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INTRODUCTION

Buckling of <circular cylindrical shells has posed baffling
problems to engineering for many years. In the elastic domain
the problem may now be considered to be solved completely,
thanks to the efforts of numerous authors including the writer
of the present book Professor Yamaki who has contributed the
most extensive and accurate theoretical and experimental data
up to the present time. His work will be the standard reference
for elastic stability, buckling and post-buckling behaviour of

isotropic circular cylindrical shells for many years to come.

W.T. Koiter
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PREFACE

For the design of light-weight structures, it is of great
technical importance to clarify the elastic stability of circu-
lar cylindrical shells under various loading conditions. Hence,
numerous researches have been made on this subject since the
beginning of this century along with the development of air-
craft structures. In the early stage of the relevant research-
es, only approximate solutions were obtained under special
loading and boundary conditions, owing to the inherent mathe-
matical difficulty and physical complexity. Experimental stud-
ies had also been conducted with thin-walled metal test cylin-
ders, but the results were not precise enough to examine and to
improve the corresponding theoretical analyses, due to the de-
teriorating effect of both initial imperfections and plastic
deformations.

With the advent of high-speed digital computers in the 1960s,
it became possible to solve the buckling problem with suffi-
cient accuracy and effects of boundary conditions and further
those of prebuckling edge rotations have been pursued under
various loading conditions. Experimental techniques have also
made a great progress , and nearly perfect test cylinders as
well as highly elastic cylinders sustainable fairly large de-
formations became available , leading to the verification of
reasonable agreement between theory and experiment , not only
for the buckling problem but also for the postbuckling behav-
iors.

This book presents a comprehensive treatise on the elastic
stability of circular cylindrical shells, which represents the
sum of the past 17 years of research conducted at the Institute
of High Speed Mechanics, Tohoku University . Only the static
conservative problems are treated concerning the unstiffened
cylinders made of homogeneous, isotropic elastic material with
constant thickness. Both theoretical and experimental studies

were performed on the buckling, postbuckling and initial-post-

vii
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buckling problems under typical single or combined loadings,
paying due attention to the effect of boundary conditions. Em-
phases were placed on the accurate analyses, precise tests and
extensive presentations of both theoretical and experimental
results, to provide fundamental data for the basic problems on
the elastic stability of cylindrical shells. No attempt is
made to give a complete bibliography, but only the papers
closely related to the specific problems studied in the book
are cited at appropriate places.

In the first chapter, typical nonlinear theories of circular
cylindrical shells are described which constitute the theoreti-
cal foundations of the ensuing analyses throughout the book.
Chapter 2 deals with the buckling problem. First, the basic
equations, the homogeneous linear equations for the eigenvalue
problem, are derived on the basis of the relevant nonlinear
theories, which are applied to the buckling of cylindrical
shells subjected to one of the three fundamental loads, i.e.,
the torsional, pressure and axially compressive loads. Eight
sets of boundary conditions are considered and the critical
load and corresponding mode are clarified for a wide range of
the shell geometry, taking the effect of prebuckling edge rota-
tions into consideration. Most of the analyses are based on the
Donnell equations , the validity of which is examined through
application of the Fliigge equations.

Chapter 3 1is devoted to the postbuckling problems of com-
pletely clamped cylindrical shells subjected to one of the
three fundamental loads. In each case, experimental results
are first presented, carefully conducted by using six polyester
test cylinders, and then the corresponding theoretical results
are given , obtained by applying the Galerkin method to the
Donnell nonlinear equations. Reasonable agreements between the-
ory and experiment are revealed. Analyses for the initial post-
buckling behaviors and imperfection sensitivities corresponding
to the same cases as in the foregoing are presented in Chapter
4. Under each loading condition, the problem is first solved
by .applying the Galerkin procedure directly to the Donnell non-
linear equations and then asymptotic solutions are obtained
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through a perturbation procedure, thus clarifying the degrading
effect of initial imperfections in the shape of the buckling
mode as well as the range of applicability of the so-called
initial postbuckling theory originated by Koiter and developed
by Budiansky.

