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Preface

Quantum field theory is a set of ideas and tools tha t combines three of the 
major themes of modern physics: the quantum theory, the field concept, and 
the principle of relativity. Today, most working physicists need to know some 
quantum field theory, and many others are curious about it. The theory un-
derlies modern elementary particle physics, and supplies essential tools to 
nuclear physics, atomic physics, condensed m atter physics, and astrophysics. 
In addition, quantum field theory has led to new bridges between physics and 
mathematics.

One might think that a subject of such power and widespread application 
would be complex and difficult. In fact, the central concepts and techniques 
of quantum field theory are quite simple and intuitive. This is especially true 
of the many pictorial tools (Feynman diagrams, renormalization group flows, 
and spaces of symmetry transformations) that are routinely used by quantum 
field theorists. Admittedly, these tools take time to learn, and tying the subject 
together with rigorous proofs can become extremely technical. Nevertheless, 
we feel that the basic concepts and tools of quantum field theory can be made 
accessible to all physicists, not just an elite group of experts.

A number of earlier books have succeeded in making parts of this subject 
accessible to students. The best known of these is the two-volume text written 
in the 1960s by our Stanford colleagues Bjorken and Drell. In our opinion, their 
text contains an ideal mixture of abstract formalism, intuitive explanations, 
and practical calculations, all presented with great care and clarity. Since the 
1960s, however, the subject of quantum field theory has developed enormously, 
both in its conceptual framework (the renormalization group, new types of 
symmetries) and in its areas of application (critical exponents in condensed 
m atter systems, the standard model of elementary particle physics). It is long 
overdue that a textbook of quantum field theory should appear that provides 
a complete survey of the subject, including these newer developments, yet still 
offers the same accessibility and depth of treatment as Bjorken and Drell. We 
have written this book with that goal in mind.



xii Preface

A n O utline o f th e Book

This textbook is composed of three major sections. The first is mainly con-
cerned with the quantum theory of electromagnetism, which provided the first 
example of a quantum field theory with direct experimental applications. The 
third part of the book is mainly concerned with the particular quantum field 
theories that appear in the standard model of particle interactions. The sec-
ond part of the book is a bridge between these two subjects; it is intended to 
introduce some of the very deep concepts of quantum field theory in a context 
that is as straightforward as possible.

Part I begins with the study of fields with linear equations of motion, that 
is, fields without interactions. Here we explore the combined implications of 
quantum mechanics and special relativity, and we learn how particles arise 
as the quantized excitations of fields. We then introduce interactions among 
these particles and develop a systematic method of accounting for their effects. 
After this introduction, we carry out explicit computations in the quantum 
theory of electromagnetism. These illustrate both the special features of the 
behavior of electrons and photons and some general aspects of the behavior 
of interacting quantum fields.

In several of the calculations in Part I, naive methods lead to infinite re-
sults. The appearance of infinities is a well-known feature of quantum field the-
ory. At times, it has been offered as evidence for the inconsistency of quantum 
field theory (though a similar argument could be made against the classical 
electrodynamics of point particles). For a long time, it was thought sufficient 
to organize calculations in such a way tha t no infinities appear in quantities 
that can be compared directly to experiment. However, one of the major in-
sights of the more recent developments is that these formal infinities actually 
contain important information that can be used to predict the qualitative be-
havior of a system. In P art II of the book, we develop this theory of infinities 
systematically. The development makes use of an analogy between quantum- 
mechanical and thermal fluctuations, which thus becomes a bridge between 
quantum field theory and statistical mechanics. At the end of Part II we dis-
cuss applications of quantum field theory to the theory of phase transitions 
in condensed m atter systems.

Part III deals with the generalizations of quantum electrodynamics that 
have led to successful models of the forces between elementary particles. To 
derive these generalizations, we first analyze and generalize the fundamental 
symmetry of electrodynamics, then work out the consequences of quantizing 
a theory with this generalized symmetry. This analysis leads to intricate and 
quite nontrivial applications of the concepts introduced earlier. We conclude 
Part III with a presentation of the standard model of particle physics and a 
discussion of some of its experimental tests.

The Epilogue to the book discusses qualitatively the frontier areas of 
research in quantum field theory and gives references that can guide a student 
to the next level of study.
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Where a choice of viewpoints is possible, we have generally chosen to ex-
plain ideas in language appropriate to the applications to elementary particle 
physics. This choice reflects our background and research interests. It also 
reflects our strongly held opinion, even in this age of intellectual relativism, 
that there is something special about unraveling the behavior of Nature at the 
deepest possible level. We are proud to take as our subject the structure of the 
fundamental interactions, and we hope to convey to the reader the grandeur 
and continuing vitality of this pursuit.

How to  U se  This B ook

This book is an introduction to quantum field theory. By this we mean, first 
and foremost, that we assume no prior knowledge of the subject on the part 
of the reader. The level of this book should be appropriate for students tak-
ing their first course in quantum field theory, typically during the second 
year of graduate school at universities in the United States. We assume that 
the student has completed graduate-level courses in classical mechanics, clas-
sical electrodynamics, and quantum mechanics. In Part II we also assume 
some knowledge of statistical mechanics. It is not necessary to have mastered 
every topic covered in these courses, however. Crucially important prerequi-
sites include the Lagrangian and Hamiltonian formulations of dynamics, the 
relativistic formulation of electromagnetism using tensor notation, the quan-
tization of the harmonic oscillator using ladder operators, and the theory of 
scattering in nonrelativistic quantum mechanics. Mathematical prerequisites 
include an understanding of the rotation group as applied to the quantum 
mechanics of spin, and some facility with contour integration in the complex 
plane.

Despite being an “introduction” , this book is rather lengthy. To some 
extent, this is due to the large number of explicit calculations and worked 
examples in the text. We must admit, however, that the total number of 
topics covered is also quite large. Even students specializing in elementary 
particle theory will find that their first research projects require only a part 
of this material, together with additional, specialized topics tha t must be 
gleaned from the research literature. Still, we feel that students who want 
to become experts in elementary particle theory, and to fully understand its 
unified view of the fundamental interactions, should master every topic in this 
book. Students whose main interest is in other fields of physics, or in particle 
experimentation, may opt for a much shorter “introduction” , omitting several 
chapters.

The senior author of this book once did succeed in “covering” 90% of 
its content in a one-year lecture course at Stanford University. But this was 
a mistake; at such a pace, there is not enough time for students of average 
preparation to absorb the material. Our saner colleagues have found it more 
reasonable to cover about one Part of the book per semester. Thus, in planning 
a one-year course in quantum field theory, they have chosen either to reserve
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Part III for study at a more advanced level or to select about half of the 
material from Parts II and III, leaving the rest for students to read on their 
own.

We have designed the book so that it can be followed from cover to cover, 
introducing all of the major ideas in the field systematically. Alternatively, 
one can follow an accelerated track tha t emphasizes the less formal applica-
tions to elementary particle physics and is sufficient to prepare students for 
experimental or phenomenological research in that field. Sections that can be 
omitted from this accelerated track are marked with an asterisk in the Table 
of Contents; none of the unmarked sections depend on this more advanced 
material. Among the unmarked sections, the order could also be varied some-
what: Chapter 1 0  does not depend on Chapters 8  and 9; Section 1 1 . 1  is not 
needed until just before Chapter 20; and Chapters 2 0  and 2 1  are independent 
of Chapter 17.

Those who wish to study some, but not all, of the more advanced sections 
should note the following table of dependencies:

W ithin each chapter, the sections marked with an asterisk should be read 
sequentially, except tha t Sections 16.5 and 16.6 do not depend on 16.4.

A student whose main interest is in statistical mechanics would want 
to read the book sequentially, confronting the deep formal issues of Part II 
but ignoring most of Part III, which is mainly of significance to high-energy 
phenomena. (However, the material in Chapters 15 and 19, and in Section 
2 0 .1 , does have beautiful applications in condensed m atter physics.)

We emphasize to all students the importance of working actively with the 
material while studying. It probably is not possible to understand any section 
of this book without carefully working out the intermediate steps of every 
derivation. In addition, the problems at the end of each chapter illustrate the 
general ideas and often apply them in nontrivial, realistic contexts. However, 
the most illustrative exercises in quantum field theory are too long for ordinary 
homework problems, being closer to the scale of small research projects. We 
have provided one of these lengthy problems, broken up into segments with 
hints and guidance, at the end of each of the three Parts of the book. The 
volume of time and paper that these problems require will be well invested.

At the beginning of each Part we have included a brief “Invitation” chap-
ter, which previews some of the upcoming ideas and applications. Since these

Before reading . . . one should read all of . . .

Chapter 13 
Section 16.6 
Chapter 18 
Chapter 19 
Section 19.5 
Section 20.3 
Section 21.3

Chapters 1 1 , 1 2  

Chapter 1 1

Sections 12.4, 12.5, 16.5 
Sections 9.6, 15.3 
Section 16.6 
Sections 19.1-19.4 
Chapter 1 1
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chapters are somewhat easier than the rest of the book, we urge all students 
to read them.

W hat This B ook  is N ot

Although we hope that this book will provide a thorough grounding in quan-
tum  field theory, it is in no sense a complete education. A dedicated student of 
physics will want to supplement our treatm ent in many areas. We summarize 
the most important of these here.

First of all, this is a book about theoretical methods, not a review of 
observed phenomena. We do not review the crucial experiments that led to 
the standard model of elementary particle physics or discuss in detail the 
more recent experiments that have confirmed its predictions. Similarly, in 
the chapters that deal with applications to statistical mechanics, we do not 
discuss the beautiful and varied experiments on phase transitions that led to 
the confirmation of field theory models. We strongly encourage the student 
to read, in parallel with this text, a modern presentation of the experimental 
development of each of these fields.

Although we present the elementary aspects of quantum field theory in 
full detail, we state some of the more advanced results without proof. For 
example, it is known rigorously, to all orders in the standard expansion of 
quantum electrodynamics, that formal infinities can be removed from all ex-
perimental predictions. This result, known as renormalizability, has important 
consequences, which we explore in Part II. We do not present the general proof 
of renormalizability. However, we do demonstrate renormalizability explicitly 
in illustrative, low-order computations, we discuss intuitively the issues that 
arise in the complete proof, and we give references to a more complete demon-
stration. More generally, we have tried to motivate the most important results 
(usually through explicit examples) while omitting lengthy, purely technical 
derivations.

Any introductory survey must classify some topics as beyond its scope. 
Our philosophy has been to include what can be learned about quantum 
field theory by considering weakly interacting particles and fields, using series 
expansions in the strength of the interaction. It is amazing how much insight 
one can obtain in this way. However, this definition of our subject leaves out 
the theory of bound states, and also phenomena associated with nontrivial 
solutions to nonlinear field equations. We give a more complete listing of such 
advanced topics in the Epilogue.

Finally, we have not attem pted in this book to give an accurate record of 
the history of quantum field theory. Students of physics do need to understand 
the history of physics, for a number of reasons. The most important is to 
acquire a precise understanding of the experimental basis of the subject. A 
second important reason is to gain an idea of how science progresses as a 
human endeavor, how ideas develop as small steps taken by individuals to
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become the major achievements of the community as a whole.*
In this book we have not addressed either of these needs. Rather, we have 

included only the kind of mythological history whose purpose is to motivate 
new ideas and assign names to them. A principle of physics usually has a 
name that has been assigned according to the community’s consensus on who 
deserves credit for its development. Usually the real credit is only partial, and 
the true historical development is quite complex. But the clear assignment of 
names is essential if physicists are to communicate with one another.

Here is one example. In Section 17.5 we discuss a set of equations govern-
ing the structure of the proton, which are generally known as the Altarelli- 
Parisi equations. Our derivation uses a method due to Gribov and Lipatov 
(GL). The original results of GL were rederived in a more abstract language 
by Christ, Hasslacher, and Mueller (CHM). After the discovery of the cor-
rect fundamental theory of the strong interactions (QCD), Georgi, Politzer, 
Gross, and Wilczek (GPGW) used the technique of CHM to derive formal 
equations for the variation of the proton structure. Parisi gave the first of a 
number of independent derivations that converted these equations into a use-
ful form. The combination of his work with that of GPGW  gives the derivation 
of the equations that we present in Section 18.5. Dokhshitzer later obtained 
these equations more simply by direct application of the method of GL. Some-
time later, but independently, Altarelli and Parisi obtained these equations 
again by the same route. These last authors also popularized the technique, 
explaining it very clearly, encouraging experimentalists to use the equations 
in interpreting their data, and prodding theorists to compute the systematic 
higher-order corrections to this picture. In Section 17.5 we have presented the 
shortest path to the end of this convoluted historical road and hung the name 
cAltarelli-Parisi’ on the final result.

There is a fourth reason for students to read the history of physics: Often 
the original breakthrough papers, though lacking a textbook’s advantages of 
hindsight, are filled with marvelous personal insights. We strongly encourage 
students to go back to the original literature whenever possible and see what 
the creators of the field had in mind. We have tried to aid such students 
with references provided in footnotes. Though occasionally we refer to papers 
merely to give credit, most of the references are included because we feel the 
reader should not miss the special points of view that the authors put forward.

*The history of the development of quantum field theory and particle physics has 
recently been reviewed and debated in a series of conference volumes: The Birth of 
Particle Physics, L. M. Brown and L. Hoddeson, eds. (Cambridge University Press, 
1983); Pions to Quarks, L. M. Brown, M. Dresden, and L. Hoddeson, eds. (Cambridge 
University Press, 1989); and The Rise of the Standard Model, L. M. Brown, M. Dres-
den, L. Hoddeson, and M. Riordan, eds. (Cambridge University Press, 1995). The early 
history of quantum electrodynamics is recounted in a fascinating book by Schweber 
(1994).
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Notations and Conventions

U nits

We will work in “God-given” units, where

The mass (m) of a particle is therefore equal to its rest energy (me2), and 
also to its inverse Compton wavelength (m c /h ). For example,

^electron =  9.109 x 1CT28g =  0.511 MeV =  (3.862 x 1 0 " 11 cm )-1 .

