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Preface to the Second Edition

For the past 12 years I have taught a course based on this book at the
University of San Francisco. It is a first-year seminar, intended mainly
for students in non-mathematical courses. In keeping with the theme
of the book, the seminar is entitled "Mathematics and the Impossible,"
and it has been pitched as follows:

This course is a novel introduction to mathematics and
its history. It puts the difficulties of the subject upfront
by enthusiastically tackling the most important ones: the
seemingly impossible concepts of irrational and imaginary
numbers, the fourth dimension, curved space, and infin-
ity. Similar "impossibilities" arise in music, art, literature,
philosophy, and physics—as we will see—but math has the
precision to separate actual impossibilities from those that
are merely apparent. In fact, "impossibility" has always
been a spur to the creativity of mathematicians, and a ma-
jor influence on the development of math. By focusing
reason and imagination on several apparent impossibili-
ties, the course aims to show interesting math to students
whose major may be in another field, and to widen the
horizons of math students whose other courses are nec-
essarily rather narrowly focused.

Thus the aim of the seminar is to introduce students to the ideas of
mathematics, rather than to drill them in mathematical techniques.
But (as all mathematicians know) mathematics is not a spectator sport.
So it has been my practice to give exercises alongside classroom discus-
sion of the book, to ensure that students grapple with interesting ideas
for themselves. Since other teachers may also decide to give courses

vii
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based on the book, I have decided to produce this second edition, which
includes the exercises I have used with my class and many more.

The exercises are distributed in small batches after most sections,
and a batch should be attempted by students after the corresponding
section has been discussed in class. Some of the exercises are quite
routine—intended to reinforce the ideas just discussed—but other ex-
ercises serve to extend the ideas and develop them in interesting direc-
tions. There are also exercises that fill gaps by supplying proofs of re-
sults claimed without proof in the text, or by answering questions that
are likely to arise. The more advanced exercises are accompanied by
commentary that explains their context and background. In this way
I have been able to cover several topics that will be of interest to more
ambitious readers.

Of course, it is by no means necessary to use the book in the context
of a course. I hope that it will continue to be used for recreational read-
ing or self-study, and that even the casual reader will be tempted to try
some of the exercises. However, for those teachers who have wished to
give a course based on the book, I hope that teaching from it has now
become much easier.

John Stillwell
San Francisco
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Preface

The germ of this book was an article I called (somewhat tongue-in-
cheek) “Mathematics Accepts the Impossible.” I wrote it for the Monash
University magazine Function in 1984 and its main aim was to show
that the “impossible” figure shown above (the Penrose tribar) is actu-
ally not impossible. The tribar exists in a perfectly reasonable space,
different from the one we think we live in, but nevertheless meaningful
and known to mathematicians. With this example, I hoped to show a
general audience that mathematics is a discipline that demands imag-
ination, perhaps even fantasy.

There are many instances of apparent impossibilities that are im-
portant to mathematics, and other mathematicians have been struck
by this phenomenon. For example, Philip Davis wrote in The Mathe-
matics of Matrices of 1965:

It is paradoxical that while mathematics has the reputation
of being the one subject that brooks no contradictions, in
reality it has a long history of successfully living with con-
tradictions. This is best seen in the extensions of the no-
tion of number that have been made over a period of 2500
years . . . each extension, in its way, overcame a contradic-
tory set of demands.

Mathematical language is littered with pejorative and mystical terms
such as irrational, imaginary, surd, transcendental that were once used
to ridicule supposedly impossible objects. And these are just terms ap-
plied to numbers. Geometry also has many concepts that seem impos-
sible to most people, such as the fourth dimension, finite universes,
and curved space—yet geometers (and physicists) cannot do without
them. Thus there is no doubt that mathematics flirts with the impossi-
ble, and seems to make progress by doing so.

ix
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The question is: why?
I believe that the reason was best expressed by the Russian mathe-

matician A. N. Kolmogorov in 1943 [31, p. 50]:

At any given moment there is only a fine layer between the
“trivial” and the impossible. Mathematical discoveries are
made in this layer.

