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PREFACE

Continuum mechanics deals with deformable bodies. In its early stages it
was confined to a few special materials and to particular situations, namely
to ideal liquids or to elastic solids under isothermal or adiabatic conditions.
In these special cases it is possible to solve the basic problem, i.e., to
determine the flow and pressure distributions or the deformation and stress
fields in purely mechanical terms. This is due to the fact that the solution
can be developed from a set of differential equations which does not
contain the energy balance.

From the viewpoint of general continuum mechanics, however,
problems of this type are singular. Anyone working in this field knows that
sooner or later he gets involved in thermodynamics. The reason for this is
that in general a complete set of differential equations contains the energy
balance. Since part of the energy exchange takes place as heat flow, the
appropriate form of the energy balance is the first fundamental law of
thermodynamics, and it becomes clear therefore that it is generally
impossible to separate the mechanical aspect of a problem from the
thermodynamic processes accompanying the motion. To obtain a solution,
the fundamental laws of both mechanics and thermodynamics must be
applied. In gas dynamics and in thermoelasticity this has long been
recognized.

This situation has its counterpart in thermodynamics. Until recently the
interest in this field was almost exclusively focused on particularly simple
bodies, mainly on inviscid gases, characterized by certain state variables as,
e.g., volume, pressure and temperature. In other bodies, however, or if
viscosity is to be taken into account, one is compelled to use concepts from
continuum mechanics, replacing the volume by the strain tensor and the
pressure by the stress tensor. It may even be necessary to have recourse to
the momentum theorems, and to account for the kinetic energy in
formulating the first fundamental law. In short, thermodynamics cannot
be separated from continuum mechanics.

In view of these statements it becomes clear that continuum mechanics
and thermodynamics are inseparable: a general theory of continuum
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mechanics always includes thermodynamics and vice versa. The entire field
is truly interdisciplinary and requires a unified treatment, which may
properly be denoted as thermomechanics. Such a unified treatment is the
topic of this book.

In order to amalgamate two branches of science, one needs a common
language. Continuum mechanics has always been a field theory, even in its
rudimentary forms like hydraulics or strength of materials. To treat even
such a simple problem as bending of a beam, one must recognize that the
states of strain and stress depend on position and possibly on time. The
object of thermodynamics, on the other hand, has always been a finite
volume, e.g., a mole, and the state within the body has been tacitly
assumed to be the same throughout the entire volume. It is surprising that
this philosophy has been maintained even at the age of statistical and
quantum mechanics, although it is clearly inconsistent with the first
fundamental law in its common form: At least part of the heat supply
appearing in this law is due to heat flow through the surface of the body.
As long as this process goes on, the temperature of the elements near the
surface differs from the one of the elements further inside the body; the
state of the body is therefore not homogeneous.

There are two ways out of this dilemma.

The historical way, still dominating vast areas of teaching in thermody-
namics, consists in the restriction to infinitely slow processes. In place of
actual processes one considers sequences of (homogeneous) equilibrium
states. Except for a few special cases, such idealized processes are practi-
cally reversible, and this explains why in classical thermodynamics (or
rather thermostatics) the limiting case of reversibility plays such a domi-
nant role. However, the engineer engaged in the construction of thermo-
mechanical machinery cannot limit himself to infinitely slow processes and
hence has never taken this restriction seriously. The situation strongly re-
sembles the one in pre-Newtonian mechanics with its attempts to develop
dynamics from purely static concepts.

The modern way out of the dilemma is different but surprisingly simple:
instead of infinitely slow processes one considers infinitesimal elements of
the body in which a process takes place, admitting that the state variables
differ from element to element. In other words: one conceives
thermodynamics as a field theory in much the same way as continuum
mechanics has been treated for more than 200 years. In such a field theory,
reasonably fast processes can be treated with the same ease as slow ones,
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and restriction to reversible processes becomes unnecessary. Finally, this
field theory is the proper form in which thermodynamics and continuum
mechanics are easily amalgamated.