A selection of other useful numbers and conversion factors is given in the 
Appendix.

R elativ ity  and Tensors

Our conventions for relativity follow Jackson (1975), Bjorken and Drell (1964, 
1965), and nearly all recent field theory texts. We use the metric tensor

with Greek indices running over 0, 1, 2 , 3 or £, x , y, z. Roman indices— 
i, jf, etc.—denote only the three spatial components. Repeated indices are 
summed in all cases. Four-vectors, like ordinary numbers, are denoted by light 
italic type; three-vectors are denoted by boldface type; unit three-vectors are 
denoted by a light italic label with a hat over it. For example,

x* = (x°,x), x ß =  =  (æ°, -x ) ;

p - x  = gtiupßx'/ = p°x° -  p • x.

A massive particle has

1  0  0  0  \
0 - 1 0  0 
0  0 - 1 0  

0  0  0 - 1  /

p2 = p ^  =  E 2 - \ p \2 =  m 2.

xix
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Note that the displacement vector x ß is “naturally raised” , while the derivative 
operator,

Be careful, since this implies eom  =  — 1 and e1 2 3 0  =  —1. (This convention 
agrees with Jackson but not with Bjorken and Drell.)

Q uantum  M echanics

We will often work with the Schrödinger wavefunctions of single quantum- 
mechanical particles. We represent the energy and momentum operators act-
ing on such wavefunctions following the usual conventions:

p = ~ i V '
These equations can be combined into

raising the index on d ß conveniently accounts for the minus sign. The plane 
wave e~lk'x has momentum since

The notation ‘h.c.’ denotes the Hermitian conjugate.
Discussions of spin in quantum mechanics make use of the Pauli sigma 

matrices:

is “naturally lowered” .
We define the totally antisymmetric tensor eßUpa so that

e0 1 2 3  =  + 1 .

id ß (e~ik-x) =  k ^ e ~ lk'x

Products of these matrices satisfy the identity

a l(jj = 6ij +  ieijka k .

It is convenient to define the linear combinations a ± =  | ( a 1 ±  ia 2); then

Fourier Transforms and D istr ibutions

We will often make use of the Heaviside step function 9{x) and the Dirac delta 
function <5(x), defined as follows:
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The delta function in n  dimensions, denoted 6^  (x), is zero everywhere except 
at x  =  0  and satisfies

In Fourier transforms the factors of 2t t will always appear with the mo-
mentum integral. For example, in four dimensions,

/ dAk _____ e~-ik-x

f (k) =  J d 4x e ik'x f(x).

(In three-dimensional transforms the signs in the exponents will be +  and —, 
respectively.) The tilde on f ( k )  will sometimes be omitted when there is no 
potential for confusion. The other important factors of 2tt to remember appear 
in the identity

J  d4x e ik'x =  (27T)46<-4\ k ) .

E lectrodynam ics

We use the Heaviside-Lorentz conventions, in which the factors of 4 7 r appear 
in Coulomb’s law and the fine-structure constant rather than in Maxwell’s 
equations. Thus the Coulomb potential of a point charge Q is

<3> =
At t t  ’

and the fine-structure constant is
e2  e2  1

a
4 7 r 4 7 ihc 137

The symbol e stands for the charge of the electron, a negative quantity (al-
though the sign rarely matters). We generally work with the relativistic form 
of Maxwell’s equations:

e ^ d uFpa = 0 , 8ßF ^  =  e f ,

where
^  =  ($, A), F»» = d^Av -  d v A ^

and we have extracted the e from the 4-vector current density

Dirac Equation

Some of our conventions differ from those of Bjorken and Drell (1964, 1965) 
and other texts: We use a chiral basis for Dirac matrices, and relativistic 
normalization for Dirac spinors. These conventions are introduced in Sections
3.2 and 3.3, and are summarized in the Appendix.



Editor’s Foreword

The problem of communicating in a coherent fashion recent developments in the 
most exciting and active fields of physics continues to be with us. The enormous 
growth in the number of physicists has tended to make the familiar channels of 
communication considerably less effective. It has become increasingly difficult for 
experts in a given field to keep up with the current literature; the novice can only 
be confused. W hat is needed is both a consistent account of a field and the pre-
sentation of a definite “point of view” concerning it. Formal monographs cannot 
meet such a need in a rapidly developing field, while the review article seems to 
have fallen into disfavor. Indeed, it would seem that the people most actively 
engaged in developing a given field are the people least likely to write at length 
about it.

Frontiers in Physics was conceived in 1961 in an effort to improve the sit-
uation in several ways. Leading physicists frequently give a series of lectures, a 
graduate seminar, or a graduate course in their special fields of interest. Such lec-
tures serve to summarize the present status of a rapidly developing field and may 
well constitute the only coherent account available at the time. Often, notes on 
lectures exist (prepared by the lecturer, by graduate students, or by postdoctoral 
fellows) and are distributed in photocopied form on a limited basis. One of the 
principal purposes of the Frontiers in Physics series is to make such notes avail-
able to a wider audience of physicists.

As Frontiers in Physics has evolved, a second category of book, the infor-
mal text/monograph, an intermediate step between lecture notes and formal texts 
or monographs, has played an increasingly important role in the series. In an infor-
mal text or monograph an author has reworked his/her lecture notes to the point 
at which the manuscript represents a coherent summation of a newly developed 
field, complete with references and problems, suitable for either classroom teach-
ing or individual study.

During the past two decades significant advances have been made in both 
the conceptual framework of quantum field theory and its application to con-
densed matter physics and elementary particle physics. Given the fact that the 
study of quantum field theory has become an essential part of the education of 
graduate students in physics, a textbook which makes these recent developments 
accessible to the novice, while not neglecting the basic concepts, is highly desir-
able. Michael Peskin and Daniel Schroeder have written just such a book, describ-
ing in lucid fashion quantum electrodynamics, renormalization, and non-Abelian 
gauge theories while offering the reader a taste of what is to come. It is therefore 
quite appropriate to include this very polished text/monograph in the Frontiers 
in Physics series, and it gives me pleasure to welcome them to the ranks of its 
authors.

Aspen, Colorado 
August 1995

David Pines
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Chapter 1

Invitation: Pair Production  
in e * r e ~  Annihilation

The main purpose of Part I of this book is to develop the basic calculational 
method of quantum field theory, the formalism of Feynman diagrams. We will 
then apply this formalism to computations in Quantum Electrodynamics, the 
quantum theory of electrons and photons.

Quantum Electrodynamics (QED) is perhaps the best fundamental phys-
ical theory we have. The theory is formulated as a set of simple equations 
(Maxwell’s equations and the Dirac equation) whose form is essentially deter-
mined by relativistic invariance. The quantum-mechanical solutions of these 
equations give detailed predictions of electromagnetic phenomena from macro-
scopic distances down to regions several hundred times smaller than the pro-
ton.

Feynman diagrams provide for this elegant theory an equally elegant pro-
cedure for calculation: Imagine a process that can be carried out by electrons 
and photons, draw a diagram, and then use the diagram to write the mathe-
matical form of the quant um-mechanical amplitude for tha t process to occur.

In this first part of the book we will develop both the theory of QED 
and the method of Feynman diagrams from the basic principles of quantum 
mechanics and relativity. Eventually, we will arrive at a point where we can 
calculate observable quantities that are of great interest in the study of ele-
mentary particles. But to reach our goal of deriving this simple calculational 
method, we must first, unfortunately, make a serious detour into formalism. 
The three chapters that follow this one are almost completely formal, and 
the reader might wonder, in the course of this development, where we are go-
ing. We would like to partially answer that question in advance by discussing 
the physics of an especially simple QED process—one sufficiently simple that 
many of its features follow directly from physical intuition. Of course, this 
intuitive, bottom-up approach will contain many gaps. In Chapter 5 we will 
return to this process with the full power of the Feynman diagram formalism. 
Working from the top down, we will then see all of these difficulties swept 
away.

3
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e e,+

Figure 1.1. The annihilation reaction e+ e fi^(i , shown in the center-
of-mass frame.

T he Sim plest S ituation

Since most particle physics experiments involve scattering, the most com-
monly calculated quantities in quantum field theory are scattering cross sec-
tions. We will now calculate the cross section for the simplest of all QED 
processes: the annihilation of an electron with its antiparticle, a positron, to 
form a pair of heavier leptons (such as muons). The existence of antiparticles 
is actually a prediction of quantum field theory, as we will discuss in Chapters
2 and 3. For the moment, though, we take their existence as given.

An experiment to measure this annihilation probability would proceed by 
firing a beam of electrons at a beam of positrons. The measurable quantity is 
the cross section for the reaction e+ e~ —► as a function of the center-of-
mass energy and the relative angle 0 between the incoming electrons and the 
outgoing muons. The process is illustrated in Fig. 1.1. For simplicity, we work 
in the center-of-mass (CM) frame where the momenta satisfy p' =  —p and 
k7 =  —k. We also assume that the beam energy E  is much greater than either 
the electron or the muon mass, so that |p| =  |p'| =  |k| =  |k'| =  E  = E cm/ 2. 
(We use boldface type to denote 3-vectors and ordinary italic type to denote 
4-vectors.)

Since both the electron and the muon have spin 1 / 2 , we must specify their 
spin orientations. It is useful to take the axis that defines the spin quantization 
of each particle to be in the direction of its motion; each particle can then 
have its spin polarized parallel or antiparallel to this axis. In practice, electron 
and positron beams are often unpolarized, and muon detectors are normally 
blind to the muon polarization. Hence we should average the cross section 
over electron and positron spin orientations, and sum the cross section over 
muon spin orientations.

For any given set of spin orientations, it is conventional to write the 
differential cross section for our process, with the fi~ produced into a solid 
angle dQ, as

da
dQ,

( l . i)
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The factor E ~^ provides the correct dimensions for a cross section, since in 
our units (energy ) - 2  ~  (length)2. The quantity A4 is therefore dimensionless; 
it is the quantum-mechanical amplitude for the process to occur (analogous 
to the scattering amplitude /  in nonrelativistic quantum mechanics), and 
we must now address the question of how to compute it from fundamental 
theory. The other factors in the expression are purely a m atter of convention. 
Equation (1.1) is actually a special case, valid for CM scattering when the 
final state contains two massless particles, of a more general formula (whose 
form cannot be deduced from dimensional analysis) which we will derive in 
Section 4.5.

Now comes some bad news and some good news.
The bad news is that even for this simplest of QED processes, the exact 

expression for A4 is not known. Actually this fact should come as no sur-
prise, since even in nonrelativistic quantum mechanics, scattering problems 
can rarely be solved exactly. The best we can do is obtain a formal expres-
sion for A4 as a perturbation series in the strength of the electromagnetic 
interaction, and evaluate the first few terms in this series.

The good news is that Feynman has invented a beautiful way to orga-
nize and visualize the perturbation series: the method of Feynman diagrams. 
Roughly speaking, the diagrams display the flow of electrons and photons dur-
ing the scattering process. For our particular calculation, the lowest-order term 
in the perturbation series can be represented by a single diagram, shown in 
Fig. 1.2. The diagram is made up of three types of components: external lines 
(representing the four incoming and outgoing particles), internal lines (repre-
senting “virtual” particles, in this case one virtual photon), and vertices. It is 
conventional to use straight lines for fermions and wavy lines for photons. The 
arrows on the straight lines denote the direction of negative charge flow, not 
momentum. We assign a 4-momentum vector to each external line, as shown. 
In this diagram, the momentum q of the one internal line is determined by 
momentum conservation at either of the vertices: q =  p +  p' =  k +  k ' . We 
must also associate a spin state (either “up” or “down”) with each external 
fermion.

According to the Feynman rules, each diagram can be translated directly 
into a contribution to A4. The rules assign a short algebraic factor to each el-
ement of a diagram, and the product of these factors gives the value of the 
corresponding term in the perturbation series. Getting the resulting expres-
sion for A4 into a form that is usable, however, can still be nontrivial. We 
will develop much useful technology for doing such calculations in subsequent 
chapters. But we do not have that technology yet, so to get an answer to our 
particular problem we will use some heuristic arguments instead of the actual 
Feynman rules.

Recall that in quantum-mechanical perturbation theory, a transition am-
plitude can be computed, to first order, as an expression of the form

(final state I H i  | initial s ta te ) , (1.2)
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Figure 1.2. Feynman diagram for the lowest-order term in the e+ e~ —► 
cross section. At this order the only possible intermediate state is a 

photon (7 ).

where H i  is the “interaction” part of the Hamiltonian. In our case the initial 
state is |e+e~) and the final state is But our interaction Hamiltonian
couples electrons to muons only through the electromagnetic field (that is, 
photons), not directly. So the first-order result ( 1 .2 ) vanishes, and we must go 
to the second-order expression

M  ~  ( m V I H j  |7 >m (7 | H !  |e+ e - ) M . (1.3)

This is a heuristic way of writing the contribution to M. from the diagram in 
Fig. 1.2. The external electron lines correspond to the factor |e+e- ); the ex-
ternal muon lines correspond to (/i+ /i- |. The vertices correspond to H j , and 
the internal photon line corresponds to the operator I7 ) (7 ]. We have added 
vector indices (/1 ) because the photon is a vector particle with four compo-
nents. There are four possible intermediate states, one for each component, 
and according to the rules of perturbation theory we must sum over interme-
diate states. Note that since the sum in (1.3) takes the form of a 4-vector dot 
product, the amplitude A4 will be a Lorentz-invariant scalar as long as each 
half of (1.3) is a 4-vector.

