

Proceedings of the 4th International Gas Processing Symposium

26—27 October 2014 Doha, Qatar

Edited by: Mohammed Jaber F. Al Marri | Fadwa T. Eljack Proceedings of the 4th International Gas Processing Symposium

Advances in Gas Processing

Volume 1: Proceedings of the 1st Annual Gas Processing Symposium edited by Hassan E. Alfadala, G.V. Rex Reklaitis and Mahmoud M. El-Halwagi

Volume 2: Proceedings of the 2nd Annual Gas Processing Symposium edited by Farid Benyahia and Fadwa T. Eljack

Volume 3: Proceedings of the 3rd International Gas Processing Symposium edited by Abdelwahab Aroussi and Farid Benyahia

Volume 4: Proceedings of the 4th International Gas Processing Symposium edited by Mohammed Jaber F Al Marri and Fadwa T. Eljack

Proceedings of the 4th International Gas Processing Symposium

Edited by

Mohammed J. Al-Marri Gas Processing Center, Qatar University Doha, Qatar

Fadwa T. Eljack Department of Chemical Engineering, Qatar University Doha, Qatar

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

©2015 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: <u>permissions@elsevier.com</u>. Alternatively you can submit your request online by visiting the Elsevier web site at <u>http://elsevier.com/locate/permissions</u>, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-444-63461-0 ISSN: 1876-0146

For information on all Elsevier publications visit our web site at store.elsevier.com

This book has been manufactured using Print On Demand technology. Each copy is produced to order and is limited to black ink. The online version of this book will show color figures where appropriate.

List of Contents

	•
Pretace	X1
1 101400	

Carbon Management

Solubility of CO ₂ in Aqueous Amine Solutions: a Study to Select Solvents for Carbon Capture from Natural-gas Power Plant
Jiafei Zhang, Danlu Tong, Paul S. Fennell, J. P. Martin Trusler
CO ₂ Capture Using an Aqueous Formulated Solvent Containing Ethylaminoethanol, N- Methyl-2-Pyrolidone, and Hydroxyl Radical Scavengers: Study of Solvent Degradation and Absorption Kinetics <i>Rahul R. Bhosale, Shahd S. Gharbia, Jamila Folady, Mehak Jilani,</i> <i>Dareen Dardor, Anand Kumar, Leo L. P. van den Broeke,</i> <i>Vijaykumar V. Mahajani, Sukanta Kumar Dash</i>
Preparation of Polyethylenimine Impregnated Mesoporous Precipitated Silica for CO ₂ Capture Dang Viet Quang, Aravind V. Rayer, Nabil El Hadri and Mohammad R.M. Abu-Zahra
Thermodynamic Analysis of Solar Fuel Production via Thermochemical H ₂ O and/or CO ₂ Splitting Using Tin Oxide Based Redox Reactions <i>Rahul R. Bhosale, Shiva Yousefi, Jamila Folady, Mehak Jilani,</i> <i>Dareen Dardor, Shahd S. Gharbia, Anand Kumar,</i> <i>Leo J. P. van den Broeke, Ivo Alxneit, Rajesh Shende</i>
Synthesis of a New Cu-Aluminosilicate Catalyst for CO ₂ Capture and Conversion to Hydrocarbons <i>Reyad Shawabkeh, Ibnelwaleed Hussein, Waqar Ahmad,</i> <i>Adeem Rana</i>
Development of Amine-blend Systems for CO ₂ Post-Combustion Capture Nabil EL Hadri, Dang Viet Quang, Aravind V. Rayer, Mohammad R. M. Abu-Zahra