The strong interdependence of continuum mechanics and
thermodynamics was generally recognized about three decades ago.
Various schools have since contributed to thermomechanics, each from its
point of view and in its own language or formalism. It is not the aim of this
book to report on the various approaches nor to compare them. The book
is intended as an introduction to this fascinating field, based on the
simplest possible approach.

Except for an introduction to the theory of cartesian tensors the first
three chapters are concerned with the mechanical laws governing the
motion of a continuum. They are based on considerations of mass
geometry, on the principle of virtual power and on a general form of the
reaction principle. It is well known that the most general approach to
continuum mechanics makes use of the displacement field and of material,
and hence curvilinear, coordinates. For a beginner, however, this approach
presents considerable mathematical difficulties that are apt to obscure the
physical contents. Since physics deserves priority in an introduction of this
type, a treatment based on the velocity field has many advantages and has
therefore been preferred. This kind of approach has been presented in a
masterly fashion by Prager in his ‘‘Introduction to Mechanics of
Continua’’, and since there is not much point in making changes just for
the sake of originality, the first three chapters and certain portions of the
subsequent applications are similar to the corresponding parts of Prager’s
book.

Chapter 4 deals with thermodynamics. It starts from the classical
representation, familiar from textbooks in this field, introduces and
discusses the concept of (independent and dependent) state variables, and
shows how the fundamental laws can be formulated in terms of a field
theory. A characteristic point of the present treatment is the fact that the
stress appears as the sum of a quasiconservative and a dissipative stress.
The first is a state function, dependent on the free energy, the second is
connected with the dissipation function. In view of later developments
(Chapter 14) the role of the two functions is emphasized. The deformation
history is represented in the simplest possible manner, namely by internal
parameters.

Chapter 5 deals with the characteristic properties of various materials. A
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rough classification of bodies is presented, and the constitutive equations
of some continua are discussed. The general theorems established in the
preceding chapters, supplemented by the proper constitutive relations,
determine the thermomechanical behavior of a given body. This is
illustrated in Chapters 6 through 11, which deal with the application of the
theory to various types of continua.

Chapters 12 and 13 contain a short outline of general tensors and their
application in the study of large displacements. The representation follows
the lines of Green and Zerna in their excellent book on ‘‘Theoretical
Elasticity’’. The inclusion of this material makes it possible, in particular,
to point out (a) the importance of a proper choice of the strain measure and
of the corresponding stress, and (b) the difference between covariant and
contravariant components of a tensor, essential for the proof of the
orthogonality condition in Chapter 14.

Up to and including Chapter 13 the subject matter, in spite of a personal
tinge in the presentation, remains within confines that appear to be
generally accepted by now. The remainder of the book transgresses these
traditional limits. It may be considered, together with Chapter 4, as a
synopsis of the author’s contributions to thermomechanics, published
from 1957 onwards, occasionally with the assistance of Dr. Jiirg Ndnni and
Professor Christoph Wehrli. It is clear that in a synopsis of this type many
points which once seemed essential but have lost their importance can be
dropped, and it is equally obvious that many thoughts which once
appeared vague have since assumed a more concise form. Incidentally, in a
field which is still in a state of development a certain amount of
controversy cannot be avoided; in this respect I assume full responsibility
for the final chapters.

Chapter 14 returns to the basis of thermodynamics. The classical theory,
restricted to reversible processes, tacitly excludes gyroscopic forces. With
exactly the same right they may be excluded in the irreversible case. The
obvious way of doing this is to assume that the dissipative stresses are
determined by the dissipation function alone much in the same way as the
quasiconservative forces depend on the free energy. For certain systems, to
be called elementary, the connection between dissipative stresses and
dissipation function then turns out to have the form of an orthogonality
condition, and it follows that two scalar functions, the free energy and the
dissipation function (or the rate of entropy production) completely govern
any kind of process.
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Chapter 15 shows that the orthogonality condition is equivalent to a
number of extremum principles, among them a principle of maximal rate
of entropy production. This last principle suggests a generalization of the
orthogonality condition for systems of the so-called complex type. This
generalization will be referred to as the orthogonality principle, and it is
easy to see that it reduces to Onsager’s symmetry relations in the linear
case. Finally, Chapters 16 through 18 are concerned with applications of
the orthogonality condition and the orthogonality principle to various
types of continua.