Let us try to guess the form of the vector (7 I H j  |e+ e- }^. Since H j  cou-
ples electrons to photons with a strength e (the electron charge), the matrix 
element should be proportional to e. Now consider one particular set of initial 
and final spin orientations, shown in Fig. 1.3. The electron and muon have 
spins parallel to their directions of motion; they are “right-handed” . The an-
tiparticles, similarly, are “left-handed” . The electron and positron spins add 
up to one unit of angular momentum in the -j-z direction. Since H j  should 
conserve angular momentum, the photon to which these particles couple must 
have the correct polarization vector to give it this same angular momentum:
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Figure 1.3. One possible set of spin orientations. The electron and the neg-
ative muon are right-handed, while the positron and the positive muon are 
left-handed.

=  (0,1, i, 0). Thus we have

( 7 | f f / | e + e - ) M(x e (0 ,M ,0 ) .  (1.4)

The muon matrix element should, similarly, have a polarization corre-
sponding to one unit of angular momentum along the direction of the fi~ 
momentum k. To obtain the correct vector, rotate (1.4) through an angle 0 
in the xz-plane:

( 7 I H i  I(i+( i~ Y  oc e (0, c o s — sin#). (1.5)

To compute the amplitude A4, we complex-conjugate this vector and dot it 
into (1.4). Thus we find, for this set of spin orientations,

M ( R L  —» RL)  =  - e 2 ( l - f  cos6) . (1.6)

Of course we cannot determine the overall factor by this method, but in (1.6) 
it happens to be correct, thanks to the conventions adopted in (1.1). Note
that the amplitude vanishes for 6 — 180°, just as one would expect: A state
whose angular momentum is in the +z  direction has no overlap with a state 
whose angular momentum is in the — z direction.

Next consider the case in which the electron and positron are both right- 
handed. Now their total spin angular momentum is zero, and the argument is 
more subtle. We might expect to obtain a longitudinally polarized photon with 
a Clebsch-Gordan coefficient of l/V ^ , just as when we add angular momenta 
in three dimensions, | | | )  =  ( l / \ / 2 ) ( | j  =  1, m  =  0) +  |j =  0, m  — 0)). But we 
are really adding angular momenta in the four-dimensional Lorentz group, 
so we must take into account not only spin (the transformation properties of 
states under rotations), but also the transformation properties of states under 
boosts. It turns out, as we shall discuss in Chapter 3, tha t the Clebsch-Gordan 
coefficient that couples a 4-vector to the state |e^e^) of massless fermions is 
zero. (For the record, the state is a superposition of scalar and antisymmetric 
tensor pieces.) Thus the amplitude A 4(R R  —> RL)  is zero, as are the eleven
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other amplitudes in which either the initial or final state has zero total angular 
momentum.

The remaining nonzero amplitudes can be found in the same way that we 
found the first one. They are

M ( R L  -* LR) = - e 2  ( 1  -  cos 9),

M ( L R - >  RL) = - e 2 (l - c o s 6 »), (1.7)

M ( L R  —s- LR) = —e2  ( 1  +  cos 9).

Inserting these expressions into (1.1), averaging over the four initial-state spin 
orientations, and summing over the four final-state spin orientations, we find

®  < 1 8 >

where a — e2 / 4 7 r ~  1/137. Integrating over the angular variables 0 and (j)
gives the total cross section,

4ttû ' 2

^total — 2 ^ 2  ’ (1*9)

Results (1.8) and (1.9) agree with experiments to about 10%; almost all of 
the discrepancy is accounted for by the next term in the perturbation series, 
corresponding to the diagrams shown in Fig. 1.4. The qualitative features 
of these expressions—the angular dependence and the sharp decrease with 
energy—are obvious in the actual data. (The properties of these results are 
discussed in detail in Section 5.1.)

Em bellishm ents and Q uestions

We obtained the angular distribution predicted by Quantum Electrodynamics 
for the reaction e+e~ —► ji~ by applying angular momentum arguments, 
with little appeal to the underlying formalism. However, we used the simpli-
fying features of the high-energy limit and the center-of-mass frame in a very 
strong way. The analysis we have presented will break down when we relax 
any of our simplifying assumptions. So how does one perform general QED 
calculations? To answer that question we must return to the Feynman rules.

As mentioned above, the Feynman rules tell us to draw the diagram(s) for 
the process we are considering, and to associate a short algebraic factor with 
each piece of each diagram. Figure 1.5 shows the diagram for our reaction, 
with the various assignments indicated.

For the internal photon line we write —ig^u/q2, where is the usual 
Minkowski metric tensor and q is the 4-momentum of the virtual photon. This 
factor corresponds to the operator I7 ) (7 I in our heuristic expression (1.3).

For each vertex we write —ie7 ^, corresponding to H i  in (1.3). The objects 
7 m are a set of four 4 x 4  constant matrices. They do the “addition of angular
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Figure 1.4. Feynman diagrams that contribute to the a 3 term in the 
e+ e-  —> /i+ fi~ cross section.

Figure 1.5. Diagram of Fig. 1.2, with expressions corresponding to each 
vertex, internal line, and external line.

momentum” for us, coupling a state of two spin-1 / 2  particles to a vector 
particle.

The external lines carry expressions for four-component column-spinors 
w, v, or row-spinors ü, v. These are essentially the momentum-space wavefunc- 
tions of the initial and final particles, and correspond to |e+e- ) and fi~\ 
in (1.3). The indices s, s ' , r, and r' denote the spin state, either up or down.
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We can now write down an expression for A4, reading everything straight 
off the diagram:

M  =  vs' ( p ' ) ( - i e ^ ) u s(p) ur { k ) ( - i e Y ) v r'(k1)
V 9 J (i.io)IP ! /

=  (P,)7MMs(p))(ÿT'( ^ ) 7 ^ r 0 '))-

It is instructive to compare this in detail with Eq. (1.3).
To derive the cross section (1.8) from (1.10), we could return to the an-

gular momentum arguments used above, supplemented with some concrete 
knowledge about 7  matrices and Dirac spinors. We will do the calculation 
in this manner in Section 5.2. There are, however, a number of useful tricks 
that can be employed to manipulate expressions like ( 1 .1 0 ), especially when 
one wants to compute only the unpolarized cross section. Using this “Feyn-
man trace technology” (so-called because one must evaluate traces of prod-
ucts of 7 -matrices), it isn’t even necessary to have explicit expressions for 
the 7 -matrices and Dirac spinors. The calculation becomes almost completely 
mindless, and the answer ( 1 .8 ) is obtained after less than a page of algebra. 
But since the Feynman rules and trace technology are so powerful, we can 
also relax some of our simplifying assumptions. To conclude this section, let 
us discuss several ways in which our calculation could have been more difficult.

The easiest restriction to relax is that the muons be massless. If the beam 
energy is not much greater than the mass of the muon, all of our predic-
tions should depend on the ratio m M/i^cm. (Since the electron is 2 0 0  times 
lighter than the muon, it can be considered massless whenever the beam en-
ergy is large enough to create muons.) Using Feynman trace technology, it is 
extremely easy to restore the muon mass to our calculation. The amount of 
algebra is increased by about fifty percent, and the relation (1 .1 ) between the 
amplitude and the cross section must be modified slightly, but the answer is 
worth the effort. We do this calculation in detail in Section 5.1.

Working in a different reference frame is also easy; the only modification 
is in the relation (1.1) between the amplitude and the cross section. Or one 
can simply perform a Lorentz transformation on the CM result, boosting it 
to a different frame.

When the spin states of the initial and/or final particles are known and 
we still wish to retain the muon mass, the calculation becomes somewhat 
cumbersome but no more difficult in principle. The trace technology can be 
generalized to this case, but it is often easier to evaluate expression ( 1 .1 0 ) 
directly, using the explicit values of the spinors u and v.

Next one could compute cross sections for different processes. The process 
e+e~ —► e+e~, known as Bhabha scattering, is more difficult because there is 
a second allowed diagram (see Fig. 1.6). The amplitudes for the two diagrams 
must first be added, then squared.

Other processes contain photons in the initial and/or final states. The
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Figure 1.6. The two lowest-order diagrams for Bhabha scattering, e+ e

+

Figure 1.7. The two lowest-order diagrams for Compton scattering.

paradigm example is Compton scattering, for which the two lowest-order di-
agrams are shown in Fig. 1.7. The Feynman rules for external photon lines 
and for internal electron lines are no more complicated than those we have 
already seen. We discuss Compton scattering in detail in Section 5.5.

Finally we could compute higher-order terms in the perturbation series. 
Thanks to Feynman, the diagrams are at least easy to draw; we have seen 
those that contribute to the next term in the e+e-  —> fi~ cross section in 
Fig. 1.4. Remarkably, the algorithm that assigns algebraic factors to pieces 
of the diagrams holds for all higher-order contributions, and allows one to 
evaluate such diagrams in a straightforward, if tedious, way. The computation 
of the full set of nine diagrams is a serious chore, at the level of a research 
paper.

In this book, starting in Chapter 6 , we will analyze much of the physics 
that arises from higher-order Feynman diagrams such as those in Fig. 1.4. 
We will see that the last four of these diagrams, which involve an additional 
photon in the final state, are necessary because no detector is sensitive enough 
to notice the presence of extremely low-energy photons. Thus a final state 
containing such a photon cannot be distinguished from our desired final state 
of just a muon pair.
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The other five diagrams in Fig. 1.4 involve intermediate states of several 
virtual particles rather than just a single virtual photon. In each of these di-
agrams there will be one virtual particle whose momentum is not determined 
by conservation of momentum at the vertices. Since perturbation theory re-
quires us to sum over all possible intermediate states, we must integrate over 
all possible values of this momentum. At this step, however, a new difficulty 
appears: The loop-moment um integrals in the first three diagrams, when per-
formed naively, turn  out to be infinite. We will provide a fix for this problem, 
so that we get finite results, by the end of Part I. But the question of the 
physical origin of these divergences cannot be dismissed so lightly; that will 
be the main subject of Part II of this book.

We have discussed Feynman diagrams as an algorithm for performing 
computations. The chapters that follow should amply illustrate the power of 
this tool. As we expose more applications of the diagrams, though, they be-
gin to take on a life and significance of their own. They indicate unsuspected 
relations between different physical processes, and they suggest intuitive ar-
guments that might later be verified by calculation. We hope that this book 
will enable you, the reader, to take up this tool and apply it in novel and 
enlightening ways.



Chapter 2

The Klein-Gordon Field

2.1 The N ecessity  o f  the  Field V iew point

Quantum field theory is the application of quantum mechanics to dynamical 
systems of fields, in the same sense that the basic course in quantum mechanics 
is concerned mainly with the quantization of dynamical systems of particles. 
It is a subject that is absolutely essential for understanding the current state 
of elementary particle physics. W ith some modification, the methods we will 
discuss also play a crucial role in the most active areas of atomic, nuclear, 
and condensed-matter physics. In Part I of this book, however, our primary 
concern will be with elementary particles, and hence relativistic fields.

Given that we wish to understand processes that occur at very small 
(quantum-mechanical) scales and very large (relativistic) energies, one might 
still ask why we must study the quantization of fields. Why can’t we just 
quantize relativistic particles the way we quantized nonrelativistic particles?

This question can be answered on a number of levels. Perhaps the best 
approach is to write down a single-particle relativistic wave equation (such as 
the Klein-Gordon equation or the Dirac equation) and see that it gives rise to 
negative-energy states and other inconsistencies. Since this discussion usually 
takes place near the end of a graduate-level quantum mechanics course, we will 
not repeat it here. It is easy, however, to understand why such an approach 
cannot work. We have no right to assume that any relativistic process can be 
explained in terms of a single particle, since the Einstein relation E  = m e2 
allows for the creation of particle-antiparticle pairs. Even when there is not 
enough energy for pair creation, multiparticle states appear, for example, as 
intermediate states in second-order perturbation theory. We can think of such 
states as existing only for a very short time, according to the uncertainty 
principle A E  -A t =  h. As we go to higher orders in perturbation theory, 
arbitrarily many such “virtual” particles can be created.

The necessity of having a multiparticle theory also arises in a less obvious 
way, from considerations of causality. Consider the amplitude for a free particle 
to propagate from xo to x:

U(t) = <x| e~iHt |xo) ■

13
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In nonrelativistic quantum mechanics we have E  =  p2/2 m, so 

tf(t) =  (x| e- i (p2/ 2m-)t |x0)

= IW )~ 3 <xie_i(p2/2m)tip) <pIXo>
1

~  (2tt)3

TO \ 3 / 2 c » n ( x - x n ) 2 m  

2 n it)
This expression is nonzero for all a: and £, indicating that a particle can prop-
agate between any two points in an arbitrarily short time. In a relativistic 
theory, this conclusion would signal a violation of causality. One might hope 
that using the relativistic expression E  — \Jp2 +  rri2 would help, but it does 
not. In analogy with the nonrelativistic case, we have

U{t) =  <x| e-* V p 2 + ™ 2 |x0)

— ^ f  H 3 r , f > ~ U V P 2+ ™ 2 . p i p - ( x - x o )(2tt)3 J  P
OO

=  2^ | x - x 0| / d p p s i n ( p | x - x o | ) e - « v ^ ^ .
0

This integral can be evaluated explicitly in terms of Bessel functions.* We 
will content ourselves with looking at its asymptotic behavior for x 2 >  t 2 
(well outside the light-cone), using the method of stationary phase. The phase 
function ipx—ty jp 2 +  m 2 has a stationary point at p = i m x / ^ / x 2 — t 2. We may 
freely push the contour upward so that it goes through this point. Plugging 
in this value for p 1 we find that, up to a rational function of x  and £,

U(t) -  e“ mVx2“ t2.