To put this another way: mathematics is a story of close encoun-
ters with the impossible because all its great discoveries are close to
the impossible. The aim of this book is to tell the story, briefly and
with few prerequisites, by presenting some representative encounters
across the breadth of mathematics. With this approach I also hope to
capture some of the feeling of ideas in flux, which is usually lost when
discoveries are written up. Textbooks and research papers omit en-
counters with the impossible, and introduce new ideas without men-
tioning the confusion they were intended to clear up. This cuts long
stories short, but we have to experience some of the confusion to see
the need for new and strange ideas.

It helps to know why new ideas are needed, yet there is still no
royal road to mathematics. Readers with a good mathematical back-
ground from high school should be able to appreciate all, and under-
stand most, of the ideas in this book. But many of the ideas are hard
and there is no way to soften them. You may have to read some pas-
sages several times, or reread earlier parts of the book. If you find
the ideas attractive you can pursue them further by reading some of
the suggested literature. (This applies to mathematicians too, some of
whom may be reading this book to learn about fields outside their spe-
cialty.)

As a specific followup, I suggest my book Mathematics and Its His-
tory, which develops ideas of this book in more detail, and reinforces
them with exercises. It also offers a pathway into the classics of math-
ematics, where you can experience “yearnings for the impossible” at
first hand.

Several people have helped me write, and rewrite, this book. My
wife, Elaine, as usual, was in the front line; reading several drafts and
making the first round of corrections and criticisms. The book was also
read carefully by Laurens Gunnarsen, David Ireland, James McCoy, and
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Abe Shenitzer, who gave crucial suggestions that helped me clarify my
general perspective.

Acknowledgments. I am grateful to the M. C. Escher Company-Baarn-
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I also thank the Artists Rights Society of New York for permission to
reproduce the Magritte picture La reproduction interdite shown in Fig-
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Chapter 1

The Irrational

Preview

What are numbers and what are they for? The simplest answer is that
they are the whole numbers 1, 2, 3, 4, 5, . . . (also called the natural num-
bers) and that they are used for counting. Whole numbers can also
be used for measuring quantities such as length by choosing a unit of
measurement (such as the inch or the millimeter) and counting how
many units are in a given quantity.

Two lengths can be accurately compared if there is a unit that mea-
sures them both exactly—a common measure. Figure 1.1 shows an ex-
ample, where a unit has been found so that one line is 5 units long and
the other is 7 units long. We can then say that the lengths are in the
ratio of 5:7.

Figure 1.1: Finding the ratio of lengths.

If a common measure exists for any two lines, then any two lengths
are in a natural number ratio. Mathematicians once dreamed of such a
world—in fact, a world so simple that natural numbers explain every-
thing. However, this “rational” world is impossible.

The ancient Greeks discovered that there is no common measure
for the side and diagonal of a square. We know that when the side is 1

1
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Chapter 1. The Irrational 2

the diagonal is
p

2, hence
p

2 is not a ratio of natural numbers. For this
reason,

p
2 is called irrational.

Thus
p

2 lies outside the rational world, but is it nevertheless possible
to treat irrational quantities as numbers?

1.1 The Pythagorean Dream

It is clear that two scientific methods will lay hold of and
deal with the whole investigation of quantity; arithmetic,
absolute quantity, and music, relative quantity.

Nicomachus, Arithmetic, Chapter III

In ancient times, higher learning was divided into seven disciplines.
The first three—grammar, logic, rhetoric—were considered easier and
made up what was called the trivium (which is where our word “triv-
ial” comes from). The remaining four—arithmetic, music, geometry,
astronomy—made up the advanced portion, called the quadrivium.
The four disciplines of the quadrivium are naturally grouped into two
pairs: arithmetic and music, and geometry and astronomy. The con-
nection between geometry and astronomy is clear enough, but how
did arithmetic become linked with music?

According to legend, this began with Pythagoras and his immediate
followers, the Pythagoreans. It comes down to us in the writings of
later followers such as Nicomachus, whose Arithmetic quoted above
was written around 100 CE.