As already mentioned, I have tried to keep the mathematical formalism
as simple as possible. I assume, however, that the reader is familiar with
vector algebra and analysis, with the basic laws of mechanics and
thermodynamics, with the elements of geometry in n-dimensional space
and of the theory of functions, and with the notion of convexity. To
provide the reader with a means of testing his grasp of the matter,
problems have been added at the end of each section wherever this was
possible.

In the second edition of this book the thermodynamic aspect of
continuum mechanics has been stressed wherever this seemed desirable;
besides, some weak points have been strengthened. In Chapter 1 a section
dealing mainly with invariants has been added, and in this context the basic
invariants of second-order tensors have been redefined. Chapters 11 and
18, dealing with viscoelasticity, have been extended to include thermal
effects. The first one appears supplemented by a section, the second one
has been completely rewritten. Section 14.4 appears in a new form, as do
Chapter 16, on non-Newtonian liquids, and Chapter 17, on plasticity. In
Chapter 15 a section dealing with the derivation of the second fundamental
law from the orthogonality condition has been added. On the whole, the
terminology has been simplified, particularly in connection with the
classification of materials (fluids, solids and viscoelastic bodies). Many
minor changes have been made, and misprints of the first edition have been
eliminated. Most of the problems have been reformulated in such a way
that they now show the main results.

I am greatly indebted to Professors William Prager and Warner T.
Koiter, who have both critically read the manuscript of the first edition and
provided numerous suggestions for improvement. I am also grateful to
Professors Ralph C. Koeller and William L. Wainwright for pointing out
that some of the applications in Section 15.3 and Chapter 16 lacked



generality. A special word of thanks is due to my son, Professor
Hansheinrich Ziegler, for his valuable linguistic assistance in the
preparation of the text. I finally express my gratitude to Dr. Carlo Spinedi
for his help, particularly in proofreading, and to the Daniel Jenny
Foundation for support in the preparation of the drawings.

Ziirich, July 1982 Hans Ziegler
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CHAPTER 1

MATHEMATICAL PRELIMINARIES

In order to describe the configuration of an arbitrary body, we need a
reference system, e.g., a rigid body or frame serving as a basis for the
observer. Any quantitative treatment requires a coordinate system fixed to
this reference frame. Our first task is to develop the mathematical tools
needed for the description of the motion or, more generally, of any process
in which the body in consideration takes part. The mathematical
framework must be consistent with the fact that the choice of the
coordinate system is arbitrary. In consequence, our starting point must be
the study of coordinate transformations. Restricting ourselves in this
chapter to cartesian coordinate systems, we will develop the concept of the
cartesian tensor.

1.1. Cartesian tensors

Let us refer (Fig. 1.1) the three-dimensional physical space to a given

X3 Xz
XS
\ iS op

I

X

/i:

Fig. 1.1. Cartesian coordinate systems.




reference frame and here to a cartesian, i.e., rectangular and rectilinear,
coordinate system x,, x,, X3 with unit vectors iy, i, i; along the coordinate
axes. The axes X, (p =1, 2, 3) with unit vectors I, define another cartesian
coordinate system with the same origin O. Denoting the cosines between
the axes X, and x; by c,;, we have, for arbitrary indices p and i between 1
and 3,

Cpi =08 (Xp, X)) =1,-i;. (1.1)

Let P be a point with coordinates x; in the first system. Its coordinates in
the second system are the projections of the radius vector (or, equivalently,
of the sequence of straight segments representing the x;) onto the axes X, P
Making use of (1.1), we obtain

Xy =cpx +epxy+o3xs,
Xo=c31x + X + Cp3x3, (1.2)

X3=0C31X) + C30X2 + €333

as coordinate transformations between the two coordinate systems. It is
easy to see that the inversions are

Xy =c X1+ Xy + 631 X3,
Xy =Cpp X + Xy + 03X, (1.3)
X3 =C13X1 +C23X2+C33X3.