Thus the propagation amplitude is small but nonzero outside the light-cone, 
and causality is still violated.

Quantum field theory solves the causality problem in a miraculous way, 
which we will discuss in Section 2.4. We will find that, in the multiparticle 
field theory, the propagation of a particle across a spacelike interval is indis-
tinguishable from the propagation of an antiparticle in the opposite direction 
(see Fig. 2.1). When we ask whether an observation made at point xq  can 
affect an observation made at point x, we will find that the amplitudes for 
particle and antiparticle propagation exactly cancel—so causality is preserved.

Quantum field theory provides a natural way to handle not only multipar-
ticle states, but also transitions between states of different particle number. 
It solves the causality problem by introducing antiparticles, then goes on to

J  d3p e ~i(̂ p2/ 2m)* . ^p-O^-xo)

*See Gradshteyn and Ryzhik (1980), #3.914.
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4 x

Xq \  \ boost

Figure 2 .1 . Propagation from xq to x in one frame looks like propagation 
from x  to xq in another frame.

explain the relation between spin and statistics. But most important, it pro-
vides the tools necessary to calculate innumerable scattering cross sections, 
particle lifetimes, and other observable quantities. The experimental confir-
mation of these predictions, often to an unprecedented level of accuracy, is 
our real reason for studying quantum field theory.

2.2 E lem ents of Classical Field Theory

In this section we review some of the formalism of classical field theory that 
will be necessary in our subsequent discussion of quantum field theory.

Lagrangian Field Theory

The fundamental quantity of classical mechanics is the action, S, the time 
integral of the Lagrangian, L. In a local field theory the Lagrangian can be 
written as the spatial integral of a Lagrangian density, denoted by £ , which is 
a function of one or more fields (j){x) and their derivatives d̂ cj). Thus we have

S = f  Ldt = J  c(<l>, dp<f>)d*X. (2.1)

Since this is a book on field theory, we will refer to C simply as the Lagrangian.
The principle of least action states that when a system evolves from one 

given configuration to another between times t\  and ^  it does so along the 
“path” in configuration space for which S  is an extremum (normally a mini-
mum). We can write this condition as

“I'M
- h il4" - y&i) '* ■-(Ä*)} ■ ( 2 -2 )

The last term can be turned into a surface integral over the boundary of the 
four-dimensional spacetime region of integration. Since the initial and final 
field configurations are assumed given, S(j) is zero at the temporal beginning
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and end of this region. If we restrict our consideration to deformations 6(f) that 
vanish on the spatial boundary of the region as well, then the surface term is 
zero. Factoring out the 6(f) from the first two terms, we note that, since the 
integral must vanish for arbitrary &/>, the quantity that multiplies 6(j) must 
vanish at all points. Thus we arrive at the Euler-Lagrange equation of motion 
for a field,

If the Lagrangian contains more than one field, there is one such equation for 
each.

H am iltonian Field T heory

The Lagrangian formulation of field theory is particularly suited to relativistic 
dynamics because all expressions are explicitly Lorentz invariant. Nevertheless 
we will use the Hamiltonian formulation throughout the first part of this 
book, since it will make the transition to quantum mechanics easier. Recall 
that for a discrete system one can define a conjugate momentum p =  dL /dq  
(where q — d q /d t ) for each dynamical variable q. The Hamiltonian is then 
H  = ~  L. The generalization to a continuous system is best understood
by pretending that the spatial points x  are discretely spaced. We can define

î,(x)sÿ è ) = ^ ô / £WïU(y))‘'3i'
~ H  y ) ) d?,yÖ0 (X) y

=  7r(x)d 3 x,

where
7r(x) =  (2.4)

00(x)
is called the momentum density conjugate to 0(x). Thus the Hamiltonian can 
be written

H  = ^ Z p (x )^(x ) -  L -
X

Passing to the continuum, this becomes 

H  = j  d3x  [7r(x)0(x) — C] = J  d3x H .  (2.5)

We will rederive this expression for the Hamiltonian density H  near the end 
of this section, using a different method.

As a simple example, consider the theory of a single field </)(x), governed 
by the Lagrangian

C =  \(\)2 — è (V 0 ) 2  -  \ m 2(j)2
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For now we take (f) to be a real-valued field. The quantity m  will be interpreted 
as a mass in Section 2.3, but for now just think of it as a parameter. From 
this Lagrangian the usual procedure gives the equation of motion

-  v 2  +  m 2^ 4> = 0 or (d^d^ + m 2)4> = 0, (2.7)

which is the well-known Klein-Gordon equation. (In this context it is a classi-
cal field equation, like Maxwell’s equations—not a quantum-mechanical wave 
equation.) Noting that the canonical momentum density conjugate to <j)(x) is
7 t ( x )  =  0(x), we can also construct the Hamiltonian:

H  = J d 3x H  = j< P x [ \ t t2 +  ! (V 0 )2 +  | m 2</>2]. (2.8)

We can think of the three terms, respectively, as the energy cost of “moving” 
in time, the energy cost of “shearing” in space, and the energy cost of having 
the field around at all. We will investigate this Hamiltonian much further in 
Sections 2.3 and 2.4.

N o e th e r ’s T heorem

Next let us discuss the relationship between symmetries and conservation 
laws in classical field theory, summarized in Noether’s theorem. This theorem 
concerns continuous transformations on the fields 0, which in infinitesimal 
form can be written

4>{x) —► 4>f(x) = c/)(x) +  aA 0(x), (2.9)

where a  is an infinitesimal parameter and A (p is some deformation of the field 
configuration. We call this transformation a symmetry if it leaves the equa-
tions of motion invariant. This is insured if the action is invariant under (2.9). 
More generally, we can allow the action to change by a surface term, since the 
presence of such a term would not affect our derivation of the Euler-Lagrange 
equations of motion (2.3). The Lagrangian, therefore, must be invariant un-
der (2.9) up to a 4-divergence:

C{x) —> C{x) +  a d ^ J ß (x), (2 .1 0 )

for some . Let us compare this expectation for AC  to the result obtained 
by varying the fields:
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The second term vanishes by the Euler-Lagrange equation (2.3). We set the 
remaining term  equal to a d ^ J ^  and find

dßf { x )  =  0, for j M(x ) =  y  a</> -  J*1. (2.12)

(If the symmetry involves more than one field, the first term of this expression 
for j^ (x )  should be replaced by a sum of such terms, one for each field.) 
This result states that the current j ß (x) is conserved. For each continuous 
symmetry of £ , we have such a conservation law.

The conservation law can also be expressed by saying that the charge

Q =  J  j °  d3x  (2.13)
all space

is a constant in time. Note, however, that the formulation of field theory in 
terms of a local Lagrangian density leads directly to the local form of the 
conservation law, Eq. (2.12).

The easiest example of such a conservation law arises from a Lagrangian 
with only a kinetic term: C =  | ( ö M</>)2. The transformation (j) —> (ß + a, where 
a  is a constant, leaves C unchanged, so we conclude tha t the current — d^cj) 
is conserved. As a less trivial example, consider the Lagrangian

£  =  \d/i4>\2 -  m 2\(f>\2, (2.14)

where <fi is now a complex-valued field. You can easily show that the equation 
of motion for this Lagrangian is again the Klein-Gordon equation, (2.7). This 
Lagrangian is invariant under the transformation 0 —► em </>; for an infinitesi-
mal transformation we have

aA(j) =  iacf); aAcß* =  —iacf)*. (2.15)

(We treat <fi and </>* as independent fields. Alternatively, we could work with 
the real and imaginary parts of 0.) It is now a simple m atter to show that the 
conserved Noether current is

f  = i [ { d ^ * ) 4 > - ^ { d ^ ) ] .  (2.16)

(The overall constant has been chosen arbitrarily.) You can check directly that 
the divergence of this current vanishes by using the Klein-Gordon equation. 
Later we will add terms to this Lagrangian tha t couple (j) to an electromagnetic 
field. We will then interpret j ß as the electromagnetic current density carried 
by the field, and the spatial integral of j°  as its electric charge.

Noether’s theorem can also be applied to spacetime transformations such 
as translations and rotations. We can describe the infinitesimal translation

x» -> -  aß

alternatively as a transformation of the field configuration

(j){x) —> (j)(x +  a) — (p(x) -f a /xöM0 (x).
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The Lagrangian is also a scalar, so it must transform in the same way:

C - * £  + afidpC = C + a1/dfJl ( S ^ C ) .

Comparing this equation to (2.10), we see that we now have a nonzero J 11. 
Taking this into account, we can apply the theorem to obtain four separately 
conserved currents:

dC

This is precisely the stress-energy tensor, also called the energy-momentum 
tensor, of the field (j). The conserved charge associated with time translations 
is the Hamiltonian:

H  = J  T 00 d3x — J n d 3x. (2.18)

By computing this quantity for the Klein-Gordon field, one can recover the 
result (2.8). The conserved charges associated with spatial translations are

P l = = (2.19)

and we naturally interpret this as the (physical) momentum carried by the 
field (not to be confused with the canonical momentum).

2.3 The K lein-G ordon Field as H arm onic Oscillators

We begin our discussion of quantum field theory with a rather formal trea t-
ment of the simplest type of field: the real Klein-Gordon field. The idea is to 
start with a classical field theory (the theory of a classical scalar field gov-
erned by the Lagrangian (2.6)) and then “quantize” it, that is, reinterpret the 
dynamical variables as operators that obey canonical commutation relations.^ 
We will then “solve” the theory by finding the eigenvalues and eigenstates of 
the Hamiltonian, using the harmonic oscillator as an analogy.

The classical theory of the real Klein-Gordon field was discussed briefly 
(but sufficiently) in the previous section; the relevant expressions are given in 
Eqs. (2.6), (2.7), and (2.8). To quantize the theory, we follow the same pro-
cedure as for any other dynamical system: We promote 0 and 7r to operators, 
and impose suitable commutation relations. Recall that for a discrete system 
of one or more particles the commutation relations are

['Qi,Pj] =  iôi j ;

[•luQj] =  [PuPj]  =  0.

^This procedure is sometimes called second quantization, to distinguish the re-
sulting Klein-Gordon equation (in which 0 is an operator) from the old one-particle 
Klein-Gordon equation (in which 0 was a wavefunction). In this book we never adopt 
the latter point of view; we start with a classical equation (in which 0  is a classical 
field) and quantize it exactly once.
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For a continuous system the generalization is quite natural; since 7 r(x) is the 
momentum density, we get a Dirac delta function instead of a Kronecker delta:

[<A(x),7r(y)] =  i<S(3 )( x - y ) ;
(2.20)

[</>(x),0(y)] =  [-7r(x), 7r(y)] = 0 .

(For now we work in the Schrödinger picture where 0 and it  do not depend 
on time. When we switch to the Heisenberg picture in the next section, these 
“equal time” commutation relations will still hold provided that both opera-
tors are considered at the same time.)

The Hamiltonian, being a function of (j) and 7r, also becomes an operator. 
Our next task is to find the spectrum from the Hamiltonian. Since there is 
no obvious way to do this, let us seek guidance by writing the Klein-Gordon 
equation in Fourier space. If we expand the classical Klein-Gordon field as

d3p
</>(x, t) = J ^ * 3  eip'x <j>{p, t)

(with (j>*{p) =  <p(—p) so that </>(x) is real), the Klein-Gordon equation (2.7) 
becomes

dt 2
^  +  (Ip I2 +  - 2) (2.21)

This is the same as the equation of motion for a simple harmonic oscillator 
with frequency

wp =  y/\p\2 + m 2. (2.22)

The simple harmonic oscillator is a system whose spectrum we already 
know how to find. Let us briefly recall how it is done. We write the Hamiltonian
as

f f SHO =  èP 2 +  è " V -  

To find the eigenvalues of #sho? we write </> and p  in terms of ladder operators:

0 = ^ ^ ( «  +  a t ); P =  (2.23)

The canonical commutation relation [(f), p\ — i is equivalent to

[a, a f] =  1. (2.24)

The Hamiltonian can now be rewritten

Hsno  =  ^(a^a  +  \ ) .

The state |0) such that a |0) =  0 is an eigenstate of H  with eigenvalue \ uj , 
the zero-point energy. Furthermore, the commutators

[#SHO,ö^] = too), [^SHOjfl] = —LOa

make it easy to verify that the states

In) = (a t)" |0 >
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are eigenstates of i/sHO with eigenvalues (n +  \)u). These states exhaust the 
spectrum.

We can find the spectrum of the Klein-Gordon Hamiltonian using the 
same trick, but now each Fourier mode of the field is treated as an independent 
oscillator with its own a and aJ. In analogy with (2.23) we write

The inverse expressions for ap and in terms of and ir are easy to derive 
but rarely needed. In the calculations below we will find it useful to rearrange
(2.25) and (2.26) as follows:

from which you can verify that the commutator of <p and ir works out correctly:

(If computations such as this one and the next are unfamiliar to you, please 
work them out carefully; they are quite easy after a little practice, and are 
fundamental to the formalism of the next two chapters.)

We are now ready to express the Hamiltonian in terms of ladder operators. 
Starting from its expression (2.8) in terms of <fi and 7r, we have

The second term is proportional to 5(0), an infinite c-number. It is simply 
the sum over all modes of the zero-point energies cjp / 2 , so its presence is 
completely expected, if somewhat disturbing. Fortunately, this infinite energy

0(X) /(2<)3 v/2̂
a Peip x +  a p e _ i p  x)  ; (2.25)

7r (2.26)

(2.27)

(2.28)

The commutation relation (2.24) becomes

[ap> ap'] =  (27r)36(3)(p —  p'), (2.29)

f  d3p d 3p ' —i 
=  J  (2tt)6 T

= i(*)(3)(x — x').

e i ( p - x + p ' - x ' )

(2.30)
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shift cannot be detected experimentally, since experiments measure only en-
ergy differences from the ground state of H. We will therefore ignore this 
infinite constant term in all of our calculations. It is possible that this en-
ergy shift of the ground state could create a problem at a deeper level in the 
theory; we will discuss this m atter in the Epilogue.