Music was linked to arithmetic by the discovery that harmonies
between the notes of plucked strings occur when the lengths of the
strings are in small whole number ratios (given that the strings are of
the same material and have the same tension). The most harmonious
interval between notes, the octave, occurs when the ratio of the lengths
is 2:1. The next most harmonious, the fifth, occurs when the ratio of
the lengths is 3:2, and after that the fourth, when the ratio is 4:3. Thus
musical intervals are “relative” quantities because they depend, not on
actual lengths, but on the ratios between them. Seeing numbers in mu-
sic was a revelation to the Pythagoreans. They thought it was a glimpse
of something greater: the all-pervasiveness of number and harmony in
the universe. In short, all is number.
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3 1.1. The Pythagorean Dream

We now know that there is a lot of truth in this Pythagorean dream,
though the truth involves mathematical ideas far beyond the natural
numbers. Still, it is interesting to pursue the story of natural numbers
in music a little further, as later developments clarify and enhance their
role.

The octave interval is so harmonious that we perceive the upper
note in some way as the “same” as the lower. And we customarily divide
the interval between the two into an eight-note scale (hence the terms
“octave,” “fifth,” and “fourth”)—do, re, mi, fa, so, la, ti, do—whose last
note is named the same as the first so as to begin the scale for the next
octave.

But why do notes an octave apart sound the “same”? An explana-
tion comes from the relationship between the length of a stretched
string and its frequency of vibration. Frequency is what we actually
hear, because notes produced by (say) a flute and a guitar will have the
same pitch provided only that they cause our eardrum to vibrate with
the same frequency. Now if we halve the length of a string it vibrates
twice as fast, and more generally if we divide the length of the string by
n, its frequency is multiplied by n. This law was first formulated by the
Dutch scientist Isaac Beeckman in 1615. When combined with knowl-
edge of the way a string produces a tone (actually consisting of many
notes, which come from the modes of vibration shown in Figure 1.2), it
shows that each tone contains the tone an octave higher. Thus it is no
wonder that the two sound very much the same.

A string has infinitely many simple modes of vibration: the fun-
damental mode in which only the endpoints remain fixed, and higher
modes in which the string vibrates as if divided into 2,3,4,5, . . . equal
parts. If the fundamental frequency is f , then the higher modes have
frequencies 2 f ,3 f ,4 f ,5 f , . . . by Beeckman’s law.

When the string is plucked, it vibrates in all modes simultaneously,
so in theory all these frequencies can be heard (though with decreas-
ing volume as the frequency increases, and subject to the limitation
that the human ear cannot detect frequencies above about 20,000 vi-
brations per second). A string with half the length has fundamental
frequency 2 f —an octave higher—and higher modes with frequencies
4 f ,6 f ,8 f ,10 f , . . . . Thus all the frequencies of the half-length string are
among those of the full-length string.
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Chapter 1. The Irrational 4

Figure 1.2: Modes of vibration.

Since frequency doubling produces a tone that is “the same only
higher,” repeated doubling produces tones that are perceived to in-
crease in equal steps. This was the first observation of another remark-
able phenomenon: multiplication perceived as addition. This property
of perception is known in psychology as the Weber-Fechner law. It also
applies, approximately, to the perception of volume of sound and in-
tensity of light. But for pitch the perception is peculiarly exact and it
has the octave as a natural unit of length.

The Pythagoreans knew that addition of pitch corresponds to mul-
tiplication of ratios (from their viewpoint, ratios of lengths). For exam-
ple, they knew that a fifth (multiplication of frequency by 3/2) “plus” a
fourth (multiplication of frequency by 4/3) equals an octave because

3

2
× 4

3
= 2.

Thus the fifth and fourth are natural steps, smaller than the octave.
Where do the other steps of the eight-note scale come from? By adding
more fifths, the Pythagoreans thought, but in doing so they also found
some limitations in the world of natural number ratios.
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5 1.1. The Pythagorean Dream

If we add two fifths, we multiply the frequency twice by 3/2. Since

3

2
× 3

2
= 9

4
,

the frequency is multiplied by 9/4, which is a little greater than 2. Thus
the pitch is raised by a little over an octave. To find the size of the step
over the octave we divide by 2, obtaining 9/8. The interval in pitch cor-
responding to multiplication of frequency by 9/8 corresponds to the
second note of the scale, so it is called a second. The other notes are
found similarly: we “add fifths” by multiplying factors of 3/2 together,
and “subtract octaves” by dividing by 2 until the “difference” is an in-
terval less than an octave (that is, a frequency ratio between 1 and 2).