Buckling and postbuckling problems under combined loads are
treated in Chapter 5, in which the combined actions of hydro-
static pressure together with the torsional, axial and trans-
verse edge loads, respectively, are considered. Finally, effects
of the contained liquid on the buckling and postbuckling of
clamped cylindrical tanks under each of the three fundamental
loads are examined in Chapter 6. In each case above stated,
the buckling problem is theoretically analysed and experimental
results are presented for typical postbuckling behaviors check-
ing the accuracy of the critical load theoretically determined.
Both theoretical and experimental results are given for the
postbuckling problems under the first two loading conditions in
Chapter 5, demonstrating fairly good agreement between theory
and experiment.

Thin-walled circular cylindrical shells have been more and
more extensively used in many different branches of engineering
as most efficient structural members, and the author hopes this
book to be beneficial to deepen the basic understanding of the
complex stability characteristics of this structure and to as-
sess the validity of other numerical procedures such as those
utilizing the finite element method.

The author wishes to acknowledge his sincere gratitude to
Professors Koiter and Budiansky , Editors of the North-Holland
Series in Applied Mathematics and Mechanics, for their sugges-
tion to write this volume and for their kind remarks on the
manuscript. He is also thankful to Drs. Sevenster, Mathematical
Editor at North-Holland, for his courteous and efficient col-
laboration.

The author is indebted to all of his associates, staffs and
students for their contributions, cooperations and assistances
during the past two decades. He appreciates the collaborations
of Drs. J. Tani, S. Kodama and H. Doki, in writing the portions
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of the book related to sections 4.4 and 4.5, 5.2 through 5.7
and 6.2 through 6.7, respectively. He is especially thankful
to Messrs. K. Otomo and T. Sato for preparing the drawings, to
Mr. K. Asano for making the photographs, to Mrs. K. Tsuchiya
and Miss H. Hoshi for typing the manuscripts and to Messrs.
S. Kodama, K. Otomo and T. Sato for their help in editing the

final manuscript.

Noboru YAMAKI
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CHAPTER 1

NONLINEAR THEORY OF CIRCULAR CYLINDRICAL SHELLS

1.1 INTRODUCTION

When an elastic body is subjected to a small deformation in
which displacements as well as derivatives of displacements
are small, that is, deformation with small rotations and small
strains, we will have linear expressions for both displacement
-strain relations and strain-stress relations and the equilib-
rium conditions can be derived at the original undeformed state
neglecting the effect of displacements. Thus, the basic equa-
tions governing the deformation of the body become linear in
terms of displacement, resulting in the classical linear theory
of elasticity [1,2]. When the body is subjected to a large or
finite deformation in which either the rotations or strains are
not small enough in comparison with unity, the above assertions
cease to hold in general and the linear theory becomes inade-
quate. In particular for deformation with small strains
but large rotations, the linear stress-strain relations remain
valid but the nonlinear effect of rotations should be consid-
ered in the displacement-strain relations. Further, the equi-
librium conditions should be examined at the deformed state
considering the effect of displacements. The resulting basic
equations will be nonlinear in terms of displacement, leading
to the nonlinear theory of elasticity [3,4]. In contrast to
the cases wunder the 1linear theory of elasticity, uniqueness
of solution as well as the stability of equilibrium state can
not be generally assured on the basis of the nonlinear theory
of elasticity. In other words, we may have several different
equilibrium configurations under the same loading and boundary
conditions, some of which are stable and the others unstable.
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Of course only the stable equilibrium state can be realized in
the physical world. There have been long debates on the classi-
fication, definition and criterion of the stability of elastic
systems [5,6,7] and although the mathematical theory of elastic

stability has been established by Liapounov for a discrete

system, 1its extension and generalization to a continuous
system, i.e., elastic bodies, does not seem to have been accom-
plished [8]. However, in case when an elastic body is subjected

to a static conservative load, the so-called energy criterion
is generally accepted for the verification of stability, which
requires the total potential energy of the body to assume
a relative minimum at the equilibrium position.