Using this expression for the Hamiltonian in terms of ap and it is easy 
to evaluate the commutators

\H^ ßp] — cc?pQ/p, [ - ^ 5  ^p] — (2.32)

We can now write down the spectrum of the theory, just as for the harmonic 
oscillator. The state |0) such that ap |0) =  0 for all p  is the ground state or 
vacuum, and has E  = 0 after we drop the infinite constant in (2.31). All other 
energy eigenstates can be built by acting on |0) with creation operators. In
general, the state • • • |0) is an eigenstate of H  with energy u p + c jq H-----.
These states exhaust the spectrum.

Having found the spectrum of the Hamiltonian, let us try  to interpret its 
eigenstates. From (2.19) and a calculation similar to (2.31) we can write down 
the total momentum operator,

P  = -  J  d3x  7r(x) V<^(x) =  J p afpap . (2.33)

So the operator creates momentum p and energy u)p =  \ / | p | 2  +  m 2. Sim-
ilarly, the state • • • |0) has momentum p +  q +  • • •. It is quite natural to 
call these excitations particles, since they are discrete entities that have the 
proper relativistic energy-momentum relation. (By a particle we do not mean 
something that must be localized in space; aj, creates particles in momentum 
eigenstates.) From now on we will refer to uop as E p (or simply E),  since it 
really is the energy of a particle. Note, by the way, tha t the energy is always 
positive: E p =  + \ / | p | 2  +  rn2.

This formalism also allows us to determine the statistics of our particles. 
Consider the two-particle state aj^a^ |0). Since a£ and commute, this state 
is identical to the state a t |o) in which the two particles are interchanged. 
Moreover, a single mode p  can contain arbitrarily many particles (just as a 
simple harmonic oscillator can be excited to arbitrarily high levels). Thus we 
conclude that Klein-Gordon particles obey Bose-Einstein statistics.

We naturally choose to normalize the vacuum state so that (010) =  1. 
The one-particle states |p) oc |0) will also appear quite often, and it is 
worthwhile to adopt a convention for their normalization. The simplest nor-
malization (p|q) =  (27r)3£(3)(p — q) (which many books use) is not Lorentz 
invariant, as we can demonstrate by considering the effect of a boost in the 
3-direction. Under such a boost we have pf3 = j(ps  +  ßE ), E '  =  7 (E  +  ßps)- 
Using the delta function identity

à ( f ( x ) ~ f ( x  0)) =  | ^ ( ^ o) | i5 ( s - s o ) ,  (2.34)
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we can compute

«<3 , < p - q )  =  i>3 V - q ' ) - | ä

=  i (s> ( p ' - q ' ) 7 ( l  +  / S ^ )

=  <$(3) (p ' -  q !) j^{E  + ßp3)

= Ä(3)( p'-q')f.
The problem is that volumes are not invariant under boosts; a box whose 
volume is V  in its rest frame has volume V/ 7  in a boosted frame, due to 
Lorentz contraction. But from the above calculation, we see that the quantity 
£ P,S(3)(P -  q) is Lorentz invariant. We therefore define

Ip) =  \ / 2 Ë p ap |o ) , (2.35)

so that
(p|q) =  2£:p (27r)3^ 3) ( p - q ) .  (2.36)

(The factor of 2 is unnecessary, but is convenient because of the factor of 2 in 
Eq. (2.25).)

On the Hilbert space of quantum states, a Lorentz transformation A will 
be implemented as some unitary operator U(A). Our normalization condition 
(2.35) then implies that

[7(A) |p) =  |A p ). (2.37)

If we prefer to think of this transformation as acting on the operator a£, we 
can also write

U (A )a lU ~ 1(A) = (2.38)

W ith this normalization we must divide by 2E p in other places. For ex-
ample, the completeness relation for the one-particle states is

! ) I - P a r a d e  /  ( 2 t t ) 3 ^  2 . E p  ^  ’ (2.39)
where the operator on the left is simply the identity within the subspace of 
one-particle states, and zero in the rest of the Hilbert space. Integrals of this 
form will occur quite often; in fact, the integral

( p L .  _ L  =  [  J j L  _  m 2) (2.40)J (27t)3 2E p J  (2i r y y J p°>0 v '
is a Lorentz-invariant 3-momentum integral, in the sense that if f(p)  is 
Lorentz-invariant, so is f  d3p f (p ) / (2 E p). The integration can be thought of
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V
o

branch

branch

Figure 2.2. The Lorentz-invariant 3-momentum integral is over the upper 
branch of the hyperboloid p2 = m2.

as being over the p° > 0 branch of the hyperboloid p2 =  m 2 in 4-momentum 
space (see Fig. 2.2).

Finally let us consider the interpretation of the state 0(x) |0). From the 
expansion (2.25) we see that

is a linear superposition of single-particle states that have well-defined mo-
mentum. Except for the factor l/2-Ep , this is the same as the familiar nonrel- 
ativistic expression for the eigenstate of position |x); in fact the extra factor 
is nearly constant for small (nonrelativistic) p. We will therefore put forward 
the same interpretation, and claim that the operator </>(x), acting on the vac-
uum, creates a particle at position x. This interpretation is further confirmed 
when we compute

(2.41)

<o| <Kx) |p) = <o| J
(2.42)

We can interpret this as the position-space representation of the single-particle 
wavefunction of the state |p), just as in nonrelativistic quantum mechanics 
(x|p) cx ezp x is the wavefunction of the state |p).
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2.4 The K lein-G ordon Field in Space-Tim e

In the previous section we quantized the Klein-Gordon field in the Schrödinger 
picture, and interpreted the resulting theory in terms of relativistic particles. 
In this section we will switch to the Heisenberg picture, where it will be easier 
to discuss time-dependent quantities and questions of causality. After a few 
preliminaries, we will return to the question of acausal propagation raised in 
Section 2.1. We will also derive an expression for the Klein-Gordon propagator, 
a crucial part of the Feynman rules to be developed in Chapter 4.

In the Heisenberg picture, we make the operators (j) and ir time-dependent 
in the usual way:

(j)(x) = 0(x, t) = elHt(j)(-x)e~ljHt, (2.43)

and similarly for ir(x) — 7r(x, t). The Heisenberg equation of motion,

i ^ 0 = [ 0 , H \ ,  (2.44)

allows us to compute the time dependence of ( f )  and 7r:

- 0 (x, t) =  0 (x, t), J  d3x f^T T 2(x!,t) +  ^(V</>(x', t ) )2 +  ^ ra 2 </>2 (x ',t)  j 
=  J  d?x' ^W 3)(x — x ') 7r(x/, £)^

=  ^r(x ,£);

r(x, t ) =  7r(x, £), J  <i3 x/ | ^ 7T2 (x/, t ) +  | 0 (x', t) (—V 2  +  m 2 ) 0 (x/, £) j

- z ( - V 2  +  m 2 )0(x , t).

Combining the two results gives

=  (V 2  -  (2.45)

which is just the Klein-Gordon equation.
We can better understand the time dependence of cj)(x) and ix{x) by writ-

ing them in terms of creation and annihilation operators. First note that

H a p — ap (yH E-p)i

and hence
H nap = ap (H -  E p)n ,

for any n. A similar relation (with — replaced by +) holds for a^. Thus we 
have derived the identities

. 0

. a
l d t n
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which we can use on expression (2.25) for 0(x) to find the desired expression 
for the Heisenberg operator <j)(x), according to (2.43). (We will always use the 
symbols ap and aj, to represent the time-independent, Schrödinger-picture 
ladder operators.) The result is

It is worth mentioning that we can perform the same manipulations with 
P instead of H  to relate 0(x) to 0(0). In analogy with (2.46), one can show

where =  (# , P). (The notation here is confusing but standard. Remember 
that P is the momentum operator, whose eigenvalue is the total momentum of 
the system. On the other hand, p is the momentum of a single Fourier mode 
of the field, which we interpret as the momentum of a particle in that mode. 
For a one-particle state of well-defined momentum, p is the eigenvalue of P.)

Equation (2.47) makes explicit the dual particle and wave interpretations 
of the quantum field 4>(x). On the one hand, <p(x) is written as a Hilbert space 
operator, which creates and destroys the particles tha t are the quanta of field 
excitation. On the other hand, </>(x) is written as a linear combination of solu-
tions (ezp x and e~tp'x ) of the Klein-Gordon equation. Both signs of the time 
dependence in the exponential appear: We find both e~~w 1 and e+%p *, al-
though p° is always positive. If these were single-particle wavefunctions, they 
would correspond to states of positive and negative energy; let us refer to 
them more generally as positive- and negative-frequency modes. The connec-
tion between the particle creation operators and the waveforms displayed here 
is always valid for free quantum fields: A positive-frequency solution of the 
field equation has as its coefficient the operator tha t destroys a particle in 
that single-particle wavefunction. A negative-frequency solution of the field 
equation, being the Hermitian conjugate of a positive-frequency solution, has 
as its coefficient the operator that creates a particle in that positive-energy 
single-particle wavefunction. In this way, the fact that relativistic wave equa-
tions have both positive- and negative-frequency solutions is reconciled with 
the requirement that a sensible quantum theory contain only positive excita-
tion energies.

(2.47)

(2.48)

and therefore
<j,(x) =  ei(iît“ p -x)0(O)e“ i(iît_p-x) 

= eiP x <j>( 0)e~ip -x ,
(2.49)
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Causality

Now let us return to the question of causality raised at the beginning of this 
chapter. In our present formalism, still working in the Heisenberg picture, the 
amplitude for a particle to propagate from y to x  is (0| (j){x)(f){y) |0). We will 
call this quantity D (x — y ). Each operator 0 is a sum of a and at operators, 
but only the term (0 | apa^ |0 ) =  (27r)3M3)(p — q) survives in this expression. 
It is easy to check that we are left with

D(x- y) = <0| 4>(x)4>(y) |0) = I - 0 j E ^ e~ip'{x~v)- (2-5°)

We have already argued in (2.40) that integrals of this form are Lorentz in-
variant. Let us now evaluate this integral for some particular values of x — y.

First consider the case where the difference x — y is purely in the time- 
direction: x° — y° =  £, x — y =  0. (If the interval from y to x  is timelike, there 
is always a frame in which this is the case.) Then we have

oo

D (x - y )  = [  dp p2 e- W P*+rnH
(27r) J 2a/p2 + m 2

0

—  - »  (^51>m 2 e

„ — im t~  e
t —> oo

Next consider the case where x — y is purely spatial: x° — y° = 0, x  —y =  r. 
The amplitude is then

D (x - y )  = / d3P 1 C<PT
2 tt ) 3 2 E p

OO

2 tt f  , p2 eipr -  e~ipr
OO 

j  dP
(27r)3 J  2Ep ipr

o
OO

ai pr

/ * ■ P e '2(27r)2r  J  ^/p 2 +  m 2 '
— OO

The integrand, considered as a complex function of p, has branch cuts on the 
imaginary axis starting at ± im  (see Fig. 2.3). To evaluate the integral we 
push the contour up to wrap around the upper branch cut. Defining p — —ip, 
we obtain

oo
1  f  oe~ pr

/  d p - ß -------------------------------------  ~  e ~ m r . (2 .5 2 )
47r2r  J  ^/p2  _  m 2 r  »-oo
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im

—irri
push

contour

Figure 2.3. Contour for evaluating propagation amplitude D(x — y) over a 
spacelike interval.

So again we find that outside the light-cone, the propagation amplitude is 
exponentially vanishing but nonzero.

To really discuss causality, however, we should ask not whether particles 
can propagate over spacelike intervals, but whether a measurement performed 
at one point can affect a measurement at another point whose separation from 
the first is spacelike. The simplest thing we could try  to measure is the field 
<j)(x), so we should compute the commutator [4>(x), (j>{y)]\ if this commutator 
vanishes, one measurement cannot affect the other. In fact, if the commu-
tator vanishes for {x — y)2 < 0 , causality is preserved quite generally, since 
commutators involving any function of (ß(x), including 7r(x) — d<fi/dt, would 
also have to vanish. Of course we know from Eq. (2.20) that the commutator 
vanishes for x° =  y°; now let’s do the more general computation:

When (x — y ) 2  < 0, we can perform a Lorentz transformation on the second 
term (since each term is separately Lorentz invariant), taking (x — y) —»
— (x — y), as shown in Fig. 2.4. The two terms are therefore equal and cancel 
to give zero; causality is preserved. Note that if (x — y)2 > 0 there is no 
continuous Lorentz transformation that takes (x —y ) — ► — (x —y). In this case, 
by Eq. (2.51), the amplitude is (fortunately) nonzero, roughly (e~l7nt — etrnt) 
for the special case x  — y  =  0. Thus we conclude that no measurement in the

=  D (x -  y) -  D(y -  x). (2.53)
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Figure 2.4. When x — y is spacelike, a continuous Lorentz transformation 
can take (x — y) to — (x — y).

