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PREFACE TO THE SECOND EDITION 

This is a new edition of the author's previous book, Mathematical Methods 
and Models in Economic Dynamics, which has been thoroughly revised on the 
basis of the suggestions communicated to him by colleagues and students or 
contained in reviews of the book, and on the basis of the author's own teach-
ing and research experience. The new Part III incorporates the material pre-
viously contained in the Appendices. The revisions — besides the routine ones, 
such as the clarification of several points, the updating of the references, and 
the correction of misprints — comprise additions, too numerous to be listed 
here, to the chapters and sections (including exercises) on both mathematical 
methods and economic applications. Suffice it to say that these additions 
concern useful methods which are new (in the sense that they were not in 
use when the first edition was written, either because they did not then exist 
or because economists had not yet discovered their existence or usefulness), 
economic models which serve to illustrate both old and new methods, and 
new exercises in the form of more substantive and challenging problems (as 
Part III is aimed at more advanced students, no exercises were included there: 
in the author's experience, for these readers the best exercise is to work 
through the original models listed in the references). These revisions, it is 
hoped, will ensure that the book will better achieve its purpose. 

Finally, non-incriminating thanks are due to Dr. Pietro Carlo Padoan, who 
helped to check the revisions, and to Miss Anna Maria Olivari, who so com-
petently carried out the secretarial work. 

University of Rome, June 1979 
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PREFACE TO THE FIRST EDITION 

This book has evolved from undergraduate and graduate courses given by 
the author at the Universities of Rome and of Siena in the last five years. 
Criticism and comments by the students on a provisional Italian edition 
helped in the preparation of the English edition. 

The book aims at giving a simple but comprehensive treatment of some 
mathematical methods commonly used in economic dynamics and at show-
ing how they are utilised to build and to analyse dynamic models. According-
ly, the book focuses on methods, and every new mathematical technique 
introduced is followed by its application to selected models. The unifying 
principle in the exposition of the different economic models is then seen to 
be the common mathematical technique. The process should ultimately en-
able the student to build and to analyse his own models. 

The material is arranged in two Parts and four Appendixes. The latter con-
tain relatively more advanced material (from the mathematical point of view) 
and also the treatment is relatively less simple. The two Parts, as far as the 
mathematics is concerned, follow the same scheme. Although a unified treat-
ment of both difference and differential equations (linear and with constant 
coefficients) would have been more elegant, the author has preferred to keep 
them apart, at the cost of some repetition, in order to avoid confusion to the 
beginner and to make it possible to teach and to study them separately. In the 
appropriate places the formal similarities (and dissimilarities) between the 
two kinds of equations are pointed out. The Appendixes are also independent 
of one another (though each requires the knowledge of some of the material 
contained in the text) so that the teacher (and the student) has freedom of 
choice. 

The various economic models can usually be read independently ; where 
necessary or useful, the connections with other models (whether or not in-
cluded in the book) are indicated. The models included in the book were 
selected to serve the purpose stated at the beginning of this preface; other 
models might often have served equally well. The author thinks, however, 

vii 



viii PREFACE 

that the selection — which includes both old and new contributions - offers 
a general idea of the scope of modern economic dynamics. 

The exercises are problems involving the solution of economic models 
with numerically given values of the parameters. Some of them are fully 
worked out in order to serve both as numerical examples of what has been 
explained and as a guide for the solution of the proposed exercises 

The reader of this book is assumed to have an elementary knowledge of 
the basic principles of economic theory (such as that provided by any good 
general introductory textbook). As far as the mathematics is concerned, no 
previous familiarity with the topics treated is assumed, so that everything is 
worked out in great detail and no essential steps in the argument are omitted. 
The required background for the text consists of elementary algebra (including 
the notion of complex numbers) and (for Part II) of the rudiments of calculus. 
Knowledge of some advanced matrix algebra is needed to understand a few 
proofs in Part I, ch. 8, and Part II, chs. 8 and 9; such proofs, however, are 
given in footnotes (and can be omitted without loss to the main argument, 
which is developed in non-matricial terms). Some more mathematical back-
ground is needed for the Appendixes (e.g., the implicit function theorem and 
the first- and second-order conditions for a free or constrained extremum in 
η variables are used in Appendix I) where the treatment may also, in some 
places, be a bit harder than in the text. 