Gas Conversion

Single Step Synthesis of Transition Metal Nanoparticles in Aqueous Phase for Catalytic Applications Anand Kumar, Anchu Ashok, Yussuf Olasunkanmi Kuti, Rahul R Bhosale, Mohd Ali H. Saleh, Leo J.P. van den Broeke
Modeling Fischer-Tropsch Product Distribution of a Cobalt-based Catalyst in Different Reaction Media Shaik Afzal, Jan Blank, Rehan Hussain, Nimir O. Elbashir
A Comparative Study of the Effects of Water on Methane Oxidation over Pd@CeO ₂ /Al ₂ O ₃ and Pd@TiO ₂ /Al ₂ O ₃ Catalysts Sardar Ali, Mohammed J. Al-Marri, Ahmed Gamal Abdul Monem, Yara I. Arafat, Mahmoud M. Khader
Conversion of Methane in the Liquid Compression Reactor Maxim Glushenkov, Gerard Fuite, Theo van der Meer, Alexander Kronberg
Development of Nickel-based Catalysts for Methane Steam Reforming Sardar Ali, M.M. Zagho, Mohammed J. Al-Marri, Yara I. Arafat, Mahmoud M. Khader
Energy Mix
Solar Fuel Production via Non-Stoichiometric CexZryHfzO2-δ Based Two-Step Thermochemical Redox Cycle Rahul R. Bhosale, Mehak Jilani, Dareen Dardor, Shahd S. Gharbia, Jamila Folady, Anand Kumar, Leo L. P. van den Broeke ⁻ Fangjian Lin, Ivo Alxneit
Investigation of Laminar Flame Speeds of Methane-LPG Air Mixtures Ahmed S. Ibrahim, Mohammed A. Abdalwahab, Othman S. Abulaban, Samer F. Ahmed
Emerging Opportunities for Natural Gas Treatment and CO ₂ Capture Jaap F. Vente and Wim G. Haije
Thermachamical Conversion of COs into Solar Eucle Using Ferrite

Thermochemical Conversion of CO₂ into Solar Fuels Using Ferrite Nanomaterials

Rahul R. Bhosale, Dareen Dardor, Shahd S. Gharbia, Jamila Folady,	
Mehak Jilani, Anand Kumar, Leo L. P. van den Broeke, Fangjian Lin	,
Ivo Alxneit14	1

Operational Excellence

Electrodeposition of Ni-B-Zn Alloy Coatings and their Characterization R. A. Shakoor, Ramazan Kahraman, U. S. Waware, Yuxin Wang, Wei Gao
Qatargas GHG Management Strategy and Technology Assessment Afzal A. Subedar, Khalifa Ahmed Al-Sulaiti, Rashid Mohammed Al- Rashdi, Ibrahim Bawazir, Muh Ilyasak
Removal of Metal Ions and Heat Stable Salts From Industrial Lean Amine Solvent Using Polymeric Hydrogels From Gas Sweetening Unit <i>Priyabrata Pal and Fawzi Banat</i>
NGL Recovery Processes and Operating Issue- Case Study Sunil P. Solanki and Ibrahim Al-Hassan
Flow Accelerated Corrosion (FAC) in boilers / HRSGs Shashidhar V. and Patnaik, D
Gas Solubility in Aqueous Solutions Under Two-Phase (H–L _w) Hydrate Equilibrium Conditions <i>Ioannis N. Tsimpanogiannis, Ioannis G. Economou,</i> <i>Athanassios K. Stubos</i>
Versatile Gas Monitoring System on the Heterogeneous Zynq SoC Platform
Amine Ait Si Ali, Abbes Amira, Faycal Bensaali, Mohieddine Benammar, Muhammad Hassan, Amine Bermak
A Front-end EPC Gen-2 Passive UHF RFID Transponder for Embedded Gas Sensor
Mohamed Zgaren and Mohamad Sawan
Membrane Gas Desorption for Natural Gas Treating Annemieke van de Runstraat, Earl L.V. Goetheer, Daphne E. Bakker, Alexey V. Volkov, Abdelbaki Benamor

Olefin / Paraffin separation using Task-Specific Materials based on I	lonic
Liquids.	
Johan Jacquemin, Yun Zheng, Yu Wang, Jingjing Zhou, Jillian	
Thompson, Mert Atilhan, David Rooney,	
Majeda Khraisheh	243