Klein-Gordon theory can affect another measurement outside the light-cone.
Causality is maintained in the Klein-Gordon theory just as suggested at 

the end of Section 2 . 1 .  To understand this mechanism properly, however, we 
should broaden the context of our discussion to include a complex Klein- 
Gordon field, which has distinct particle and antiparticle excitations. As was 
mentioned in the discussion of Eq. (2.15), we can add a conserved charge to 
the Klein-Gordon theory by considering the field (j)(x) to be complex- rather 
than real-valued. When the complex scalar field theory is quantized (see Prob-
lem 2 .2 ), <j)(x) will create positively charged particles and destroy negatively 
charged ones, while $ ( x )  will perform the opposite operations. Then the com-
mutator [<fi(x), $  (y)\ will have nonzero contributions, which must delicately 
cancel outside the light-cone to preserve causality. The two contributions have 
the spacetime interpretation of the two terms in (2.53), but with charges a t-
tached. The first term will represent the propagation of a negatively charged 
particle from y to x. The second term will represent the propagation of a 
positively charged particle from x  to y. In order for these two processes to 
be present and give canceling amplitudes, both of these particles must exist, 
and they must have the same mass. In quantum field theory, then, causality 
requires that every particle have a corresponding antiparticle with the same 
mass and opposite quantum numbers (in this case electric charge). For the 
real-valued Klein-Gordon field, the particle is its own antiparticle.

T he K lein-G ordon Propagator

Let us study the commutator [(ß(x), 4>(y)\ a little further. Since it is a 
c-number, we can write [(j)(x), 4>(y)) =  (0| [(/>(x), 4>{y)] |0). This can be rewritten 
as a four-dimensional integral as follows, assuming for now that x° > y°:

(oi [ m , m ]  io) =  J  ( 0 3 ^ ( e_ îp '(æ“ ÿ) -  j p'{x~y))
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[  d3p f  1  

J (277)3 12^ 0- i p - { x - y )

P ° = E ,
0- i p - ( x - y )

r d3p f  dp0 
V° J  (2^)3 J  2tH

- 1

p°  =  - E v

0- i p - { x - y )
p2 _  m 2 (2.54)

In the last step the p° integral is to be performed along the following contour:

-\-Ep

For x° > y° we can close the contour below, picking up both poles to obtain 
the previous line of (2.54). For x° < y° we may close the contour above, 
giving zero. Thus the last line of (2.54), together with the prescription for 
going around the poles, is an expression for what we will call

D r (x  - y ) =  0 (x °  -  y°)  <0| [4>{x), <p{y)} |0 ) . (2.55)

To understand this quantity better, le t’s do another computation:

{d 2 +  m 2) D R {x - y )  =  ( d 20{x°  -  y 0)) (0| 4>{y)\ |0)

+  2 (d ß6(x°  -  y 0)) (d^  (0| [<f>(x), 4>{y)\ |0))

+  9(x° -  y° )  (d 2 +  to 2) (0| [4>{x),<t>{y)} |0)

=  -<5(æ0 -  y ° )  (0| [tt(:e), <f>(y)\ |0)

+  26(x°  -  y° )  (0 | [?r(x), <j>(y)\ |0 ) +  0  

=  —iô^4\ x  — y).  (2.56)

This says that D r (x  — y) is a Green’s function of the Klein-Gordon operator.
Since it vanishes for x° < y°, it is the retarded Green’s function.

If we had not already derived expression (2.54), we could find it by Fourier 
transformation. Writing

D r {x  - y )  =  J  e - ^ * - y W R (p), (2.57)

we obtain an algebraic expression for D r (p ):

(- p 2 +  m 2)DR(p) = - i .

Thus we immediately arrive at the result

C M * (2-58)
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The p°-integral of (2.58) can be evaluated according to four different con-
tours, of which that used in (2.54) is only one. In Chapter 4 we will find that 
a different pole prescription,

- E p

W

is extremely useful; it is called the Feynman prescription. A convenient way 
to remember it is to write

since the poles are then at p° =  dt(Ep —ie), displaced properly above and below

contour below, obtaining exactly the propagation amplitude D (x — y) (2.50). 
When x° < y° we close the contour above, obtaining the same expression but 
with x  and y interchanged. Thus we have

The last line defines the “time-ordering” symbol T, which instructs us to 
place the operators that follow in order with the latest to the left. By applying

of the Klein-Gordon operator.
Equations (2.59) and (2.60) are, from a practical point of view, the most 

important results of this chapter. The Green’s function D p{x — y) is called 
the Feynman propagator for a Klein-Gordon particle, since it is, after all, a 
propagation amplitude. Indeed, the Feynman propagator will turn  out to be 
part of the Feynman rules: D p{x — y) (or Dp{p)) is the expression that we will 
attach to internal lines of Feynman diagrams, representing the propagation of 
virtual particles.

Nevertheless we are still a long way from being able to do any real calcu-
lations, since so far we have talked only about the free Klein-Gordon theory, 
where the field equation is linear and there are no interactions. Individual par-
ticles live in their isolated modes, oblivious to each others’ existence and to 
the existence of any other species of particles. In such a theory there is no hope 
of making any observations, by scattering or any other means. On the other 
hand, the formalism we have developed is extremely important, since the free 
theory forms the basis for doing perturbative calculations in the interacting 
theory.

dAp i e - i p - ( x - y ) (2.59)
(27r)4 p2 — m 2 +  ie

the real axis. When x° > y° we can perform the p° integral by closing the

_  f D (x  — y) for x° > y°
\  D(y  — x) for x° < y°

=  9 (x °  -  y° )  (0| 4>{x)4>(y) |0> +  0(y° -  x ° )  (0| <t>(y)4>{x) |0)

= {0\Td>(x)<j>(y)\0). (2.60)

(<92  +  ra2) to the last line, you can verify directly that Dp  is a Green’s function
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Particle Creation by a Classical Source

There is one type of interaction, however, that we are already equipped to 
handle. Consider a Klein-Gordon field coupled to an external, classical source 
field j ( x ) .  That is, consider the field equation

(.d 2 +  m 2)4>(x) =  j (x) ,  (2.61)

where j (x )  is some fixed, known function of space and time that is nonzero 
only for a finite time interval. If we start in the vacuum state, what will we 
find after j  (x) has been turned on and off again?

The field equation (2.61) follows from the Lagrangian

£  =  ^ ( d ß(p)2 -  \ m 24>2 +  j(x)<f>(x). (2.62)

But if j ( x )  is turned on for only a finite time, it is easiest to solve the problem 
using the field equation directly. Before j ( x )  is turned on, cj)(x) has the form

If there were no source, this would be the solution for all time. W ith a source, 
the solution of the equation of motion can be constructed using the retarded 
Green’s function:

4>(x) =  <po(x) +  i J  dAy D R(x -  y ) j ( y )

x ^ - i p - ( x -y )  _  ei p i x - y ) ^ j ^ _  (2 63)

If we wait until all of j  is in the past, the theta  function equals 1 in the whole 
domain of integration. Then <p(x) involves only the Fourier transform of j ,

j(p) =  J  ^ y e ^  Vjiy),

evaluated at 4-momenta p such that p2 = m 2. It is natural to group the 
positive-frequency terms together with ap and the negative-frequency terms 
with a£; this yields the expression

m  = /<0 7 ï ç { ( “p + 7 w ; i(p)y ,r’+ h c1  (2 64)

You can now guess (or compute) the form of the Hamiltonian after j (x )  
has acted: Just replace ap with (ap +  i j (p ) / yj 2 E p) to obtain
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The energy of the system after the source has been turned off is

(2.65)

where |0) still denotes the ground state of the free theory. We can interpret 
these results in terms of particles by identifying \j(p)\2 /  2 E p as the probability 
density for creating a particle in the mode p. Then the total number of particles 
produced is

Only those Fourier components of j ( x )  that are in resonance with on-mass- 
shell (i.e., p2 = m?) Klein-Gordon waves are effective at creating particles.

We will return to this subject in Problem 4.1. In Chapter 6  we will study 
the analogous problem of photon creation by an accelerated electron (brems- 
strahlung).

Problem s

2 . 1  Classical electromagnetism (with no sources) follows from the action

(a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action, treat-
ing the components A ^ x )  as the dynamical variables. Write the equations in 
standard form by identifying E l — — F ° l and eli kB k = —F ^ .

(b) Construct the energy-momentum tensor for this theory. Note that the usual 
procedure does not result in a symmetric tensor. To remedy that, we can add to

a term of the form d \K x^u, where is antisymmetric in its first two
indices. Such an object is automatically divergenceless, so

is an equally good energy-momentum tensor with the same globally conserved 
energy and momentum. Show that this construction, with

leads to an energy-momentum tensor T  that is symmetric and yields the standard 
formulae for the electromagnetic energy and momentum densities:

2.2 The complex scalar field. Consider the field theory of a complex-valued scalar 
field obeying the Klein-Gordon equation. The action of this theory is

(2 .66)

n v  _

£ = \  (E 2 + B 2); S = E x  B.
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It is easiest to analyze this theory by considering and <j>*(x), rather than the real
and imaginary parts of </>(x), as the basic dynamical variables.

(a) Find the conjugate momenta to cj)(x) and and the canonical commutation 
relations. Show that the Hamiltonian is

H  =  J cftx (7T*7T +  V0* • V0 + ra2 0*0).

Compute the Heisenberg equation of motion for <j)(x) and show that it is indeed 
the Klein-Gordon equation.

(b) Diagonalize H  by introducing creation and annihilation operators. Show that 
the theory contains two sets of particles of mass m.

(c) Rewrite the conserved charge

Q = j d 3X^((p*TT* -  7T0)

in terms of creation and annihilation operators, and evaluate the charge of the 
particles of each type.

(d) Consider the case of two complex Klein-Gordon fields with the same mass. Label 
the fields as (j>a{x), where a — 1 , 2 . Show that there are now four conserved 
charges, one given by the generalization of part (c), and the other three given
by

Ql = J d 3X (̂4>*a{al )ab*b -  KaitT^abfo),

where a1 are the Pauli sigma matrices. Show that these three charges have the 
commutation relations of angular momentum (SU(2)). Generalize these results 
to the case of n identical complex scalar fields. 1̂

2.3 Evaluate the function

<0| 4>(x)4>(y) |0) = D(x -  y) = J 2^ e~tP (X~V) ’ 

for (x — y ) spacelike so that (x — y)2 = — r 2, explicitly in terms of Bessel functions.

•^With some additional work you can show that there are actually six conserved 
charges in the case of two complex fields, and n(2n — 1 ) in the case of n fields, corre-
sponding to the generators of the rotation group in four and 2 n dimensions, respec-
tively. The extra symmetries often do not survive when nonlinear interactions of the 
fields are included.
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The Dirac Field

Having exhaustively treated the simplest relativistic field equation, we now 
move on to the second simplest, the Dirac equation. You may already be 
familiar with the Dirac equation in its original incarnation, that is, as a single-
particle quantum-mechanical wave equation.* In this chapter our viewpoint 
will be quite different. First we will rederive the Dirac equation as a classical 
relativistic field equation, with special emphasis on its relativistic invariance. 
Then, in Section 3.5, we will quantize the Dirac field in a manner similar to 
that used for the Klein-Gordon field.

3.1 Lorentz Invariance in W ave Equations

First we must address a question that we swept over in Chapter 2 : W hat do 
we mean when we say that an equation is “relativistically invariant”? A rea-
sonable definition is the following: If <fi is a field or collection of fields and V  
is some differential operator, then the statement uV(j) — 0 is relativistically 
invariant” means that if <p(x) satisfies this equation, and we perform a rota-
tion or boost to a different frame of reference, then the transformed field, in 
the new frame of reference, satisfies the same equation. Equivalently, we can 
imagine physically rotating or boosting all particles or fields by a common 
angle or velocity; again, the equation V(p =  0 should be true after the trans-
formation. We will adopt this “active” point of view toward transformations 
in the following analysis.

The Lagrangian formulation of field theory makes it especially easy to 
discuss Lorentz invariance. An equation of motion is automatically Lorentz 
invariant by the above definition if it follows from a Lagrangian that is a 
Lorentz scalar. This is an immediate consequence of the principle of least 
action: If boosts leave the Lagrangian unchanged, the boost of an extremum 
in the action will be another extremum.

*This subject is covered, for example, in SchifF (1968), Chapter 13; Baym (1969), 
Chapter 23; Sakurai (1967), Chapter 3. Although the present chapter is self-contained, 
we recommend that you also study the single-particle Dirac equation at some point.

35
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As an example, consider the Klein-Gordon theory. We can write an arbi-
trary Lorentz transformation as

x» x'** = , (3.1)

for some 4 x 4  matrix A. W hat happens to the Klein-Gordon field <fi(x) under 
this transformation? Think of the field <fi as measuring the local value of some 
quantity that is distributed through space. If there is an accumulation of this 
quantity at x  =  xq , (f>(x) will have a maximum at Xq . If we now transform the 
original distribution by a boost, the new distribution will have a maximum at 
x — Axo. This is illustrated in Fig. 3.1(a). The corresponding transformation 
of the field is

(j){x) —» (j)'(x) =  </>(A- 1 x). (3.2)

That is, the transformed field, evaluated at the boosted point, gives the same
value as the original field evaluated at the point before boosting.

We should check that this transformation leaves the form of the Klein- 
Gordon Lagrangian unchanged. According to (3.2), the mass term ^m 2 0 2 (x) 
is simply shifted to the point (A_1 x). The transformation of dß(j){x) is

dß<p(x) ->■ ^ ( ^ ( A “1̂ )) =  (A“1 ) 1/M(ôi/^)(A“1 a;). (3.3)

Since the metric tensor gßV is Lorentz invariant, the matrices A- 1  obey the 
identity

( A - y M(A ~ 'y v < r  = <r-  (3 -4 )

Using this relation, we can compute the transformation law of the kinetic term 
of the Klein-Gordon Lagrangian:

(dß4>(x))2 -> g’J-u (d^( l> ' (x))(dl/(l>'(x))

= g r  [(A~l Y M ]  [(A- l Y M ]  (A“1*)

= gpa(dp<i>){d<r4>){ A"1*)

Thus, the whole Lagrangian is simply transformed as a scalar:

C{x) —> C(A~1x). (3.5)

The action 5, formed by integrating C over spacetime, is Lorentz invariant. 
A similar calculation shows that the equation of motion is invariant:

(Ö2  +  m 2)<p'(x) = [(A“1 )"|lt<9l,(A“1 )‘T/i<9(T +  m 2] </>(A_1 a:)

=  ( g ^ d v d a  +  m 2)(p(A~1x)

=  0 .