With the advent of aircraft in the beginning of this century,
numerous researches have been conducted to develop most effective
structures in weight and stiffness, leading to the present-day
light-weight structures which are increasingly used in almost
every field of industry. In general, the light-weight struc-
tures are composed of slender columns and thin-walled plates
shells, which are stiff in axial or in-plane deformations but
flexible in bending deformations. Since these structural mem-
bers can be easily deformed into states with finite rota-
tions within the range of small strains, they are susceptible
to various instability phenomena. In fact, when they are sub-
jected to axial or in-plane forces, they often lose stability
at fairly low stress levels, resulting in large bending defor-
mations. The loss of stability is wusually associated with
either an extremal of the equilibrium load or branching of a
new equilibrium configuration, which are called 1imit point
buckling and bifurcation buckling, respectively . Thus, the
buckling problem to determine the critical load and to clarify
the ensuing behavior after buckling has been one of the most
important problems for the development of light-weight struc-
tures.

It is quite difficult to solve the foregoing buckling prob-
lem through a direct application of the general nonlinear theo-
ry of elasticity. On the other hand, the problem of practical
interest is generally restricted to comparatively small fi-

nite deformation of elastic beams, plates and shells, and for
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each of these structural members, linear bending theories
have beenestablished for approximate analyses within the small de-
formation range [9-15] . Hence, as the basic equations for the
buckling problem, the corresponding nonlinear theories have been
developed, taking the effect of the foregoing small finite de-
formation into consideration. Based on these, numerous buckling
problems [10, 16-20] as well as postbuckling problems [21-24]
have been formulated and solved under various loading and bound-
ary conditions. Through these analyses, however , the general
theory of the elastic stability had not been duly explored.

In 1945, Koiter [25] originated the so-called initial postbuck-
ling theory concerning the bifurcation buckling of elastic
bodies subjected to static conservative loads. In this the-
ory, the stability at the bifurcation point is systematically
clarified with the asymptotic analysis of the total potential
energy of the system, through which the initial postbuckling
behavior as well as the effect of small initial imperfections
on the critical load are reasonably predicted. Later, the the-
ory was further developed and refined in connection with
elastic continuous system [26-28] as well as discrete sys-
tem with generalized coordinates [29-31], which have been suc-
cessfully applied to clarify the initial postbuckling behavior
together with the imperfection sensitivity of a wvariety of
elastic systems.

In addition to the afore-mentioned traditional buckling prob-
lems, we have the stability problems under non-conservative loads
[32,33] as well as those under various dynamic loads [34,35].
Further, the problems associated with solid-fluid interac-
tion have attracted increasing interests recently among struc-
tural researchers in various industrial fields [36,37] . In
contrast to the problems under conservative static loading for
which the static energy method is applicable, these problems
should be solved by examining the dynamic response of the system
after the application of perturbation, which makes the analysis
much more complicated. Besides, it is more difficult to define
the stability of motion properly. In spite of these diffi-
culties, long-range intensive studies are expected to continue,
because of the practical importance of these problems.
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The purpose of this book is to clarify the whole aspect of
the basic problems concerning the elastic stability of circu-
lar cylindrical shells under typical loading conditions. Numer-
ous researches have been made on this subject since the thin-
walled circular cylindrical shell constitutes a fundamental
structural element most widely used in the light-weight struc-
tures. However, owing to its mathematical difficulty together
with physical complexity, accurate results, both theoretical
and experimental, have become available only recently with the
advent of high speed computers and highly elastic test mate-
rials.

Because of space limitations, we shall deal with only the
buckling problems under static conservative forces, that is,
the buckling, postbuckling and initial postbuckling problems
under one of the three fundamental loads as well as the buckling
and postbuckling problems under the influence of either the
combined loads or the contained liquid. The emphases are placed
on the accurate analysis and comprehensive numerical results
for the buckling problem, experimental verification of the the-
oretical analysis for the postbuckling problem and clarifica-
tion of the range of applicability of the perturbation method
for the initial postbuckling problem.

In this chapter, we shall briefly explain the typical non-
linear theories of circular cylindrical shells, that is, those
developed by Donnell , Fliigge and Sanders, which will provide
the governing equations for the ensuing analyses throughout
the book.