Environmental and Sustainability

Tracking of GHG Emissions and Tax Implication During Normal/Abnormal Situations – Ethylene Process Base Case Industrial
Application Fahd M. Mohammed, Monzure-Khoda Kazi, Ahmed M. AlNouss, Fadwa T. Eljack
Qatargas Flare Reduction Program Mohsin Raja, Ibrahim Bawazir, Ihab Abdelmohsen, Khalid Bashir,and Khalifa Ahmed Al-Sulaiti
Adsorption of H ₂ S from Natural Gas using treated Oil Fly Ash <i>Zaheer Aslam, Reyad A. Shawabkeh,</i>
Ibnelwaleed A. Hussien I
Treatment of Produced Water from Oil & Gas Operations by Membrane Distillation <i>Altaf Hussain, Joel Minier-Matar, Arnold Janson,</i>
Samer Adham
Application of Membrane Bioreactor Technology for Produced Water Treatment
Arnold F. Janson, Ana Santos, Altaf Hussain, Joel Minier-Matar, Simon Judd, Samer Adham
Qatargas LDAR Fugitive VOC Emissions Program Farhan A. Khan, Khalifa A. Al Sulaiti, Khalid Bashir
Application of Forward Osmosis to Reduce Produced Water Injection Volumes
Joel Minier-Matar, Altaf Hussain, Arnold F. Janson, Anthony G. Fane, Samer Adham309
Life Cycle Assessment of North American Shale Gases Ian J. Laurenzi

Design and Modeling

Carbon Management: Regional Solutions Based on Carbon
Angud Kuman, Anghu Aghak, Mahammad S. Shungin
Anuna Kumar, Anchu Asnok, Monammea S. Shurair,
Kull Tussuj, Leo J.P. van den Broeke 557
Atomistic Simulations of Clathrate Hydrates
Joseph Costandy Vasileios K Michalis Athanassios K Stubos
Joannis N Tsimpanogiannis Joannis G Economou 351
10unnis 1v. 1 sumpanogiannis, 10unnis 0. Economou
Molecular Thermodynamic Models for CO ₂ and Mixtures:
Recent Developments and Applications for Process Design
Sally El Meragawi, Othonas A. Moultos, Ioannis N.
Tsimpanogiannis, Nikolaos I. Diamantonis, Athanassios Z.
Panagiotopoulos and Ioannis G. Economou
Design Philosophy GPC High Pressure Pilot Plant
Annemieke van de Runstraat, Erwin Giling, Abdelbaki Benamor,
Earl L.V. Goetheer
Real-time Monitoring of Solvent Composition for Acid Gas
Absorption Processes
Leen van der Ham, Andries van Eckeveld, Abdelbaki Benamor,
Earl Goetheer
Modeling of Reaction Front Movement in Combustion Synthesis for
Catalyst Preparation
Noura A. Dowass, Anchu Ashok, Yussuf Olasunkanmi Kuti,
Mohammed Salah Shurair, Anand Kumar, Rahul R. Bhosale,
Mohd Ali H. Saleh, Leo J. P. van den Broeke
Index

This page intentionally left blank

Preface

Natural gas has been a valuable energy commodity for many centuries. Natural is considered the fastest growing segment of the energy market. The increased share of natural gas in the energy market is generally attributed to its low environmental impact and convenience in utilization as a fuel or feedstock in a wide range of petrochemical industry. It is also a key player in enhancing the efficiencies of power generation system. The challenge of energy security and environment requires solutions that are within reach: and natural gas is a flexible energy source that has the potential to complement emerging alternative technologies. Qatar is considered is one of the world's pioneers in implementing new processing technologies on a very large scale and accumulated a significant experience in operational excellence; and as such Qatar is positioned as one of the leading LNG and GTL exporters in the world. The situation highlighted above lead to an inspired 4th international gas processing symposium covering the state-of-the-art advances in the area of natural gas utilization, sustainability and excellence in processing. The 4th international gas processing symposium held in Doha, Qatar from October 26 to 27, 2014.

A key future theme in the Symposium was Natural Gas and World's Energy Mix because of its growing importance of the global energy market. The Symposium also covered the following gas processing applications in parallel sessions:

- Environment Sustainability
- Carbon Management
- Energy Mix
- Gas Conversion Processes (GCP)
- Design & Modeling
- Operational Excellence I (OEI)
- Industrial Case Studies Session

The 4th international gas processing symposium combines an interesting variety of papers from academia and industry, giving a unique perspective into state of the art matters related to gas process which are presented in the chapters of this symposium proceedings book.

The organizing committee of the 4th international gas processing symposium wishes to express gratitude to people who made this event

possible and pleasant. Grateful acknowledgment is given to His Highness Sheikh Tamim bin Hamad AI-Thani, Emir of the State of Qatar. The support of her Excellency, Professor Misnad, President of Qatar University. The strong support of College of Engineering and the Gas processing Center staff at Qatar University is also gratefully acknowledged.

