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Preface

Railway track systems are constructed to provide a smooth and safe transport mode for 
passengers or freight trains. They are designed to sustain the stresses imposed by lateral, 
longitudinal and vertical loads acting on the track structure. A ballasted railway track system 
comprises several components, among which steel rails, rail fasteners, timber, steel or con-
crete sleepers, granular ballast, sub-ballast and subgrade materials are the main constituents. 
The	recent	increases	in	axle	loads,	speed	and	traffic	volume,	along	with	the	need	to	improve	
passenger comfort and reduce track life cycle costs, have created a need for track design 
optimisation. Furthermore, complementary decision support systems require a more precise 
analytical and mechanistic approach to meet the design needs of modern railway track sys-
tems. These aspects highlight the necessity of a thorough review and revision of the current 
railway track design.

Given the lack of capacity of current ballasted tracks in many parts of Australia to support 
increasingly heavier and faster trains, the development of innovative and sustainable bal-
lasted	tracks	is	crucial	for	transport	infrastructure.	Ballast	degradation	and	infiltration	of	fine	
particles such as coal along the heavy haul corridors and soft subgrade soils contaminating 
the overlying ballast decrease the porosity of the ballast layer and impede track drainage. 
This leads to excessive track settlements and instability, as well as increased maintenance 
costs. To mitigate these problems, the utilisation of geosynthetics (e.g. polymer geogrids, 
geocomposite, geocells) and recycled rubber mats has been investigated by the authors.

The tangible outcomes of this research study has made a considerable impact on indus-
try	 in	view	of	 forcing	design	modifications	 and	provision	of	new	 technical	 standards	 for	
 Australian railways. Already, a considerable portion of the R&D work in this area of research 
is captured in our in-house computer software (SMART – supplementary methods of analy-
sis for railway track), which can accommodate a variety of problematic ground conditions in 
Australia in user-friendly modules that enable best track management practices.

This book presents a comprehensive procedure of ballasted track design based on a rational 
approach that combines extensive laboratory testing, mathematical and computational mod-
elling	and	field	measurements	carried	out	over	the	past	two	decades.	The	Ballast	Railroad	
Design: SMART-UOW approach can be regarded as a useful guide to assist the practitioner, 
rather than a complete design tool to replace existing rational design approaches. Practising 
engineers can refer to this book for designing new tracks as well as to remediate existing bal-
lasted tracks with subgrade deformation problems because it provides a systematic approach 
and	greater	flexibility	in	track	design.	This	book	can	also	be	used	as	a	useful	resource	by	
postgraduate students and as a teaching tool by academics in track design and maintenance.

Buddhima Indraratna
Trung Ngo



Foreword

Studies on ballasted rail tracks have been conducted at the University of Wollongong for 
more	than	two	decades,	and	these	research	outcomes	have	significantly	influenced	the	way	
that rail tracks can be modernised through innovative design. Imparting that knowledge to 
today’s rail practitioners, especially those in heavy haul operations, is the objective of Ballast 
Railroad Design: SMART-UOW approach. This book complements the software SMART 
(supplementary methods of analysis for railway track) currently managed by the University 
of Wollongong together with the Australasian Centre for Rail Innovation (ACRI).

This book deals with both theoretical and practical issues directly related to ballasted 
tracks, considering a series of options from the selection of mechanical and geotechnical 
parameters	to	advanced	design	examples,	capturing	the	influence	of	various	factors	such	as	
particle	breakage,	ballast	fouling,	track	confining	pressure	and	the	application	of	geosynthet-
ics. The technical content also assists in track maintenance incorporating subgrade deforma-
tion and stability considerations, supplemented by case studies and large-scale simulations. 
Importantly, complex technical content is presented for practitioners in a clear and concise 
manner, working through examples based on real world situations.
With	significantly	increased	axle	loads	and	speeds	of	freight	trains	supporting	the	min-

ing and agriculture industries in many nations, including Australia, design and construction 
requirements, and longevity and performance expectations, have become increasingly stra-
tegic and challenging than the traditional heavy haul tracks of the past. This is a timely book 
presenting considerations for contemporary track design and current state-of-the-art practice 
in ballast railroads. It has been informed through collaborative research with industry, incor-
porating	sophisticated	laboratory	tests,	computational	modelling	and	field	studies	to	advance	
the design of ballasted tracks.

ACRI congratulates the University of Wollongong on this enhancement to SMART and 
associated railroad design and analysis and the contribution it will make to the rail industry 
through informing engineering solutions and advancing industry training.

Andrew Meier,
CEO, Australasian Centre for Rail Innovation
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Chapter 1

Introduction

1.1 General background

Rail networks form an important part of the transport system in Australia and many other 
countries in the world. Railways play a vital role in its economy by transporting freight and 
bulk commodities between major cities and ports and by carrying passengers, particularly in 
urban areas. The Australian rail has carried around one-third of all domestic freight over the 
past 25 years, and millions of passengers travel in trains each year. For instance, the longest 
and heaviest train in Western Australia has had a gross weight of nearly 100,000 tonnes and 
a length exceeding 7 km, with as many as 682 wagons hauled by eight locomotives (Railway 
Gazette 2001). The need to maintain a competitive edge over other means of transportation 
has	 increased	 the	pressure	on	 the	 railway	 industry	 to	 improve	 its	efficiency	and	decrease	
maintenance and infrastructure costs (Indraratna et al. 2011a). With ballasted railway tracks, 
the	cost	of	substructure	maintenance	can	be	significantly	reduced	with	a	better	understanding	
of the physical and mechanical characteristics of the rail substructure and the ballast layer 
in particular.

In a ballasted rail track, a large portion of the track maintenance budget is spent on ballast-
related problems (Indraratna et al. 2011b). Although ballast usually consists of hard and 
strong angular particles derived from high strength un-weathered rocks, it also undergoes 
gradual and continuing degradation under cyclic rail loadings (Indraratna et al. 2011a; Selig 
and Waters 1994). The sharp edges and corners are broken due to high stress concentrations 
at the contact points between adjacent particles. The reduction in angularity decreases its 
angle of internal friction (i.e. shear strength), which in turn increases plastic settlement of 
the track.
In	low-lying	coastal	areas	where	the	subgrade	soils	are	generally	saturated,	the	fines	(clays	

and silt-size particles) can be pumped up into the ballast layer as slurry under cyclic rail 
loading,	 if	 a	proper	 subbase	or	filter	 layer	 is	absent	 (Raut	2006;	Selig	and	Waters	1994).	
The pumping of subgrade clay is a major cause of ballast fouling. Fine particles from clay 
pumping or ballast degradation form a thin layer surrounding the larger grains that increases 
compressibility,	fills	 the	void	spaces	between	 larger	aggregates,	and	 reduces	 the	drainage	
characteristics of the ballast bed (Indraratna et al. 2014). The fouling of ballast usually 
increases track settlement and may cause differential track settlement. Where there is satu-
ration and poor drainage, any contamination of ballast may also cause localised undrained 
failure. In severe cases, fouled ballast needs to be cleaned or replaced to keep the track up to 
its desired stiffness (resiliency), bearing capacity, alignment and level of safety (Indraratna 
et al. 2013a; Tennakoon et al. 2012).