University of Siena, 1970 
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INTRODUCTION 

"A system is dynamical if its behavior over time is determined by functio-
nal equations in which variables at different points of time are involved in an 
essential woy "(Frisch's and Samuelson's definition).* 

Before commenting on this definition, it may be recalled that, according 
to another definition, economic dynamics is identified with those parts of 
economic theory where every quantity must be dated, whereas in economic 
statics we need not trouble about dating. But in this way we would include 
in dynamics many non-dynamic phenomena. As an example, think of a case 
where all quantities have the same date. This may mean that a certain phe-
nomenon has taken place at a certain point of time (and this may be impor-
tant, but it is not dynamics), or that a variable at time t depends on another 
variable at the same time t (and this too may be important — e.g., consump-
tion is assumed to depend on current income and not on lagged income — 
but, again, it is not dynamics). The definition based on 'dating', then, is too 
vague and cannot be accepted. 

Let us now turn back to the initial definition and explain what afunctio-
nal equation is. The general theory of functional equations is outside the 
scope of this book, and we shall give only some basic notions, which are suf-
ficient for our purposes. 

The basic concept is the following: afunctional equation is an equation 
where the unknown is a function. Everybody knows that to solve an equation 
means to find that value (or those values) of the unknown which satisfy the 
equation. Now, to solve a functional equation means to find an unknown 

* This definition is based on the formal characteristics common to all problems 
studied by economic dynamics. Other definitions, based on the economic substance of 
those problems, are possible (e.g., economic dynamics is concerned with growth, or 
stability, etc.: see the interesting survey by Machlup). But these definitions are inevitably 
partial (a complete definition of this type would reduce to a cumbersome list of prob-
lems, with the danger of omitting some of them). The formal definition, on the con-
trary, is precise and general. 
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Ί INTRODUCTION 

function* which satisfies the functional equation identically. It is important 
to understand that Ίο satisfy identically'means that the function we have to 
find must satisfy the functional equation for any admissible value of the inde-
pendent variable appearing in the function. The following simple example 
may clarify this point. 

Let us consider the functional equationy'(x) —y(x) = 0. We must find a 
specific function (in one independent variable) which satisfies identically the 
stated equation, i.e. a function such that, for any value of its argument, the 
value of the function and the value of its first derivative are equal. It is easy 
to check that this function isy(x) = Ae

x
, since, from elementary calculus, 

y'(x) = A Q x
 = y(x) for any x. Now consider the function^ = ax + b, which 

gives y - a\ if we put χ- {a - b)\a, we have also = a, i.e. y - y. However, 
for any other value of χ the value of the function will be different from a; 
therefoie, the function^ = ax + b does not satisfy identically our functional 
equation. As a matter of terminology, from now on we shall usually omit the 
adjective 'identically', it being understood that 'to satisfy' a functional equa-
tion means to satisfy it identically. 

Now, if we suppose that the symbol χ stands for time**, we are ready to 
understand the second part of the definition of economic dynamics. In fact, 
y\x) - y{x) can be considered as a relation which involves the value oïy at 
any point of time and the value it has at an arbitrarily close point, determined 
by y'. The 'different points of time' clause is necessary to exclude the case, 
already mentioned above, of quantities dated at the same point of time. Time 
must enter in an 'essential' way: for example, if it enters only as a unit of 
measurement (i.e. because we are dealing with quantities which are flows per 
unit of time) the system is not dynamic. 