The organizing committee also wishes to extend their gratitude to the symposium sponsors: Qatar Petroleum, Dolphin Energy, OryxGTL, QAFAC, RasGas, ExxonMobil and professional partners: European Federation of Chemical Engineers (EFCE), Gas Processing Association (GPA)-GCC, American Institute of Chemical Engineers (AIChE), Elsevier (publisher), Industrial & Engineering Chemistry Research (I & EC Research)(Special Issue)

Finally, the editors would like to thank the authors who shared their knowledge and expertise in papers constituting the core content of this book.

Mohammed J. Al-Marri, Gas Processing Center, Qatar University, Qatar.

Fadwa T. Eljack, Department of Chemical Engineering, Qatar University, Qatar

Mohammed Jaber F. Al Marri and Fadwa El Jack (Editors), Proceedings of the 4th International Gas Processing Symposium, October 26–27, 2014, Doha, Qatar. © 2015 Elsevier B.V. All rights reserved.

Solubility of CO_2 in aqueous amine solutions: a study to select solvents for carbon capture from natural-gas power plant

Jiafei Zhang^a, Danlu Tong^{a,b}, Paul S. Fennell^{a,b}, J. P. Martin Trusler^{a,*}

^aDepartment of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom

^bGrantham Institute for Climate Change, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom

* Email: m.trusler@imperial.ac.uk

Abstract

New solvents or solvent formulations are required for the capture of CO_2 from natural gas power plants, the flue gases from which typically contain low concentrations of CO_2 coupled with relatively high concentrations of O_2 . Information concerning vapour-liquid equilibrium, in particular CO_2 loading capacity, is important for the selection of solvents to be employed for absorption. A static-analytic apparatus has been developed to acquire such data at temperatures between (313 and 393) K and various CO_2 partial pressures. A tertiary amine, 2-dimethylaminoethanol (DMAE) and its blended solutions with piperazine (PZ) were studied. The density and viscosity of these amine solutions were also measured to yield a better understanding of their performance in mass transfer and fluid dynamics.

Keywords: CO₂ absorption, amines, vapour-liquid equilibrium, density, viscosity

1. Introduction

Anthropogenic CO_2 emissions from the combustion of fossil fuels have caused a significant increase in atmospheric greenhouse-gas concentrations and are beginning to change the global climate [1]. CO₂ capture and storage (CCS) is proposed as an intermediate solution to mitigate global warming and to allow continued use of fossil fuels. Amine-based CO₂ absorption has hitherto been the technology of choice for post-combustion capture (PCC) from fossil-fuel power stations, but challenges such as high energy consumption and solvent degradation still impede the implementation of conventional solvent scrubbing technologies for flue gas treatment [2-4]. The use of natural gas for power generation has greatly increased in recent years for both economic and environmental reasons. As shown in Table 1, the flue gas from natural gas power systems has a lower partial pressure of CO_2 (p_{CO_2}) and a higher concentration of O_2 compared to that from coal-fired power plant [5]. It is therefore necessary to select gas-specific solvents adapted for capturing CO₂ from natural gas combined cycle (NGCC) power plant. Such solvents should present a high CO_2 capacity at low p_{CO_2} and a good chemical stability, especially with regards to oxidative degradation.

 Table 1. Typical flue gas compositions from coal and natural gas combustion

(unit: %)	CO ₂	N_2	O ₂	H ₂ O	NO _x	SOx	Ar
Coal-fired	12-16	75-80	2-4	10-15	400 ppm	150 ppm	0.82
Gas-fired	3-5	70-75	10-12	7-10	<50 ppm	<10 ppm	0.89

2. Amines for CO₂ absorption

Amine solvents with their high capacity to absorb dilute CO_2 have been used commercially for gas sweetening. MEA is the most well-known alkanolamine and has been employed for the separation of acid gases in industrial processes for more than 80 years [6]. It is characterised by high absorption capacity, fast reaction kinetics, good aqueous miscibility and low cost. However, this solvent shows several disadvantages such as high energy requirement (3.5 to 4 GJ/ton-CO₂), solvent degradation, and corrosion issues. Therefore, it is essential to develop new amine solvents that meet the following criteria:

- Reduced energy consumption
- Fast reaction kinetics and high capacity with respect to CO₂
- Minimal environmental impact
- Low degradation and corrosivity

N-methyldiethanolamine (MDEA), as a tertiary amine, has been used for selective absorption of H_2S and CO_2 in many industrial processes [7]. Some MDEA-based solvents developed by Dow Chemicals were claimed to be more economic with regard to energy consumption than MEA-based solvents, primarily owing to the lower enthalpy of reaction [8]. MDEA also exhibits advantages of low volatility and excellent resistance against thermal oxidative degradation. In addition. other tertiary and amines e.g. 2-dimethylaminoethanol (DMAE) and 2-diethylaminoethanol (DEAE) were also proposed for PCC [9], but slow reaction kinetics prove to be one of the main shortcomings of this category.