After 12 fifths have been added, the result is very close to 7 octaves,
and one also has enough intervals to form an eight-note scale, so it
would be nice to stop. The trouble is, 12 fifths are not exactly the same
as 7 octaves. The interval between them corresponds to the frequency
ratio (

3

2

)12

÷27 = 312

219 = 531441

524288
= 1.0136... .

This is a very small interval, called the Pythagorean comma. It is about
1/4 of the smallest step in the scale, so one fears that the scale is not
exactly right. Moreover, the problem cannot be fixed by adding a larger
number of fifths. A sum of fifths is never exactly equal to a sum of oc-
taves. Can you see why? The explanation is given in the last section of
this chapter.

This situation seems to threaten the dream of a “rational” world,
a world governed by ratios of natural numbers. However, we do not
know whether the Pythagoreans noticed this threat in the heart of their
favorite creation, the arithmetical theory of music. What we do know
is that the threat became clear to them when they looked at the world
of geometry.

Exercises

The interval from the first note of the scale to the second is also called
a tone, and the seven intervals in the usual scale C, D, E, F, G, A, B, C
(from C to D, from D to E, . . . , from B to C) are
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Chapter 1. The Irrational 6

tone, tone, semitone, tone, tone, tone, semitone

respectively. Thus the interval from C to the next C is six tones, which
should correspond to the frequency ratio of 2.

1.1.1 If a tone corresponds to a frequency ratio of 9/8, as the Pythagore-
ans thought, explain why an interval of six Pythagorean tones
corresponds to a frequency ratio of 96/86.

1.1.2 Show that 96/86 is not equal to 2.

1.1.3 Show that, in fact, 96/86 divided by 2 is 531441
524288 (a “Pythagorean

comma”).

In music today the interval from C to the C one octave higher is
divided into 12 equal semitones with the help of extra notes called C#

(lying between C and D, and pronounced “C sharp”), D#, F#, G#, and
A#. These are the black keys on the piano.

1.1.4 Which note divides the octave from C to C into two equal inter-
vals?

1.1.5 Find notes which divide the octave from C to C into

a. Three equal intervals.

b. Four equal intervals.

c. Six equal intervals.

1.2 The Pythagorean Theorem

The role of natural numbers in music may be the exclusive discovery of
the Pythagoreans, but the equally remarkable role of natural numbers
in geometry was discovered in many other places—Babylonia, Egypt,
China, India—in some cases before the Pythagoreans noticed it. As
everyone knows, the Pythagorean theorem about right-angled trian-
gles states that the square on the hypotenuse c equals the sum of the
squares on the other two sides a and b (Figure 1.3).

The word “square” denotes the area of the square of the side in
question. If the side of the square has length l units, then its area is
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7 1.2. The Pythagorean Theorem

a

b

c

Figure 1.3: The Pythagorean theorem.

naturally divided into l × l = l 2 unit squares, which is why l 2 is called
“l squared.” Figure 1.4 shows this for a side of length 3 units, where the
area is clearly 3×3 = 9 square units.

Figure 1.4: Area of a square.

Thus if a and b are the perpendicular sides of the triangle, and c is
the third side, the Pythagorean theorem can be written as the equation

a2 +b2 = c2.

Conversely, any triple (a,b,c) of positive numbers satisfying this equa-
tion is the triple of sides of a right-angled triangle. The story of natural
numbers in geometry begins with the discovery that the equation has
many solutions with natural number values of a, b, and c, and hence
there are many right-angled triangles with natural number sides. The
simplest has a = 3, b = 4, c = 5, which corresponds to the equation

32 +42 = 9+16 = 25 = 52.
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The next simplest solutions for (a,b,c) are (5,12,13), (8,15,17), and
(7,24,25), among infinitely many others, called Pythagorean triples. As
long ago as 1800 BCE, the Babylonians discovered Pythagorean triples
with values of a and b in the thousands.