The transformation law (3.2) used for 0 is the simplest possible transfor-
mation law for a field. It is the only possibility for a field that has just one
component. But we know examples of multiple-component fields that trans-
form in more complicated ways. The most familiar case is that of a vector field,
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(a) scalar field (b) vector field

Figure 3.1. When a rotation is performed on a vector field, it affects the 
orientation of the vector as well as the location of the region containing the 
configuration.

such as the 4-current density j^ {x )  or the vector potential A^(x).  In this case, 
the quantity that is distributed in spacetime also carries an orientation, which 
must be rotated or boosted. As shown in Fig. 3.1(b), the orientation must be 
rotated forward as the point of evaluation of the field is changed:

under 3-dimensional rotations, V l (x) (R~l x)\

under Lorentz transformations, V ^(x)  —> A ^ V 1' (A- 1  x ) .

Tensors of arbitrary rank can be built out of vectors by adding more indices, 
with correspondingly more factors of A in the transformation law. Using such 
vector and tensor fields we can write a variety of Lorentz-invariant equations, 
for example, Maxwell’s equations,

=  0 or d 2A lJ -  d„d^Aß = 0, (3.6)

which follow from the Lagrangian

^Maxwell =  = ~ \ ( 0 ^ A V -  ÖuA ßf . (3.7)

In general, any equation in which each term has the same set of uncontracted 
Lorentz indices will naturally be invariant under Lorentz transformations.

This method of tensor notation yields a large class of Lorentz-invariant 
equations, but it turns out that there are still more. How do we find them? 
We could try to systematically find all possible transformation laws for a field. 
Then it would not be hard to write invariant Lagrangians. For simplicity, we 
will restrict our attention to linear transformations, so that, if <3>a is an n 
component multiplet, the Lorentz transformation law is given by an n  x n 
matrix M ( A):

$ 0(a:) -  M ab (A )$ b(A~l x).  (3.8)
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It can be shown that the most general nonlinear transformation laws can be 
built from these linear transformations, so there is no advantage in considering 
transformations more general than (3.8). In the following discussion, we will 
suppress the change in the field argument and write the transformation (3.8) 
in the form

$  -+ M  (A)$. (3.9)

W hat are the possible allowed forms for the matrices M(A)? The basic 
restriction on M(A) is found by imagining two successive transformations, A 
and A'. The net result must be a new Lorentz transformation A"; that is, 
the Lorentz transformations form a group. This gives a consistency condition 
that must be satisfied by the matrices M(A): Under the sequence of two 
transformations,

$  - ► M (A ')M (A )$ =  M (A ")$, (3.10)

for A" =  A'A. Thus the correspondence between the matrices M  and the 
transformations A must be preserved under multiplication. In mathematical 
language, we say that the matrices M  must form an n-dimensional represen-
tation of the Lorentz group. So our question now is rephrased in mathemati-
cal language: W hat are the (finite-dimensional) matrix representations of the 
Lorentz group?

Before answering this question for the Lorentz group, let us consider a sim-
pler group, the rotation group in three dimensions. This group has representa-
tions of every dimensionality n, familiar in quantum mechanics as the matrices 
that rotate the n-component wavefunctions of particles of different spins. The 
dimensionality is related to the spin quantum number s by n =  2s +  1. The 
most important nontrivial representation is the two-dimensional representa-
tion, corresponding to spin 1/2. The matrices of this representation are the 
2 x 2  unitary matrices with determinant 1 , which can be expressed as

u  = e~*e V /2 , (3.11)

where 0l are three arbitrary parameters and a 1 are the Pauli sigma matrices.
For any continuous group, the transformations tha t lie infinitesimally close 

to the identity define a vector space, called the Lie algebra of the group. 
The basis vectors for this vector space are called the generators of the Lie 
algebra, or of the group. For the rotation group, the generators are the angular 
momentum operators J 2, which satisfy the commutation relations

[ J \  J 3} = i é jkJ k. (3.12)

The finite rotation operations are formed by exponentiating these operators: 
In quantum mechanics, the operator

R  =  exp [— (3. 13)

gives the rotation by an angle |0| about the axis 0. The commutation rela-
tions of the operators J 1 determine the multiplication laws of these rotation
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operators. Thus, a set of matrices satisfying the commutation relations (3.12) 
produces, through exponentiation as in (3.13), a representation of the rotation 
group. In the example given in the previous paragraph, the representation of 
the angular momentum operators

J l -  y  (3.14)

produces the representation of the rotation group given in Eq. (3.11). It is 
generally true that one can find matrix representations of a continuous group 
by finding matrix representations of the generators of the group (which must 
satisfy the proper commutation relations), then exponentiating these infinites-
imal transformations.

For our present problem, we need to know the commutation relations 
of the generators of the group of Lorentz transformations. For the rotation 
group, one can work out the commutation relations by writing the generators 
as differential operators; from the expression

J =  x x p  =  x x  (—zV), (3.15)

the angular momentum commutation relations (3.12) follow straightforwardly. 
The use of the cross product in (3.15) is special to the case of three dimensions. 
However, we can also write the operators as an antisymmetric tensor,

jrtf -  -Upfv* -

so that J 3 =  J 12 and so on. The generalization to four-dimensional Lorentz 
transformations is now quite natural:

JW  = i (x ^ d u - x vd»). (3.16)

We will soon see that these six operators generate the three boosts and three 
rotations of the Lorentz group.

To determine the commutation rules of the Lorentz algebra, we can now 
simply compute the commutators of the differential operators (3.16). The 
result is

[ J ^ ,  JP"] =  -  gMJ™ -  +  g ^ j v p ) .  (3.17)

Any matrices that are to represent this algebra must obey these same com-
mutation rules.

Just to see that we have this right, let us look at one particular represen-
tation (which we will simply pull out of a hat). Consider the 4 x 4  matrices

(J n < x ß  = i(6tiaöl'ß - S » ß6l'a ). (3.18)

(Here ji and v label which of the six matrices we want, while a  and ß  la-
bel components of the matrices.) You can easily verify that these matrices 
satisfy the commutation relations (3.17). In fact, they are nothing but the
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matrices that act on ordinary Lorentz 4-vectors. To see this, parametrize an 
infinitesimal transformation as follows:

-  (ßaß -  ^ ( j n aß ) v ß , (3.19)

where V  is a 4-vector and uißv, an antisymmetric tensor, gives the infinites-
imal angles. For example, consider the case u>\2 = —u>n = 0, with all other 
components of u> equal to zero. Then Eq. (3.19) becomes

V
/ I 0 0

0 l -0
0 0 1

Vo 0 0

V, (3.20)

which is just an infinitesimal rotation in the xy-plane. You can also verify 
that setting wqi =  — wio =  ß  gives

V

/ I ß 0 ° \
ß 1 0 0

0 0 1 0

Vo 0 0 \ )

V, (3.21)

an infinitesimal boost in the x-direction. The other components of l j generate 
the remaining boosts and rotations in a similar manner.

3.2 The Dirac Equation

Now that we have seen one finite-dimensional representation of the Lorentz 
group, the logical next step would be to develop the formalism for finding 
all other representations. Although this is not very difficult to do (see Prob-
lem 3.1), it is hardly necessary for our purposes, since we are mainly interested 
in the representation(s) corresponding to spin 1 / 2 .

We can find such a representation using a trick due to Dirac: Suppose 
that we had a set of four n  x n  matrices 7 ^ satisfying the anticommutation 
relations

{7 /\ 7 1/} =  +  Y l ß = 2 x l nxn (Dirac algebra). (3.22)

Then we could immediately write down an n-dimensional representation of 
the Lorentz algebra. Here it is:

S 11" = \ b ^ l v]- (3.23)

By repeated use of (3.22), it is easy to verify that these matrices satisfy the 
commutation relations (3.17).

This computation goes through in any dimensionality, with Lorentz or 
Euclidean metric. In particular, it should work in three-dimensional Euclidean
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space, and in fact we can simply write

=  ia 3 (Pauli sigma matrices), 

so that {7 z5 7 j } =  —2<5U.

The factor of i in the first line and the minus sign in the second line are purely 
conventional. The matrices representing the Lorentz algebra are then

which we recognize as the two-dimensional representation of the rotation 
group.

Now let us find Dirac matrices 7 ^ for four-dimensional Minkowski space. 
It turns out that these matrices must be at least 4 x 4 .  (There is no fourth 
2 x 2  matrix, for example, that anticommutes with the three Pauli sigma 
matrices.) Further, all 4 x 4 representations of the Dirac algebra are unitarily 
equivalent.'*’ We thus need only write one explicit realization of the Dirac 
algebra. One representation, in 2  x 2  block form, is

This representation is called the Weyl or chiral representation. We will find 
it an especially convenient choice, and we will use it exclusively throughout 
this book. (Be careful, however, since many field theory textbooks choose a 
different representation, in which 7 0  is diagonal. Furthermore, books that use 
chiral representations often make a different choice of sign conventions.)

In our representation, the boost and rotation generators are

A four-component field ip tha t transforms under boosts and rotations accord-
ing to (3.26) and (3.27) is called a Dirac spinor. Note that the rotation gen-

replicated twice. The boost generators S°l are not Hermitian, and thus our 
implementation of boosts is not unitary (this was also true of the vector rep-
resentation (3.18)). In fact the Lorentz group, being “noncompact” , has no 
faithful, finite-dimensional representations that are unitary. But that does not 
matter to us, since ip is not a wavefunction; it is a classical field.

gi j  =  I  eijka k (3.24)

(3.25)

(3.26)

and

(3.27)

erator S u is just the three-dimensional spinor transformation matrix (3.24)

^This statement and the preceding one follow from the general theory of the 
representations of the Lorentz group derived in Problem 3.1.
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Now that we have the transformation law for ip, we should look for an 
appropriate field equation. One possibility is simply the Klein-Gordon equa-
tion:

(d2 + m 2) ^  =  0. (3.28)

This works because the spinor transformation matrices (3.26) and (3.27) op-
erate only in the “internal” space; they go right through the differential oper-
ator. But it is possible to write a stronger, first-order equation, which implies
(3.28) but contains additional information. To do this we need to know one 
more property of the 7  matrices. W ith a short computation you can verify 
that

{l^ s n  = ( j p<jn  y ,

or equivalently,

( 1  +  iüJpaS ^ ) r (  1  -  I UpaS**) =  ( 1  -  ^ paJ pa) W -

This equation is just the infinitesimal form of

A“iV A i =  (3.29)

where

Ai = e x p ( —J u v S ' “') (3.30)
2 L

is the spinor representation of the Lorentz transformation A (compare (3.19)).
Equation (3.29) says that the 7  matrices are invariant under simultaneous
rotations of their vector and spinor indices (just like the o l under spatial
rotations). In other words, we can “take the vector index /i on 7 M seriously,”
and dot 7 ^ into dß to form a Lorentz-invariant differential operator.

We are now ready to write down the Dirac equation. Here it is:

— m)ip(x) =  0. (3.31)

To show that it is Lorentz invariant, write down the Lorentz-transformed
version of the left-hand side and calculate:

-  m]ip(x)  -> [ryM(A ~ 1)uIJ/du -  m] A^ip(A~1x)

= A i A - i ^ A - y ^ A  -  m ]A i^ (A - 1 x)

=  Ai [ i A ~ ^ Y A i { A - 1)vßdu -  m\ip(A~1 x)

— A i  [iAtla^ cr(A ~ 1Y ßdl, -  m\tp(A~1x)

=  A i  \ ^ r fd v — rn\'4>(A~l x)

=  0.
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To see that the Dirac equation implies the Klein-Gordon equation, act on the 
left with — m):

0  =  — m ){ i^vdv — m ) ^
=  +  7712 )V>

= ( l i l 11 ■,l''}d^d„ + m 2)ip

- (d2 +  m 2)ip.

To write down a Lagrangian for the Dirac theory, we must figure out how 
to multiply two Dirac spinors to form a Lorentz scalar. The obvious guess,

does not work. Under a Lorentz boost this becomes A i -0; if the
j . _2  2

boost matrix were unitary, we would have ATi =  A i and everything would be 
fine. But Ai is not unitary, because the generators (3.26) are not Hermitian. 

The solution is to define
ip =  V't 7 °- (3-32)

Under an infinitesimal Lorentz transformation parametrized by we have 
ÿ  ^  (l  +  f^/ii/(S'/XI/)^)7 °* The sum over fi and v  has six distinct nonzero 
terms. In the rotation terms, where fi and v are both nonzero, (S  
and commutes with 7 0. In the boost terms, where (i or v is 0, ( S ^ ) ^  —
— (S^u) but anticommutes with 7 0. Passing the 7 0  to the left therefore 
removes the dagger from S ßl/, yielding the transformation law

ip ipA~i, (3.33)

and therefore the quantity i/jÿ is a Lorentz scalar. Similarly you can show 
(with the aid of (3.29)) that is a Lorentz vector.