The types of functional equations most widely used in economic dynamics 
are linear, constant-coefficient difference and differential equations (the 
meaning of these words will be clarified in the following treatment), and to 

* It must be stressed that by 'function' we mean the form of the function, apart 
from arbitrary constants (e.g., = Ae

x
, where A is an arbitrary constant). As we shall 

see when expounding the various functional equations appearing in this book, the solu-
tion of a functional equation determines the form of the unknown function, and the 
determination of the arbitrary constant(s) requires additional conditions. 

* * Of course, the s y m b o l * can stand for any variable. This obvious remark is useful 
to avoid the mistake of believing that in economics functional equations are used only 
in dynamic problems (as an example of a case outside economic dynamics, the classic, 
problem of obtaining a utility function knowing the marginal rate(s) of substitution may 
be recalled). Since this is a book on economic dynamics only, from now on we shall use 
t instead of X, as this convention is commonly adopted. 
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them Parts I and II are devoted; chapters 3 and 4 of Part III are aimed at those 
wanting to know some more types. 

References * 

Baumol, W.J., 1970, Economic Dynamics, ch. 1 and appendix to ch. 8. 

Frisch, R., 1936, On the Notion of Equilibrium and Disequilibrium. 

Hicks, J.R., 1939, 1946, Value and Capital, ch. IX, § 1. 

Hicks, J.R., 1965, Capital and Growth, ch. I. 

Machlup, F., 1959, Statics and Dynamics: Kaleidoscopic Words. 

Samuelson, P.A., 1947, Foundations of Economic Analysis, ch. XI, pp. 3 1 1 - 1 7 . 

Samuelson, P.A., 1949, Dynamic Process Analysis, § § I, II. 

Volterra, V., 1959, Theory of Functional and of Integral and Integro-Differential Equa-

tions, ch. I, pp. 1 - 7 . 

* References will be indicated only by name(s), date, title. Complete information as 

to publisher, place of publication, etc., is contained in the Bibliography at the end of the 

volume. 
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1 

General Principles 

Given a function^ = / ( / ) , its first difference is defined as the difference 
between the value of the function when the argument assumes the value t + h 
and the value of the function corresponding to the value t of the argument. 
In symbols, Ay =f(t+h) — fit). Without loss of generality we can assume 
unit increments of the independent variable, i.e. Ay = f(t + 1) — f(t). 

If we consider successive equally-spaced values of the independent variable 
(t + 1, t + 2, t + 3, etc.) *, we can obtain successive first differences: 

Ay, = f(t+l)-f(t) = y t + l- y t , 

Av f + 1 = f{t + 2) - f{t + 1 ) = yt+2 - y t + l3 

Ayt+2 = fit + 3) - fit + 2) = yt+3 - y[+2 , 

and so on. We can now compute the second differences, i.e. the sequence of 
differences between two successive first differences: 

* It makes no difference whether the values run forwards or backwards (t — \ ,t 

t - 3, etc.) . 

7 



8 GENERAL PRINCIPLES Ch. 1 

Ayt+l - Ayt = (yt+2 - J> i +i ) - Or+l ~^r) 

=yt+2-2yt+i+y(, 

AVr+2 - AVf+i = ^ + 3 2 ^ + 2 + ^ + 1 > 

2 y f + 3 + ^ + 2 , 

and so on. Note that the superscript 2 means that the operation of computing 
the difference has been repeated twice, i.e. that the operator Δ has been ap-
plied twice. 

Proceeding similarly, we can compute the differences between two succes-
sive second differences and obtain the third differences of the function: 

A
3
yt = A

2
yt+l - A

2
yt = (Ayt+2-Ayt+l) - (Ayt+l - Ayt) 

= Ayt+2 - 2Ayt+l + Ayt 

= O r + 3 - y t + l ) -
 2(>V+2 + Or+l "^f) 

= ^ 3 - 3 ^ + 2 + 3 ^ 1 - ^ , 

A
3
yt+i = A

2
yt+2 - A

2
yt+1 = yt+4 - 3yt+3 + 3yt+2 - yt+1 , 

and so on. Higher-order differences can be computed by the reader as an exer-
cise. 