Sterically hindered amines, *e.g.* 2-Amino-2-methyl-1-propanol (AMP), are considered as promising candidates for acid-gas scrubbing [10]. They present high CO_2 capacity and low degradability, but high vaporisation loss is a potential weakness. Other sterically hindered amines *e.g.* KS-1 commercialised by MHI [11] and 2-(isopropylamino)ethanol [12] were claimed to be superior compared to MEA in the PCC process.

Piperazine (PZ), a diamine with fast reaction kinetics, high CO_2 loading and good chemical stability, has also been recommended for PCC [13]. However, it has been mainly used as an absorption promoter in solvent formulations because of its limited aqueous solubility and high price. Additionally, other polyamines *e.g.* 2-(1-piperazinyl)-ethylamine (PZEA) [14] and Cansolv's proprietary solvent DC105 [15], have proved more effective for CO_2 capture from NGCC.

Blended amine solvents are proposed to combine the advantages of each component. The optimal recipe typically comprises a principal solvent with high net CO₂ capacity and an activator exhibiting fast reaction kinetics to improve the efficiency of both the absorption and regeneration processes. A successful example is activated MDEA (aMDEA) developed by BASF [16], which presents the merits of moderate energy requirement, excellent chemical stability and improved reactivity. In this work, we investigate two additional blended solvent systems: AMP+PZ and DMAE+PZ.

3. Experimental

A static-analytic apparatus, shown in Figure 1, has been employed for accurate VLE measurements on CO_2 -amine-H₂O systems. The experiments were carried out in a 100 ml stainless steel vessel at various temperatures from (313 to 393) K and total pressures up to 1 MPa. Both the gas and liquid phases were analysed by a Perkin-Elmer Clarus 500 gas chromatograph (GC) to determine the coexisting-phase compositions. The apparatus was validated in

earlier work [17] but the GC analysis system with gas sampling valve was improved in this study.

Figure 1. P&I Diagram of the static-analytic apparatus for VLE DAU: data acquisition unit; E-1: jacketed reaction vessel; E-2: degasser; GC: gas chromatograph; GSV: gas sampling valve; LSV: liquid sampling valve; P-1: high pressure generator; P-2: rotary vane vacuum pump (0.01 kPa); P-3: gear pump; P-4: diaphragm vacuum pump (0.8 kPa); PC: computer.

MEA and PZ were purchased from VWR, and DMAE and AMP were supplied by Acros Organics. All of the tested amines were of at least 99 mass% purity. Aqueous amine solutions were prepared gravimetrically, and CO₂-saturated solutions were prepared from these by bubbling CO₂ through them at ambient pressure in a gas washing bottle. Partially loaded solutions were obtained by diluting CO₂-saturated solutions with fresh amine solution in the desired ratios. CO₂ loading (α_{-CO_2}) was determined by GC analysis with an estimated uncertainty of 2%.

Density (ρ) was measured using an Anton Paar DMA 5000 M vibratingtube densimeter in the temperature (*T*) range of (298 to 353) K. The uncertainty is estimated to be 0.05 kg/m³. Kinematic viscosity (ν) was determined using a certified U-tube capillary viscometer (PSL) with an estimated uncertainty of 0.3%. Dynamic viscosity (μ) was calculated from the relation $\mu = \nu \cdot \rho$.

4. Vapour-Liquid Equilibrium

The apparatus was initially validated by measuring the solubility of CO_2 in 30 wt% aqueous MEA solution at temperature between (313 and 393) K. As shown in Figure 2, our results are in satisfactory agreement with the literature data of Jou *et al.* [18]. Further measurements were carried out for the tertiary amine DMAE and blended DMAE+PZ solutions. Figure 3 illustrates the good solubility of CO_2 in DMAE-based solutions at 313 K and excellent CO_2 regenerability at 393 K. The partial replacement of DMAE with PZ improves the CO_2 solubility slightly.