The Babylonian triples appear on a famous clay tablet known as
Plimpton 322 (from its museum catalog number). Actually only the b
and c values appear, but the a values can be inferred from the fact that
in each case c2−b2 is the square of a natural number—something that
could hardly be an accident! Also, the pairs (b,c) are listed in an order
corresponding to the values of b/a, which steadily decrease, as you can
see from Figure 1.5.

a

b
c

a b c b/a
120 119 169 0.9917

3456 3367 4825 0.9742
4800 4601 6649 0.9585

13500 12709 18541 0.9414
72 65 97 0.9028

360 319 481 0.8861
2700 2291 3541 0.8485

960 799 1249 0.8323
600 481 769 0.8017

6480 4961 8161 0.7656
60 45 75 0.7500

2400 1679 2929 0.6996
240 161 289 0.6708

2700 1771 3229 0.6559
90 56 106 0.6222

Figure 1.5: Triangles derived from Plimpton 322.

As you can also see, the slopes form a rough “scale,” rather densely
filling a range of angles between 30◦ and 45◦. It looks as though the
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Babylonians believed in a world of natural number ratios, rather like
the Pythagoreans, and this could be an exercise like subdividing the
octave by natural number ratios. But if so, there is a glaring hole in
the rational geometric world: right at the top of the scale there is no
triangle with a = b.

It is to the credit of the Pythagoreans that they alone—of all the
discoverers of the Pythagorean theorem—were bothered by this hole
in the rational world. They were sufficiently bothered that they tried to
understand it, and in doing so discovered an irrational world.

Exercises

Each Pythagorean triple (a,b,c) in Plimpton 322 can be “explained” in
terms of a simpler number x, given in the following table. (The num-
bers x are not in Plimpton 322 but, as we explain below, they provide a
very plausible explanation of it.)

a b c x
120 119 169 12/5

3456 3367 4825 64/27
4800 4601 6649 75/32

13500 12709 18541 125/54
72 65 97 9/4

360 319 481 20/9
2700 2291 3541 54/25

960 799 1249 32/15
600 481 769 25/12

6480 4961 8161 81/40
60 45 75 2

2400 1679 2929 48/25
240 161 289 15/8

2700 1771 3229 50/27
90 56 106 9/5

For each line in the table,

b

a
= 1

2

(
x − 1

x

)
.
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1.2.1 Check that 1
2

(
x − 1

x

)= 119
120 when x = 12/5.

1.2.2 Also check that
b

a
= 1

2

(
x − 1

x

)
.

for three other lines in the table.

The numbers x are not only “shorter” than the numbers b/a, they
are “simple” in the sense that they are built from the numbers 2, 3, and
5. For example

12

5
= 22 ×3

5
and

125

54
= 53

2×33 .

Numbers divisible by 2, 3, or 5 were “round” numbers in the view of
the Babylonians, whose number system was based on the number 60.
Remnants of this number system are still in use today; for example, we
divide the circle into 360 degrees, the degree into 60 minutes, and the
minute into 60 seconds.

1.2.3 Check that every other fraction x in the table can be written with
both numerator and denominator as a product of powers of 2, 3,
or 5.

The formula 1
2

(
x − 1

x

) = b
a gives us whole numbers a and b from a

rational number x. But why should there be a whole number c such
that a2 +b2 = c2? Let us see:

1.2.4 Verify by algebra that

[
1

2

(
x − 1

x

)]2

+1 =
[

1

2

(
x + 1

x

)]2

.

1.2.5 Deduce from 1.2.4 that a2 +b2 = c2, where

1

2

(
x + 1

x

)
= c

a
.

1.2.6 Check that the formula in 1.2.5 gives c = 169 when x = 12/5 (the
first line of the table), and also check three other lines in the ta-
ble.
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1.3 Irrational Triangles

Surely the simplest triangle in the world is the one that is half a square,
that is, the triangle with two perpendicular sides of equal length (Fig-
ure 1.6). If we take the perpendicular sides to be of length 1, then the
hypotenuse c satisfies c2 = 12 + 12 = 2, by the Pythagorean theorem.
Hence c is what we call

p
2, the square root of 2.

Figure 1.6: The simplest triangle.

Is
p

2 a ratio of natural numbers? No one has ever found such a ra-
tio, but perhaps this is simply because we have not looked far enough.
The Pythagoreans found that no such ratio exists, probably using some
simple properties of even and odd numbers. They knew that the square
of an odd number is odd, for example, and hence that an even square
is necessarily the square of an even number. However, this is the easy
part. The hard part is just to imagine proving that

p
2 is not among the

ratios of natural numbers, when such ratios are the only numbers we
know.