We can now define an ordinary difference equation as a functional equa-
tion involving one or more of the differences Ay, A

2
y, etc., of an unknown 

function of time. Since the argument t varies in a discontinuous way, taking 
on equally spaced values, it follows that our unknown function will be de-
fined only corresponding to these values of t (i.e. the graph of the function 
will be a succession of separated points, as we shall see in detail in ch. 2). 

We have called this equation ordinary because the unknown function is a 
function of only one argument. When the partial differences of a function 
having more than one argument are involved, the equation becomes a partial 
difference equation, a type of functional equation that will not be treated in 
this book. 

The order of a difference equation is that of the highest difference appear-
ing in the equation. If, for example, the highest difference contained is the 
third difference, the equation is of the third order; note that the equation is 
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of the third order independently of the fact that lower-order differences are 
or are not contained in the equation. 

Since the differences of any order can be expressed, as we have seen above, 
in terms of various values of the function, a difference equation may also be 
defined as a functional equation involving two or more of the values^, ,>> r + 1, 
etc., of an unknown function of time. As an example, the difference equation 
aAyt + byt - 0 transforms, if we substitute Ayt

 =
yt+\ - yr i n to t fy f +1 + 

(b - a)yt = 0. In this form, the order of the equation is given by the highest 
difference between time subscripts: if the equation, for example, contains 
yt+3>yt+l

 a n a<
 y ν ^ *

s
 ° ^

t n e t m r a
"

 o r
d e r . We shall consider difference equa-

tions expressed in this second form, as it is the form they commonly take in 
economic models. 

Let us note again that it makes no difference whether the equally spaced 
values of t are computed forwards or backwards, so long as the structure of 
time lags remains unaltered. The equation ayt+i +(b- d)yt - 0, for example, 
is identical with the equation ayt + {b — a)yt-\

 =
 0. The reason is that to 

solve a difference equation means, as we know from the Introduction, to 
find a function (or functions) which satisfies (satisfy) the equation for any 
admissible value of i. This allows us to shift all the time subscripts as we like, 
provided that they are ail shifted by the same amount (neglecting this proviso 
would alter the structure of the equation). 

Consider now the equation Ayt - a, i.e. yt+± — yt-a. In words, the prob-
lem is: find a function such that its first difference equals the given constant 
a for any value of t. It can be checked that the linear function y = at + b satis-
fies the equation, since 

yt+l ~yt=[a(t+\) + b] -(at + b) = a.* 

Note that in the solution function an arbitrary constant (b) appears. This is 
not surprising, since the constancy of first differences is not affected by a 
parallel shift of the straight line. More generally, in the operation of differ-
encing, the presence of an arbitrary constant, that is eliminated in the course 
of the operation, does not alter the result. Therefore, an arbitrary constant 
always appears in the solution of a first-order difference equation, and no 
more than one can appear. 

* Actually, this function is also the only one that satisfies the equation. This is 
shown by the 'existence and uniqueness' theorem, which we shall not treat. All types 
of equations considered in this book are 'well-behaved', i.e. their solution exists and 
is unique. 
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Proceeding further, consider the equation A
2
yt = 0 (find a function such 

that its second difference equals zero for any value of t). The solution is al-
ways the linear function^ = at + b, but now bothtf and b are arbitrary con-
stants; in fact, any straight line has a zero second difference. In general, the 
computation of second differences eliminates in succession two (and only 
two) arbitrary constants. 

We shall see in the following chapters how the arbitrary constant(s) can be 
determined through additional conditions; what interests us here is to note 
that we can induce, from the reasoning given above, the important principle 
that the general solution of a difference equation of order η is a function of t 
involving exactly η arbitrary constants. 

We can now summarize precisely the scope of our treatment. In Part I we 
shall be concerned with linear, constant-coefficient difference equations. The 
general n-th order form of such equations is 

where the c's are given constants andg(i) is a known function. Some c's may 
be zero, but of course both cn and CQ must be different from zero if the equa-
tion is of order n. 

