, provided this is solid or liquid. These observations are important in the

construction of calorimeters (see Section 1.11).

1.10 Sources of high-energy particles

The instruments needed to study the elementary particles are sources and

detectors. We shall give, in both cases, only the pieces of information that are

necessary for the following discussions. In this section, we discuss the sources, in

the next the detectors.

There is a natural source of high-energy particles, the cosmic rays; the artificial

sources are the accelerators and the colliders.

Cosmic rays

In 1912, V. F. Hess, flying aerostatic balloons at high altitudes, discovered that

charged particle radiation originated outside the atmosphere, in the cosmos (Hess

1912). Fermi formulated a theory of the acceleration mechanism in 1949 (Fermi

1949). Until the early 1950s, when the first high-energy accelerators were built,

cosmic rays were the only source of particles with energy larger than a GeV. The

study of cosmic radiation remains, even today, fundamental for both subnuclear

physics and astrophysics.

We know rather well the energy spectrum of cosmic rays, which is shown in

Fig. 1.10. It extends up to 100 EeV (1020 eV), 12 orders of magnitude on the

energy scale and 32 orders of magnitude on the flux scale. To make a comparison,

notice that the highest-energy accelerator, the LHC at CERN, has a centre of

mass energy of 14 TeV, corresponding to ‘only’ 0.1 EeV. At these extreme

energies the flux is very low, typically one particle per square kilometre per

century. The Pierre Auger observatory in Argentina has an active surface area of

3000 km2 and is starting to explore the energy range above EeV. In this region,

one may well discover phenomena beyond the Standard Model.

The initial discoveries in particle physics, which we shall discuss in the next

chapter, used the spectrum around a few GeV, where the flux is largest, tens of

particles per square metre per second. In this region the primary composition,

namely at the top of the atmosphere, consists of 85% protons, 12% alpha par-

ticles, 1% heavier nuclei and 2% electrons.

A proton or a nucleus penetrating the atmosphere eventually collideswith a nucleus

of the air. This strong interaction produces pions, less frequently Kmesons and, even
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more rarely, other hadrons. The hadrons produced in the first collision generally have

enough energy to produce other hadrons in a further collision, and so on. The average

distance between collisions is the collision length (k0¼ 750 m at n.t.p.). The primary

particle gives rise to a ‘hadronic shower’: the number of particles in the shower

initially grows, then, when the average energy becomes too small to produce new

particles, decreases. This is because the particles of the shower are unstable. The

charged pions, which have a lifetime of only 26 ns, decay through the reactions

pþ ! lþ þ ml p� ! l� þ ml: ð1:63Þ

The muons, in turn, decay as

lþ ! eþ þ ml þ me l� ! e� þ ml þ me: ð1:64Þ

The muon lifetime is 2 ls, much larger than that of the pions. Therefore, the

composition of the shower becomes richer and richer in muons while travelling

through the atmosphere.

The hadronic collisions produce not only charged pions but also p0. These
latter decay quickly with the electromagnetic reaction

p0 ! cþ c: ð1:65Þ
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Fig. 1.10. The cosmic ray flux.
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