A more compact way to write (1.2) and (1.3) is

3 3
X,= ’Zl CpiXis X;= le CpiXps (1.4)
where p is free in the first equation, and / in the second one. We may even
dispense of the summation symbol by adopting, once and for all, the so-
called summation convention stipulating that whenever a letter index
appears twice in a product the sum is to be taken over this index. We thus
write, in place of (1.4),

Xp=cp,»x,», X,'=Cp,'Xp. (15)

It is clear that an index appearing once in a term of an equation like (1.5)
must appear in every single term. On the other hand, the summation index
is sometimes called a dummy index since it may be replaced by any other
letter. Such a replacement may become necessary to avoid indices



appearing more than twice. To insert (1.5), into (1.5),, e.g., it is necessary
to write (1.5), in the form

X=X, (1.6)
Thus,
X, =cpiceiX, andsimilarly x;=cpc,x;, 1.7

where the right-hand sides are double sums.

It is obvious that the coefficient of X, in (1.7); must be 1 for g=p and 0
for g#p. A similar statement holds for (1.7),. Introducing the so-called
Kronecker symbol

(1 forp=gq,
%pa = {0 for p#gq, 1.8)
we thus have
Cpicqi=5pq’ Cpicpj=6ij' (19)

These equations might be interpreted as orthonormality conditions; they
are valid only in orthogonal coordinate systems.
The c,; may be written as a matrix,

cn €2 Ci3
Cpi= Cyy Cpp C3 | . (110)
G €2 C33

Here the first index indicates the line, the second the column in which a
given element is situated. For any fixed value of p the c¢,;, appearing in the
p-th line of the matrix (1.10), are, according to (1.1), the components of
the unit vector I, in the coordinate system x;. Thus, the determinant of the
matrix is the triple product

detc,,,-=l,-(12><13). (1.11)
It follows that
det Gi= *1, (1.12)

where the positive sign corresponds to the case where both coordinate
systems are right- or left-handed, the negative sign to the case where one of
them is right-handed and the other one left-handed. In the first case the
second coordinate system is obtained from the first one by a rotation about



O, in the second case a reflection on a plane passing through O must be
added.
Making once more use of (1.1), we obtain

I, = (I, i)i; = cpji;, b= I)I,=cy1,. (1.13)

Comparing this to (1.5), we note that the base vectors of the two cartesian
coordinate systems transform as the coordinates of a point (or,
equivalently, as the components of its radius vector). In non-cartesian
coordinate systems, this would not be true.

Our present interpretation of (1.2) is this: P is a point fixed in space, i.e.,
in our reference frame, and (1.2) connects its coordinates in different
cartesian systems. Another interpretation, to be used later, considers (1.2)
as representing a displacement with respect to the reference frame: the
coordinate system is fixed and the X, are the instantaneous positions of the
points with original positions x;. The displacement is obviously a rotation
about O, possibly combined with a reflection on a plane passing through
0.

A scalar A is a quantity which is independent of the coordinate system.
Denoting the corresponding quantity in the system X, by A, we thus have

A=A (1.14)

A vector v has a direction and hence three components v;. The vector
itself is independent of the coordinate system; its components transform as
the coordinates of a point (the end point of v when the coordinate origin is
chosen as the starting point), i.e., according to (1.5),

Vp=piv;, Vi=Cpi Vp. (1.15)

Thus, a vector might be defined as a triplet of components transforming
according to (1.15), and this definition might be used to obtain some of the
rules of vector algebra, supplying, e.g., the product Av of a scalar and a
vector or the scalar product u-v of two vectors.

Generalizing (1.15), let us define a cartesian tensor of order n as a set of
3" components ¢; _; transforming according to

qu...s’_‘cpicqj'--csltij...l’ tij...1=cpicqj-~-cslqu...s- (1.16)

Note that the order of the tensor is given by the number of its indices. In
accordance with this definition, a scalar A may be considered as a tensor of
order zero. A vector is a tensor of order one, symbolically denoted by v.