In order to avoid cumbersome sentences, from now on we shall use the 
expression 'difference equations' (or even, when there is no danger of mis-
understanding, simply 'equations') in the sense of 'ordinary difference equa-
tions, linear and with constant coefficients'. 

We must now distinguish between homogeneous and non-homogeneous 
equations. Eq. (1.1) is non-homogeneous; the n-th order homogeneous equa-
tion is 

The following theorems are fundamental in the theory of difference equa-
tions: 

(1) If y γ(ί) is a solution of the homogeneous equation, then Ay±(t\ where A 
is an arbitrary constant, is also a solution. 

The proof is simple. Assume that ^ ( i ) satisfies eq. (1.2). Substitute Ay^{t) 
in the same equation, obtaining 

Wt+n
 + c

n-iyt+n-l
 +

 -
 +

 ^ f + l + cQyt = g(t) , (1.1) 

Wt+n
 + c

n-iyt+n-l
 +

 -
 + c

l^f+l
 + c

^t =
 0
 · (1.2) 

CnAyft+^ + c^Ay^t+n-l)* ...+clAyl(tn) + c0Ayl(t)=0 ; 
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therefore 

Λkv^if+n) + cn_iyi(t+n-\) + ... + c j ^ i f + l ) + c 0 y ^ 0 ] = 0 . 

If Ay^(t) has to be a solution, the last relationship must be satisfied. Since 
y l{t) is a solution of eq. (1.2), the expression in square brackets vanishes, 
and so the relationship 

^ [ V i N + V i ^ - 1 ) + .» +c 1 -F 1( r+ l ) + c 0^ 1(0] = 0 

is satisfied. This proves the theorem. 

(2) If y i(t), y 2(t) are two distinct * solutions of the homogeneous equation 
(n> 1 ), then A ±y j (t) + A 2y2(t)

75 a
^

so a so
^

u
tion for any two constants A ±, 

A2. 
The proof is similar to that of theorem (1) and is left as an exercise. 

Theorem (2) — called the 'superposition theorem' - can easily be extended to 
any number k < η of distinct solutions of eq. (1.2). * * 

To obtain the general solution of eq. (1.2), find η distinct solutions j> j(i), 
y2(t), . . . > > V î ( / ) a n a" combine them (theorem (2)) into the function 

f{t-AvA2,^An) = Aiyi{t)+A2y2{t)+ ...+Anyn{t), (1.3) 

where A^,A2, An are arbitrary constants. Since this function contains 
exactly η arbitrary constants, we can conclude — from the general principle 
expounded before — that it is the general solution of eq. (1.2). The practical 
problem of how to find the η functions y i(t), y 2(t),

 wiU be tackled 
in the following chapters. 

(3) Ify(t) is any particular solution of the non-homogeneous equation, the 
general solution of this same equation is obtained adding y (t) to the general 

* By 'distinct solutions' we mean linearly independent solutions. Let us recall that m 
f u n c t i o n s y \ ( t ) y j>2(0, ...,ym(t) are linearly dependent if m constants Α χ, A2, • •-,Am 

exist, which do not all vanish, and such that the equation A iyx (t) + A2V2(t) + ... + 
+ Amym(t) = 0 is identically satisfied for all admissible values of t. Otherwise the func-
tions are linearly independent. 

** Given a homogeneous equation of order n, a set of η linearly independent solu-
tions is called a fundamental set. 
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solution * of the corresponding homogeneous equation, i.e. 

y{t)+f{t,AvA2,...,An) (1.4) 

is the general solution of the non-homogeneous equation. 
The proof of this theorem can be given substituting (1.4) into (1.1) and 

checking that the latter is satisfied. Since the function (1.4) contains exactly 
η arbitrary constants, it is the general solution of eq. (1.1). 