1.2 DONNELL THEORY

Donnell's nonlinear theory of circular cylindrical shells was
established by Donnell in 1933, in connection with the analysis
of torsional buckling of thin-walled tubes [38]. Owing to its
relative simplicity and practical accuracy, this theory has been
most widely used for analysing both buckling and postbuckling
problems, despite criticisms concerning its applicability.

We shall consider moderately large deformation of a cir-
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cular cylindrical shell with radius
R, length L and thickness h, which is »
made of homogeneous, isotropic elastic <::::::fi:>
material with Young's modules E and
Poisson's ratio v. Along the middle

surface of the shell, the coordinate

l
|

system is taken as shown in Fig. 1.1, X 4 o
and the displacement components will o 2 -
be denoted by U, V and W, respective- &:51————’/)
ly. The Donnell theory is based on 2R

the following assumptions: .
Fig. 1.1 Shell geometry

(1) The shell is sufficiently thin, and coordinate system.
i.e., h/R <« 1, h/L <« 1.

(2) The strains ¢ are sufficiently small, ¢ < 1, and Hooke's
law holds.

(3) Straight lines normal to the undeformed middle surface
remain straight and normal to the deformed middle surface with
their length unchanged.

(4) The normal stress acting in the direction normal to the
middle surface may be neglected in comparison with the stresses
acting in the direction parallel to the middle surface.

(5) Displacements U and V are infinitesimal, while W is of the
same order as the shell thickness, that is, |U| <« h, |V| <« h,
|[W| = 0 (h) .

(6) The derivatives of W are small, but their squares and
productes are of the same order as the strain here considered.
Hence,

JELIELIE

oW, oW LR
X dy

“« 1o (gD, ax 3y

(——) } = 0(e).

(7) Curvature changes are small and the influences of U and
V are negligible so that they can be representedby linear func-
tions of W only.

The assumptions (3) and (4) constitute the so-called Kirchhoff
-Love hypotheses while those from (5) to (7) correspond to the
shallow shell approximations applicable for deformations domi-
nated by the normal displacement W.

Based upon the foregoing assumptions, we have the strain-
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displacement relations in the shell as

€Ex = €401 2 Kx €y = ey0+z»<y s Yxy = ny0+Zl<Xy , (1.2.1)
where
€ =U +—1—W2 € =V -R-1w+lw2
x0 , X 2 X yO0 y 2 vy’
J> (1.2.2)
nyO Uyy + V,x + w,x »y ?
Ky =W yuo Ky =-W gy, Ky == 2W 4y (1.2.3)

In the foregoing, subscripts following a comma stand for partial
differentiation. The stress-strain relations are given by

E —_

Ee = 0O, = VO,, Ee = 0 -\)OX, mey ATXy’

X X y y y

from which the stresses in the shell become

E _E _ E
Oy = 1_T(E:X‘l'\)fiy), Oy = Tj\;—é‘(Sy'f'\)EX), Txy = m\{xy .

(1.2.4)

Here we define the stress resultants and stress couples per unit

length, acting along the x = const. and y = const. sections, as

Jh/z q
(0gs Tygys Txz)dz ,
“n/2 X Xy Xz

(Nx’ ny’ Qx)

h/2
(N N Qy) = J (7 o Tyz)dZ ,

yx* Uy? _hy2 YXTOV?
h/2
My, Myy) = J_h/z(ox, Txy) 2dz ,
_ [h/2
(Myx, My) = J—h/z(TyX, oy)zdz s (1.2.5)
which lead to
1-v
NX=J(9X0+\)EYO), Ny=J(ey0+\)£X0), ny=Nyx=J-—2— nyO s
(1.2.6)
1-v

MX=D(1<X+\)»<y), My=D(Ky+\)KX), Mxy=Myx=D- 7 Kxy *
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In the foregoing, we have introduced the notations

Eh Eh3

=15 D= mavy

(1.2.8)

which stand for the extensional and flexural rigidities of the
shell, respectively.