This calls for a daring method of proof known as proof by contra-
diction or reductio ad absurdam (“reduction to an absurdity”). To show
that

p
2 is not a ratio of natural numbers we suppose it is (for the sake

of argument), and deduce a contradiction. The assumption is there-
fore false, as we wanted to show.

In this case we begin by supposing that

p
2 = m/n for some natural numbers m and n.



i
i

“yearning” — 2018/4/6 — 16:42 — page 12 — #24 i
i

i
i

i
i

Chapter 1. The Irrational 12

We also suppose that any common factors have been cancelled from
m and n. In particular, m and n are not both even, otherwise we could
cancel a common factor of 2 from them both. It follows, by squaring
both sides, that

2 = m2/n2

hence 2n2 = m2, multiplying both sides by n2,

hence m2 is even, being a multiple of 2,

hence m is even, since its square is even,

hence m = 2l for some natural number l ,

hence m2 = 4l 2 = 2n2 because m2 = 2n2,

hence n2 = 2l 2, dividing both sides by 2,

hence n2 is even,

hence n is even.

But this contradicts our assumption that m and n are not both even, sop
2 is not a ratio m/n of natural numbers. For this reason, we call

p
2

irrational.

The “Irrational” and the “Absurd”

In ordinary speech “irrational” means illogical or unreasonable—rather
a prejudicial term to apply to numbers, one would think, so how can
mathematicians do it without qualms? The way this came about is an
interesting story, which shows in passing how accidental the evolution
of mathematical terminology can be.

In ancient Greece the word logos covered a cluster of concepts in-
volving speech: language, reason, explanation, and number. It is the
root of our word logic and all the words ending in -ology. As we know,
the Pythagoreans regarded number as the ultimate medium for expla-
nation, so logos also meant ratio or calculation. Conversely, the op-
posite word alogos meant the opposite of rational, both in the general
sense and in geometry, where Euclid used it to denote quantities not
expressible as ratios of natural numbers.

Logos and alogos were translated into Latin as rationalis and irra-
tionalis, and first used in mathematics by Cassiodorus, secretary of the
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13 1.3. Irrational Triangles

Ostrogoth king Theodoric, around 500 CE. The English words rational
and irrational came from the Latin, with both the mathematical and
general meaning intact.

Meanwhile, logos and alogos, because they can mean “expressible”
and “inexpressible,” were translated into Arabic with the slightly al-
tered meanings “audible” and “inaudible” in the writings of the math-
ematician al-Khwārizmı̄ around 800 CE. Later Arabic translators bent
“inaudible” further to “dumb,” from which it re-entered Latin as sur-
dus, meaning “silent.” Finally, surdus became the English word surd
in Robert Recorde’s The Pathwaie to Knowledge of 1551. The derived
word absurd comes from the Latin absurdus meaning unmelodious or
discordant, so the word has actually not strayed far from its Pythagorean
origins.

However, we have come a long way from Pythagorean philosophy.
It is no longer “irrational” to look for explanations outside the world of
natural numbers, so there is now a conflict between the everyday use
of the word “irrational” and its use in mathematics. We surely cannot
stop calling unreasonable actions “irrational,” so it would be better to
stop calling numbers “irrational.” Unfortunately, this seems to be a lost
cause.

As long ago as 1585, the Dutch mathematician Simon Stevin railed
against using the words “irrational” and “absurd” for numbers, but his
advice has not been followed. In this broadside, Stevin avoids using ab-
solute terms for numbers, like “irrational,” by using the relative term
incommensurable (“no common measure”) for any pair of numbers
not in natural number ratio. He also calls rational numbers “arith-
metical.” Here is a paraphrase by D. J. Struik of Stevin’s words from
l’Arithmetique, in [49, vol. IIB, p. 533].

That there are no absurd, irrational, irregular, inexplicable
or surd numbers

It is true that
p

8 is incommensurable with an arithmetical
number, but this does not mean it is absurd etc. . . . if

p
8

and an arithmetical number are incommensurable, then it
is as much (or as little) the fault of

p
8 as of the arithmetical

number.
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Exercises

There is one step in the irrationality proof above that perhaps needs
further justification: if m2 is even then m is even.