Theorem (3) contains the method to solve the non-homogeneous equation: 
(a) find a particular solution y{t) of the non-homogeneous equation; 
(b) put g(t) = 0 and solve the resulting homogeneous equation (often 

called the 'reduced' equation); 
(c) add the two results. 
Steps (a) and (b) can be taken in any order; step (c) gives the general solu-

tion of the non-homogeneous equation. 
The particular solution of the non-homogeneous equation will depend, 

ceteris paribus, on the form of the known function g(r). This suggests the 
following general approach: to find a particular solution of the non-homo-
geneous equation, try a function having the same form of g(t) but with un-
determined coefficient(s) (e.g., if g(t) is a constant, try an undetermined 
constant; if it is an exponential function, try the same exponential function 
with an undetermined multiplicative constant, and so on). Substitute this 
function in the non-homogeneous equation and determine the coefficient/'s) 
so that the equation is satisfied. This method — called method of undetermined 
coefficients — will be expounded in more detail in the following chapter. 

We now have enough general principles to pass on to a detailed treatment 
of the difference equations of the various orders. 

* The general solution of the homogeneous equation is then only a part of the gen-

eral solution of the non-homogeneous equation, and so it is not 'general' with respect to 

the latter. This means that the expression 'general solution* must always be qualified. 

A$ a matter of terminology, note the following: (1) some authors use the word 'integral' 

(particular or general) instead of 'solution' but with the same meaning; (2) the expres-

sion 'particular solution' is also used (a) in the sense of a solution obtained from the 

general solution by giving specific values to the arbitrary constants, and (b) in the sense 

of any single non-general solution of the homogeneous equation (i.e., to indicate any 

one of yi(t),y2(t), etc . ); (3) the expression 'complementary function' is used to indi-

cate tjie general solution of the homogeneous equation when considered as a part of the 

general solution of the non-homogeneous equation, and the expression 'reduced equa-

tion' is used to indicate the homogeneous part of a non-homogeneous equation, i.e. the 

corresponding homogeneous equation obtained putting g ( t ) Ξ 0 in the course of the 

procedure to solve a non-homogeneous equation. To avoid confusion, we shall not adopt 

these uses. 
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2 

First-order Equations 

The general form of these equations is 

q ^ + W - i (2.1) 

where c 0 , C± are given constants andg(f) is a known function. The constants 
CQ, must be both different from zero, since if even only one of them is 
zero the equation is no longer a difference equation. 

Let us begin with the study of the homogeneous equation, whose form is 

c
\yt + ^ 0 ^ - 1

 = 0
 > (

2
·

2
) 

or 

j>, + &y f_i = 0 , (2.3) 

where b Ξ CQ/C^ . Suppose that in the initial period (i.e. for t - 0) the func-
tion 7 takes on an arbitrary value A ; from eq. (2.3) we can then compute the 
following sequence: 

y I
 =

 ~by0 = -bA , 

14 
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and so the solution appears to be 

yt = A(-by . (2.4) 

As a check, substitute this function in eq. (2.3): 

A(-bY + bA(-by-
1
 = 0 . (2.5) 

If our function is a solution, eq. (2.5) must hold identically. Now, since 

bA(-b)*-
1
 = - (-b)A(-by-

1
 = -A(-by , 

eq. (2.5) can be written as 

A(-by - A(-by = 0 , (2.6) 

and is indeed satisfied for any value of t. 
Since the function we have found satisfies the difference equation and 

contains one arbitrary constant, we may conclude from general principles 
that it is the general solution. 

The problem remains of how to determine the arbitrary constant. To do 
this we need an additional condition. This need derives from the fact that 
relation (2.4) gives only the/omz of the function y( but not its position in 
the Cartesian plane (r, yt). As soon as the function is constrained to pass 
through a given point, say (t*,y*), its position, which depends on one ar-
bitrary constant only, is determined and the arbitrariness of the constant 
disappears. More formally, the additional condition says that j>r = y* for 
t - t*, where r* and^y* are known values. Substituting these values in (2.4) 
we getj>* =A(—by* and so 