Now we shall derive the basic equations through a varia-
tional principle. The elastic strain energy, Us(U, V, W), will

be given by

1 (L(27R(h/2
Us = 7 JOJO Iﬁh/z(oxex + oyey + Tnyxy)dX dy dz
B E Lf2mR(h/2 ) ) 1-v ,
= STy JOJO J—h/Z(ex + £y + 2vexey + —E—-yxy)dX(hrdz,

(1.2.9)

while, wunder the assumption of the conservative loading, the

potential of external forces, V (U, V, W), may be expressed as

L27R
Ve = —J J (p,U + p,V + pW) dx dy
f 0lo X y

_Jz'TR[Pj;U +PEV 4 PEW - MEW TRy (1.2.10)
where p,, Py and p are the x, y and z components, respectively,
of the distributed forces per unit area of the shell. Further,
P, P; and P¥ are the components of the external loads, while
Mi is the external bending moment, each per unit length, applied
along the edges. The total potential energy N(U, V, W) is given
by I = U, + V¢. When the shell is in equilibrium, the variation
of the total potential energy assumes a stationary value in the
virtual displacement consistent with the prescribed geometrical

constraint along the boundaries. Thus, we have

8 = 8U, + &Vg = 0, (1.2.11)
where
L¢2mR(h/2
8U, = JOJO J_hlz(oxdex + cydey + Txydyxy)dx dy dz

L(2TR
JO[O (Nxésxo + Nyéeyo + nyényO

+ Mgk, + Myde + MxydKXy) dx dy,
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L(2TR
J (py6U + pyGV + péW) dx dy

5V =-J
£ 0lo

2TR , x=L
_JO [PE6U + PXOV + PX6W - MEsW 1%k dy.

With the help of a Gauss's theorem, the foregoing condition

leads to an equation in the following form:

Lr21R
J J [L16U + L,6V + L36W] dx dy
0’0

2TMR x=L
+ J [BIGU + B,4&V + B35W + 346W ] dy = 0. (1.2.12)
0

»X " x=0

Hence, by setting L; 0 (1 =1,2,3), we obtain the equilibrium

equations as

NX,x + ny,y + Py = 0,
r (1.2.13)
Nyy,x T Ny y ¥y =0,
-1
Mx,xx + 2Mxy,xy + My,yy + R Ny

tONGH L+ N W) o (N W+ NGW ) 4 p = 0,
where the last equation becomes

y -1 =
DV*W - R™*Ny = NyW ey = 2oeyW ey =NJW = p + p W + p.W =0,

sYY s
(1.2.14)

in which
VZ = 32/93x% + 32/3y>2. (1.2.15)

Further, thenatural boundary conditions will be given by B; = 0
(i =1~4), along the boundary where the displacements and/or the
rotation are not specified. Hence, appropriate boundary condi-
tions along x = 0 and x = L may be given by

N, = P¥ or U= U*,
ny = P§ or vV = V¥,
(1.2.16)
My,x + Mgy o +N,W L +N, W o =P} or W=W*,
M, = M¥ or W, =Wk,
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Nx+Ny xdx Myxy +Myxy, x dX
Qx*’Qx de *
’ My + My xdx
\T( : ¥, Vx My x
yx
f Myx+M d
+ y
My i yX yx,y

. My+ My’ydy
My g
Mxy

y

Fig. 1.2 Forces and moments acting on the shell element.

where U*, V¥, W* and Wi, respectively, are the prescribed values
of the displacement components and the rotation along the bound-
ary. Various boundary conditions can be constructed by select-
ing one condition from each pairs in equations (1.2.16). It is
to be added that the foregoing equations (1.2.13) and (1.2.14)
can also be derived by examining the equilibrium of an infini-
tesimal shell element after deformation. We notice that the
intensity as well as the positive direction of the forces and
moments acting on the shell element are as shown in Fig. 1.2.

Then, the equilibrium conditions of the moments about the x and

y axes yield the expressions

d
=M + M = -D—V2W,
Qx Xy X VX,y 3% W L
5, J (1.2.17)
Qy = Myy x + My o = -D—ayv W,

while those of the forces in the X, y and z directions, together
with these expressions, lead to the same results as before.

The aforestated equilibrium equations and the boundary con-
ditions are the required Donnell basic equations for analysing
moderately large deformations of cylindrical shells. The basic

equations for analysing nonlinear free vibrations of the shell
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are given by replacing p,, Py and p with -phU and
—Ohw’ tt?
t is time. It is to be noted that the equilibrium equations

yeer ~PRV g
respectively, where p is the density of the shell and

represent a set of three nonlinear partial differential equa-
tions in terms of U, V and W.