Figure 2. Solubility of CO₂ in 30 wt% MEA solution (\diamondsuit this work, + Tong *et al.*, 2012, \blacktriangle Jou *et al.*, 1995).

Figure 3. Solubility of CO₂ in 30 wt% DMAE (\diamondsuit), 25 wt% DMAE+5 wt% PZ (\bigstar) and 20 wt% DMAE+10 wt% PZ (\bigstar) solutions.

The cyclic loading capacity of CO_2 and alkalinity at low p_{CO_2} conditions were also studied to select specific amine solvents for NGCC-CCS. The proposed solvent formulations all have a higher net CO_2 capacity in comparison with the benchmark MEA and MDEA solvents (see Figure 4). Addition of the activator PZ in the solvent to replace part of the principle amine (AMP or DMAE) can not only accelerate the absorption rate but also improve the loading capacity, primarily due to the double amino function groups in a single molecule. Both the blended solvents AMP+PZ [19] and DMAE+PZ exhibit a good regenerability at the desorption condition.

Figure 4. Comparison of net CO₂ capacity among the screened amine solvents.

5. Other thermophysical properties

To facilitate engineering calculations, it is essential to know the physical properties of solvents, and so properties such as the density and viscosity of aqueous amine solutions have been widely studied in the literature. However, very few literature data are available for CO_2 -loaded aqueous amine systems. Our study therefore focuses on the effect of dissolved CO_2 on key thermophysical properties of aqueous amine solutions.

Density and viscosity are important for the process and plant design, especially relating to fluid dynamics calculations for the absorption column, gas-liquid mass transfer resistance and the selection of pumps and packings. The measurement systems were first validated with 30 wt% MEA solutions. As seen in Figure 5, the dynamic viscosity of MEA solutions is significantly increased by the dissolution of CO_2 and the measured data agree well with the values predicted from Weiland's correlation [20]. The maximum deviation is less than 3%.

Further measurements were conducted for DMAE and AMP solutions, and the effect of PZ addition and CO₂ loading was studied here. To suppress the temperature dependence of the data, the ratio of measured density ρ to the density of water (ρ_w) is presented in Figure 6, which illustrates that the ratio ρ/ρ_w is simply a linear function of *T*.

Figure 5. Dynamic viscosity of 30 wt% MEA solutions with various CO_2 loadings (\blacklozenge 298K, \blacksquare 303K, \blacktriangle 313K, \bigstar 323K, \bigstar 333K, \bullet 343K, + 353K, dashed lines: Weiland's correlation).

Figure 6. Density ratio of DMAE-based solutions to water with the influence of PZ addition and CO₂ dissolution (\diamond 30 wt% DMAE, \blacksquare 30 wt% DMAE + 0.8 mol/L CO₂, \blacktriangle 30 wt% DMAE + 1.4 mol/L CO₂, \thickapprox 25 wt% DMAE + 5 wt% PZ, \bigstar 20 wt% DMAE + 10 wt% PZ, dashed lines: linear fits).

The dynamic viscosity μ of 30 wt% DMAE, plotted in Figure 7, is much higher than the benchmark 30 wt% MEA. Both PZ addition and CO₂ loading enhance the viscosity, but the effect is quite weak in DMAE-based solutions. However, in the AMP-based solutions, μ is strongly enhanced by CO₂ dissolution (see Figure 8). In this case, both the DMAE- and AMP-based solutions can create a higher pressure drop along the absorption column compared to MEA; in addition, the packing at the bottom of the absorber should have a higher prossity than that at the top, since the viscosity of loaded AMP solution is almost double of that for the lean solution.

Figure 7. Dynamic viscosity of DMAE-based solutions (◊ 30 wt% DMAE,
30 wt% DMAE + 0.8 mol/L CO₂, ▲ 30 wt% DMAE + 1.4 mol/L CO₂,
* 20 wt% DMAE + 10 wt% PZ, dashed line: exponential fit).

Figure 8. Dynamic viscosity of 20 wt% AMP+10 wt% PZ solutions (O without CO₂, \blacktriangle with 1.2 mol/L CO₂, \blacksquare with 2.4 mol/L CO₂, dashed lines: exponential fits).