A=y*/(-by* (2.7) 

y2 = ~byl = -b(-bA)= b
2
A , 

y3 = ~by2 = ~b{b
2
A) = -b

3
A , 

y4 = ~by3 = -b(-b
3
A) = b

4
A , 
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In economic problems the value of y in the initial period is usually assumed 

as known, at least in principle, i.e. >>, =y0 for t = 0, which gives,4 = y0. In 

this case, we speak of the initial condition. 
The behaviour over time of the functiony t = A{—b)

f
 depends on the sign 

and on the absolute value of the parameter b. 
As for the sign, if b is negative then — b is positive and the movement is 

monotonie. On the other hand, if b is positive then —b is negative and the 
values of the function will alternate in sign, since the power of a negative 
number is positive (negative) if the exponent is even (odd). This case is 
usually described as an 'oscillatory' movement. However, to distinguish ter-
minologically this kind of movement from the trigonometric (sine or cosine) 
oscillations (which, as we shall see, can arise only in second- or higher-order 
equations), we suggest the expression 'improper oscillations' or 'alternations'. 
'Proper oscillations' or simply Oscillations' would then specifically indicate 
trigonometric oscillations. 

As for the absolute value, if b is in absolute value less (greater) than unity, 
the movement will be convergent (divergent). This conclusion is a consequence 
of the properties of powers: the absolute value of a power, as the exponent 
increases, tends to zero (to infinity) if the absolute value of the base is less 
(greater) than one. In the particular case of | b | = 1, the function shows im-
proper oscillations of constant amplitude (when b= 1) or takes on the con-
stant value A (when b = — 1). 

In fig. 2.1 all kinds of movements are shown (A is assumed to be positive; 
if it were negative, the qualitative behaviour of the solution would not 
change). Note that the diagrams show only a succession of points. This is 
because, as we know, t varies over a set of equally spaced values (0, 1, 2, 3, 
etc.), and so the solution function is defined only corresponding to equally 
spaced values of t. The graphical counterpart of this is a succession of points. 

Of course, in reality time is a continuous variable. When we formalize an 
economic problem in difference equations terms, we (implicitly or explicitly) 
assume that, to all relevant purposes, only what happens at the end of each 
time interval does matter, so that the variables we are analysing may be 
thought of as varying by discrete 'jumps'. What happens during the period is 
not considered, in the sense that all relevant economic activity of each period 
is assumed to be concentrated in a single point of time (the end of the 
period, which is the same as the beginning of the following period). These 
assumptions may or may not be justified according to the nature of the 
problem we are examining; for some further comments on this point, as well 
as on the related point of the use of discrete or of continuous time tools in 
economics, see Part II, ch. 1 (at the end), Part II, ch. 3 , §2 (at the end) and 
Part III, ch. 4, §3 (at the beginning). 
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0 <-b < î -1<-b <0 

0 1 2 3 4 

(a) 

5 t 0 1 2 3 4 5 t 

(b) 

*t 
- b> 1 -b < - 1 

0 

(c) 

t 0 t 

(d) 

-b = 1 -b =- / 

0 

(·) 

t 0 t 

ff) 

Fig. 2 .1 . (a) Monotonie and convergent; (b) Oscillatory and convergent; (c) Monotonie 

and divergent; (d) Oscillatory and divergent; (e) Constant; (f) Oscillatory with constant 

amplitude. 

Going back to the diagrams, the points are usually joined with segments. 
Fig. 2.2 shows two alternative ways of doing this (diagram (b) of fig. 2.1 is 
exemplified). It must be emphasized that the joining of the successive points 
is performed only to help the eye to follow the movement of the solution 
over time. It would be a gross mistake to interpret the segments as describing 
the movement of in each instant of the period: it is not possible to say, 
for example, that for t = OB the value of>> is OC. Such an inference would be 
wrong, s incey t is defined only for t = 0, 1, 2, 3 , . . . , as represented in fig. 2.1. 
If that is understood, graphical representations of the kind depicted in fig. 2.2 
may be adopted safely as a visual aid. 