1.3.1 Suppose on the contrary that m is odd; that is, m = 2p + 1 for
some whole number p. If so, show that

m2 = 2(2p2 +2p)+1,

which contradicts the fact that m2 is even.

It is useful to have this nitpicking explanation why m is even when
m2 is even, because we can use the same idea to deal with the similar
problem that comes up in proving

p
3 irrational: proving that m is a

multiple of 3 when m2 is a multiple of 3.
The multiples of 3 are numbers 3n, where n is a whole number.

Numbers that are not multiples of 3 are numbers of the form 3n + 1
and 3n +2 (which leave remainder 1 and 2, respectively, when divided
by 3).

1.3.2 Show that

(3n +1)2 = 3(3n2 +2n)+1,

and explain why this implies that the square of a number that
leaves remainder 1 (when divided by 3) also leaves remainder 1.

1.3.3 It is not true that the square leaves remainder 2 when the num-
ber itself leaves remainder 2 (when divided by 3). Give an exam-
ple.

1.3.4 Using algebra similar to that in 1.3.2, show that the square of a
number that leaves remainder 2 (when divided by 3) leaves re-
mainder 1.

1.3.5 Deduce from 1.3.2 and 1.3.4 that if m2 is a multiple of 3 then so
is m.

1.3.6 Use 1.3.5 to give a proof that
p

3 is irrational.
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1.4 The Pythagorean Nightmare

The discovery of irrationality in geometry was a terrible blow to the
dream of a world governed by natural numbers. The diagonal of the
unit square is surely real—as real as the square itself—yet its length
in units is not a ratio of natural numbers, so from the Pythagorean
viewpoint it cannot be expressed by number at all. Later Greek mathe-
maticians coped with this nightmare by developing geometry as a non-
numerical subject: the study of quantities called magnitudes.

Magnitudes include quantities such as length, area, and volume.
They also include numbers, but, in the ancient Greek view, length does
not enjoy all the properties of numbers. For example, the product of
two numbers is itself a number, but the product of two lengths is not a
length—it is a rectangle.

It is true that a rectangle with sides 2 and 3 consists of 2×3 = 6 unit
squares, reflecting the fact that the product of the numbers 2 and 3 is
the number 6. Today we exploit this parallel between area and multi-
plication by calling the rectangle a “2×3 rectangle.” But the rectangle
with sides

p
2 and

p
3 does not consist of any “number” of unit squares

in the Pythagorean sense of number (Figure 1.7).

Figure 1.7: The 2×3 rectangle versus the
p

2×
p

3 rectangle.

This blocks the general idea of algebra, where addition and mul-
tiplication are unrestricted, and it also causes mischief with the nor-
mally straightforward concept of equality. Two figures are shown to
have equal area by cutting one figure into pieces and reassembling
them to form the other. It turns out that any polygon can be “mea-
sured” in this way by a unique square, so, with some difficulty, the
Greek theory of area gives the same results as ours. In fact, “equality
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by cutting and pasting” even gives neat proofs of a few algebraic iden-
tities. Figure 1.8 shows why a2 −b2 = (a −b)(a +b).

a

a

b
b

cut

a

a −b b

paste

a −b

a

b

Figure 1.8: Difference of two squares: why a2 −b2 = (a −b)(a +b).

But there is worse trouble with the concept of volume. The Greeks
viewed the product of three lengths a, b, and c as a box with perpen-
dicular sides a, b, and c, and they measured volumes by boxes. There
are at least two problems with this train of thought.

• Volume cannot be determined by a finite number of cuts. The
appropriate measure of volume is the cube, but not every poly-
hedron can be cut into a finite number of pieces that reassemble
to form a cube. In fact, to measure the volume of a tetrahedron,
it is necessary to cut it into infinitely many pieces. (See Section
4.3 for a way to do this.) The Greeks did not know it, but irra-
tionality is the problem here too. In 1900, the German mathe-
matician Max Dehn showed that the reason for the difficulty with
the tetrahedron is that the angle between its faces is not a ratio-
nal multiple of a right angle.

• We are at a loss to decide what the product of four lengths means,
because we cannot visualize space with more than three dimen-
sions.

This led to a split between geometry and number theory in Greek
mathematics, ultimately to the detriment of geometry. The split is clear
in Euclid’s Elements, the most influential mathematics book of all time.