In case when p, = Py = 0, both equilibrium equations (1.2.13)
are identically satisfied with the use of the stress function F
defined by

Ny = F o) Ny = F Lo Ney =-F oy (1.2.18)

while the following relations will be obtained from (1.2.6).

Eh[U , + (1/2)W?,] = Ny -vNy, = F o -VF .,

Eh([V,

y y s XX

- 2 - -
-R 1W+(1/2)W’y] =N, -vN, =F —vF,yy, f (1.2.19)

Eh(U’ +V  +W W ) = 2(l+v)ny = —2(1+v)F’

y y X s X Y xXy*

Eliminating U and V from these, we obtain the compatibility

condition as

V'F o+ ERRTIW L -W W W) =0, (1.2.20)

while the remaining equilibrium equation is rewritten as

DV“W—R_IF, -F W +2F

yy N, xx Wixy ~Fxx ¥ -p = 0.

XX ’yy
(1.2.21)

XX Xy
Equations (1.2.20) and (1.2.21) constitute another set of the
Donnell's basic equations with two unknown functions F and W,
which seem to be more convenient in practical applications than
the preceding ones. Finally, it is to be noted that in case
when R becomes indefinitely large, these equations reduce to
the well-known Kédrmdn equations for large deflections of thin

plates.

1.3 MODIFIED FLUGGE THEORY

Donnell's theory has a deficiency inherent to the shallow
shell approximation that is not applicable to the analysis of the
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deformations of a cylinder in which the magnitude of the in-plane
displacement is of the same order as that of the deflection, for
example, bending deformations of a long cylinder with the cir-
cumferential wave number N less than four. On the other hand,
Fliigge derived basic equations for the buckling of circular cy-
lindrical shells under typical loading conditions [39], without
resort to the shallow shell approximation. These equations are
applicable to the problem with any buckling configuration, in-
cluding the Euler buckling of long shells under axial compres-
sion.However, they are not sufficiently accurate in the sense
that the prebuckling state is assumed to be a membrane stress
state, neglecting the effect of bending deformation. With the
main object of obtaining more accurate governing equations
for the buckling problem, we shall derive the nonlinear basic
equations of the cylindrical shell, on the basis of assumptions
similar to those adopted in the fore-stated Fliigge equations.

In addition to the assumptions (1) to (4) stated in the pre-
ceding section, i.e., those for thinness of the shell, small
strains and Kirchhoff-Love hypotheses, we assume the following

(1) In deriving expressions for stress resultants, we
retain terms with orders up to (h/R)? from unity.

(2) The rotations are moderately small but the effect of their
product and squares on the mid-surface strains will be consid-
ered.

(3) The curvature changes are small enough to allow line-
arized expressions for the bending moment.

The foregoing assumptions seem to be valid at least for finite
deformations immediately after buckling.

We take the coordinate system of the cylinder as shown in
Fig. 1.1 and denote the displacement components by U, V and W,
as before. Letting U, V and Wbe the displacement components of
the shell along the surface which is distant z from the middle
surface, we have

~ P R-z _
U=1U-2zW, vV = —ﬁ—-V - zW’y, W="W. (1.3.1)

For finite deformations, the corresponding strains may be gen-

erally expressed as
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~ 1 =~ ~
ex = U xt 3% (UfX+VfX+WfX),

= R & _ 1 o l 2 r7j2 <7 _l“ 2 03 lN 2
€y T Rz V,y —R_zw + 3 (——R Z) [U,y+ (V’y RW) + (W,y+ RV) ],
~ R ~ R [~ =~ 5 & 1 -~ ~ 1
Yy = Vot rg Uy a0l  *V Ty - g W W (W o+ D

(1.3.2)

Retaining the nonlinear terms for only the strain components

along the middle surface of the shell, we have

_ (2)
€x T U,x B Zw,xx * €x0>
_ R 1 (2) >
Ey = V’y - Ezw’yy - R_—ZW + Eyo, J (1.3.3)
_ R-z R _ (2)
Txy TR V,X * R-z U»y (+ R—z) zw,XY * Yxy0»
where
1
e = 5 W VI AW,
e@ - Ligz 4oy CRTW)Z 4 (W 4RIV 2] (1.3.4)
y0 2 Yy )y )y ’ J o

v o = U LUV (VSR W (W +RTIV)
The corresponding stresses are

_ E _E _ E
oy = m—(ex+\)ey), oy ——1_\)2(ey+vex), Txy 2(1+\,)ny’

(1.3.5)

while the stress resultants and stress couples are defined by

h/2 z
(Nyg, Nyy) = [—hlz(ox’ Tyy) (1 -%) dz ,

h/2
Ny, N) = J_h“(oy, Ty dz

h/2 2 (1.3.6)
M, My = 10 (0, 1) (1= Brzdz

h/2
(My, Myx) = J_h/z(oy, 'ryx)zdz .

Performing integration, we finally obtain
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2z
"

« = JIU 40V, -R7MW) + el +velH +rRIDW o,

Ny = JIV SRV eSD e velH - RTIDW  +R7TW),

Ny = }_;X[J(U,y +V 4720 +RTIDRTU - W )],

My = -DIW, oy + VW o +RTIU L +VV )],

M, = —D(W,yy+R'2W+vW’xx),

My, = - (1-v)D(W,xy+R_1V’X),

My, == (1-V)DIW o+ (1/2R)(V , -U )], (1.3.7

where J and D have been defined by (1.2.8).

The equilibrium equations and the appropriate boundary con-
ditions will be obtained with the use of the stationary princi-
ple of the total potential energy as before. The variation of

the elastic strain energy U, is

sU. = X JLJ“RF“ (0,66 + 066w + Touby.0) (1 -2y dx dy d
= = o, 8¢ o,8¢ T,,8Y -= y dz ,
e T 2 olo Jingp TxUExTOyPEy T TxyYxy R 13.8)

while that of the potential of the external forces Vg may be

expressed as

L(2mR
§Ve = _J'ofo {px6U+py6V+p[—W,x6U - (W’y+R'1V)6V

+ (14U 4V -RTW)SWI} dx dy

_JzﬂR[P§6U+P;‘6V+P§6W—M;’:GW’X]:ZE dy , (1.3.9)
where p, and Py respectively, are the x and y components of
the distributed force applied per unit area of the undeformed
middle surface while p is the intensity of the lateral pressure
acting normal to the deformed middle surface per unit deformed
area. Further, P;, P;, Pg and Mi, respectively, are the com-
ponents of the external load and bending moment applied per unit
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original length of the shell edges x = 0 and x = L. Then, from

the variational principle

U, + oV; = 0, (1.3.10)

we finally obtain the equilibrium equations as follows:

(N (14U 0T Ny (DU 00y + (NGO )y (N U y)
+p, - pW . =0, (1.3.11a)
[Ny (L4V o =R ] + [N (1+V o -RTW]
S RTEM M)+ NV )+ (N V) - RTING LW
+py, - (P+RTIN)W  +R7IV) = 0, (1.3.11b)
-1 _n-1
Mx,xx + (Mxy'*Myx),xy + My’yy + R Ny(1+V,y R™W)
+OINGW N (W g+ RTIV) ] o + [N, W + Ny (W +R7IV) ]
+ RNV, + p(1+U (+V  -RT'W) = 0. (1.3.11c)

0 and x = L are also

The appropriate boundary conditions at x

obtained as

N (1+U ) + N U =P% or U= U,
Mo, b My # M0 o # NW o+ N (W, +R7IV) = PYor W = WY,
My =M or W . =W (1.3.12)

e

In the foregoing, Uu*, V¥, W* and wj, respectively, are the pre-
scribed values of the displacement components and the rotation
along the boundary. Equations (1.3.11) together with (1.3.12)
are the modified Fliigge equations for the finite deformation of
the cylindrical shell, which represent a set of three coupled
nonlinear partial differential equations in U, V and W. The
corresponding linear basic equations will be obtained by omit-
ting the nonlinear terms in the expressions (1.3.3) as well as

(1.3.7). 1In this case, the equilibrium equations become