The correct, Lorentz-invariant Dirac Lagrangian is therefore

^Dirac =  ip{iYdn ~  m)ip. (3.34)

The Euler-Lagrange equation for ip (or tp^) immediately yields the Dirac equa- 
tion in the form (3.31); the Euler-Lagrange equation for -0 gives the same 
equation, in Hermitian-conjugate form:

— rri'ip =  0. (3.35)

W eyl Spinors

From the block-diagonal form of the generators (3.26) and (3.27), it is apparent
that the Dirac representation of the Lorentz group is re d u c ib le We can form
two 2 -dimensional representations by considering each block separately, and 
writing

„ = ( £ ) .  (3.36)

•t-If we had used a different representation of the gamma matrices, the reducibility 
would not be manifest; this is essentially the reason for using the chiral representation.
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The two-component objects and i/j r  are called left-handed and right- 
handed Weyl spinors. You can easily verify tha t their transformation laws, 
under infinitesimal rotations 9 and boosts /3, are

(3.37
ipR (1 -  id  ■ § + ß  ■ f  )V’ß-

These transformation laws are connected by complex conjugation; using the 
identity

<t 2ct * =  — era2, (3.38)

it is not hard to show that the quantity a transforms like a right-handed 
spinor.

In terms of and -0#, the Dirac equation is

v) <(* t r v)) (£)=»•  <**»
The two Lorentz group representations ipL and 'ipR are mixed by the mass
term in the Dirac equation. But if we set m — 0, the equations for ipL and i/j r
decouple:

i(d0 -  a  ■ V ) i p L =0;
(3.40)

i ( d 0 +  a  ■ V ) i p R =  0.

These are called the Weyl equations; they are especially important when trea t-
ing neutrinos and the theory of weak interactions.

It is possible to clean up this notation slightly. Define

=  (1, er), ä ß = (1, - a ) ,  (3.41)

so that

7 " = ( " „  ; " ) •  (3.42)

(The bar on a has absolutely nothing to do with the bar on ïp.) Then the 
Dirac equation can be written

- m  ia  ■ d \  = 0 (3,43)
10 ■ d  - m  J  VV'fl/

and the Weyl equations become

ia • d'ipL =  0; 2(j • dïpR =  0. (3.44)



3.3 Free-Particle Solutions of the Dirac Equation 45

3.3 Free-Particle Solutions of the  Dirac Equation

To get some feel for the physics of the Dirac equation, let us now discuss its 
plane-wave solutions. Since a Dirac field xjj obeys the Klein-Gordon equation, 
we know immediately that it can be written as a linear combination of plane 
waves:

ïp(x) = u(p)e~zp'x, where p2 — m 2. (3.45)

For the moment we will concentrate on solutions with positive frequency, that 
is, p° > 0. The column vector u(p) must obey an additional constraint, found 
by plugging (3.45) into the Dirac equation:

~ m)u(p) =  0. (3.46)

It is easiest to analyze this equation in the rest frame, where p = po = (jn, 0); 
the solution for general p can then be found by boosting with A i . In the rest 
frame, Eq. (3.46) becomes

(m 7 ° -  m)u(po) =  m (  j  _* )  u(p0) = 0 , 

and the solutions are

tt(Po) =  V m ( ^ ) ,  (3.47)

for any numerical two-component spinor £. We conventionally normalize £ so 
that — 1 ; the factor y /m  has been inserted for future convenience. We can 
interpret the spinor £ by looking at the rotation generator (3.27): £ transforms 
under rotations as an ordinary two-component spinor of the rotation group, 
and therefore determines the spin orientation of the Dirac solution in the 
usual way. For example, when £ — (*), the particle has spin up along the 
3-direction.

Notice that after applying the Dirac equation, we are free to choose only 
two of the four components of u(p). This is just what we want, since a spin-1/2 
particle has only two physical states—spin up and spin down. (Of course we 
are being a bit premature in talking about particles and spin. We will prove 
tha t the spin angular momentum of a Dirac particle is h/2  when we quantize 
the Dirac theory in Section 3.5; for now, just notice tha t there are two possible 
solutions u{p) for any momentum p.)

Now that we have the general form of u(p) in the rest frame, we can obtain 
u(p) in any other frame by boosting. Consider a boost along the 3-direction. 
First we should remind ourselves of what the boost does to the 4-momentum 
vector. In infinitesimal form,
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exp 0  1  

1  0

cosh ry ( p  ®

m cosh 77 \  
m  sinh 77 J

sinh rj 0  1  

1  0
(3.48)

The parameter 77 is called the rapidity. It is the quantity that is additive under 
successive boosts.

Now apply the same boost to u(p).  According to Eqs. (3.26) and (3.30),

u(p) =  exp 1 ■/ o-' 
-2*7

3  0

0 - c r 3

cosher?) ( J  J ^ - s i n h (  q - a 3 )  

_ / e’,/2( i f ! ) + e" ,/2( ¥ )  0

' y w + ? { ± ¥ - )  +

The last line can be simplified to give

u{p)  =
V P -ë Ç

. 6  

(3.49)

(3.50)

where it is understood that in taking the square root of a matrix, we take 
the positive root of each eigenvalue. This expression for u{p) is not only more 
compact, but is also valid for an arbitrary direction of p. When working with 
expressions of this form, it is often useful to know the identity

(p ' a )(P ’ a ) — P2 — m 2  - (3.51)

You can then verify directly that (3.50) is a solution of the Dirac equation in 
the form of (3.43).

In practice it is often convenient to work with specific spinors £. A useful 
choice here would be eigenstates of a 3. For example, if £ =  (J) (spin up along 
the 3-axis), we get

u(p)  =  ( V ,E .... 4 m )  —  ( °  ) ,K ^ / E  + p 3(0)J  large boost \ ( Q) /
(3.52)
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while for £ =  (^) (spin down along the 3-axis) we have

(3.53)

In the limit rj —> oo the states degenerate into the two-component spinors of 
a massless particle. (We now see the reason for the factor of y/rn in (3.47): It 
keeps the spinor expressions finite in the massless limit.)

The solutions (3.52) and (3.53) are eigenstates of the helicity operator,

A particle with h =  + 1 / 2  is called right-handed, while one with h =  —1 / 2  is 
called left-handed. The helicity of a massive particle depends on the frame of 
reference, since one can always boost to a frame in which its momentum is 
in the opposite direction (but its spin is unchanged). For a massless particle, 
which travels at the speed of light, one cannot perform such a boost.

The extremely simple form of u(p) for a massless particle in a helicity 
eigenstate makes the behavior of such a particle easy to understand. In Chap-
ter 1 , it enabled us to guess the form of the e+e~ —> fi+f±~ cross section in the 
massless limit. In subsequent chapters we will often do a mindless calculation 
first, then look at helicity eigenstates in the high-energy limit to understand 
what we have done.

Incidentally, we are now ready to understand the origin of the notation 
îpL and 'ipR for Weyl spinors. The solutions of the Weyl equations are states of 
definite helicity, corresponding to left- and right-handed particles, respectively. 
The Lorentz invariance of helicity (for a massless particle) is manifest in the 
notation of Weyl spinors, since 'ipL and ipn live in different representations of 
the Lorentz group.

It is convenient to write the normalization condition for u{p) in a Lorentz- 
invariant way. We saw above that is not Lorentz invariant. Similarly,

(3.54)

(3.55)
=  2 £ p £ t£.

To make a Lorentz scalar we define

u(p) — u \ p )  7 °. 

Then by an almost identical calculation,

ÜU =  2 ra£Î£.

(3.56)

(3.57)

This will be our normalization condition, once we also require that the two- 
component spinor £ be normalized as usual: =  1. It is also conventional to
choose basis spinors Ç1 and £ 2  (such as (J) and (°)) that are orthogonal. For
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a massless particle Eq. (3.57) is trivial, so we must write the normalization 
condition in the form of (3.55).

Let us summarize our discussion so far. The general solution of the Dirac 
equation can be written as a linear combination of plane waves. The positive- 
frequency waves are of the form

'ip(x) =  u(p)e~ip'x, p2 = m 2, p° > 0. (3.58)

There are two linearly independent solutions for w(p),

s = i -2 <359)
which we normalize according to

Ür(p)us(p) = 2m6rs or ur\ p ) u s (p) = 2Ep6rs. (3.60) 

In exactly the same way, we can find the negative-frequency solutions:

%l){x) =  v(p)e^~ip'x , p2 =  rn2, p° > 0. (3.61)

(Note that we have chosen to put the +  sign into the exponential, rather than 
having p° < 0.) There are two linearly independent solutions for u(p),

<*»>
where r]s is another basis of two-component spinors. These solutions are nor-
malized according to

vr {p)vs{p) — — 2  m 6rs or vr\ p ) v s (p) =  -\-2Ep6rs. (3.63)

The u ’s and v’s are also orthogonal to each other:

u r{p)vs{p) — vr (p)us(p) — 0. (3.64)

Be careful, since ur^{p)vs{p) ^  0 and vrj[(p)us (p) ^  0. However, note that

u r t (p)vs ( - p )  =  î / f (-p)M s(p) =  0, (3.65)

where we have changed the sign of the 3-momentum in one factor of each 
spinor product.

Spin Sum s

In evaluating Feynman diagrams, we will often wish to sum over the polar-
ization states of a fermion. We can derive the relevant completeness relations 
with a simple calculation:

uS(p)ü 8(p) =
8 = 1,2

^ /p 7ä y /p ~ ä  \jp ■ ay/p^i

VP ‘ °VP ' a VP ' a VP ' a
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p • a
m  p • a 
) • a rri

In the second line we have used

1  0

0  1
s=1,2

Thus we arrive at the desired formula,

(p)us (p) =  7  • p +  m. (3.66)
s

Similarly,
^>2vs(p)vs (p) = 7 - p - m . (3.67)

S

The combination 7 *p occurs so often that Feynman introduced the notation 
ÿ  =  7 ^p^. We will use this notation frequently from now on.

3.4 Dirac M atrices and Dirac Field Bilinears

We saw in Section 3.2 that the quantity is a Lorentz scalar. It is also 
easy to show that '07M,0 is a 4-vector—we used this fact in writing down the 
Dirac Lagrangian (3.34). Now let us ask a more general question: Consider the 
expression ipTtp, where Y is any 4 x 4  constant matrix. Can we decompose this 
expression into terms that have definite transformation properties under the 
Lorentz group? The answer is yes, if we write T in terms of the following basis 
of sixteen 4 x 4  matrices, defined as antisymmetric combinations of 7 -matrices:

16 total

The Lorentz-transformation properties of these matrices are easy to deter-
mine. For example,

Each set of matrices transforms as an antisymmetric tensor of successively 
higher rank.

1 1  of these
4 of these 
6  of these
4 of these 
1  of these

(V'Ai1) ( ! [ 7 ^ , 7 "]) (A 1-0)

=  ^ ( A I V A i A I V A i -  A“iV A i A"iV A i W' 2 2 2 2 2 2 2 2

=  A ^ A V 7 “^ .
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The last two sets of matrices can be simplified by introducing an addi-
tional gamma matrix,

7 5  =  *7°71 7 2 7 3  =  - ^ e ' " /ptr7M7J/7p7(T. (3.68)

Then ^ vpu =  —iepypcr7 5  and j ßup =  -\-ie^pa7 a 7 5- The matrix 7 s has the 
following properties, all of which can be verified using (3.68) and the anti-
commutation relations (3.22):

(7 5)f =  7 5; (3-69)

( 7 5 ) 2  =  1; (3.70)

{75i 7 ^} — 0- (3.71)

This last property implies that [7 5 ,5 ^ M] =  0. Thus the Dirac representation 
must be reducible, since eigenvectors of 7 5  whose eigenvalues are different 
transform without mixing (this criterion for reducibility is known as Schur’s 
lemma). In our basis,

M «  °) (3J2)

in block-diagonal form. So a Dirac spinor with only left- (right-) handed com-
ponents is an eigenstate of 7 s with eigenvalue — 1  (+ 1 ), and indeed these 
spinors do transform without mixing, as we saw explicitly in Section 3.2.

Let us now rewrite our table of 4x4  matrices, and introduce some standard 
terminology:

1 scalar 1

vector 4
tensor 6

7 M75 pseudo-vector 4

7 5 pseudo-scalar 1

16

The terms pseudo-vector and pseudo-scalar arise from the fact that these 
quantities transform as a vector and scalar, respectively, under continuous 
Lorentz transformations, but with an additional sign change under parity 
transformations (as we will discuss in Section 3.6).

From the vector and pseudo-vector matrices we can form two currents out 
of Dirac field bilinears:

j ß{x) =  ip(x)/̂ flip(x); j ^ ( x )  = '0(^)7/x7 5 '0(:c)- (3.73)

Let us compute the divergences of these currents, assuming that ^  satisfies
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the Dirac equation:

— (imïjj)'ip -f irmjj) (3.74)

=  0 .

Thus is always conserved if ip(x) satisfies the Dirac equation. When we 
couple the Dirac field to the electromagnetic field, j ß will become the electric 
current density. Similarly, one can compute

(3.75)

If m  — 0, this current (often called the axial vector current) is also conserved. 
It is then useful to form the linear combinations

=  ^ 7 m ( L _ L ^  =  (3.76)

When m  =  0, these are the electric current densities of left-handed and right- 
handed particles, respectively, and are separately conserved.

The two currents j ß (x) and j ß5 (x) are the Noether currents corresponding 
to the two transformations

ip(x) —► el0i/ip(x) and îp(x) —► eia j5'tp(x).

The first of these is a symmetry of the Dirac Lagrangian (3.34). The second, 
called a chiral transformation, is a symmetry of the derivative term in C but 
not the mass term; thus, Noether’s theorem confirms that the axial vector 
current is conserved only if m  =  0 .

Products of Dirac bilinears obey interchange relations, known as Fierz 
identities. We will discuss only the simplest of these, which will be needed 
several times later in the book. This simplest identity is most easily written 
in terms of the two-component Weyl spinors introduced in Eq. (3.36).

The core of the relation is the identity for the 2 x 2  matrices crM defined 
in Eq. (3.41):

— ‘̂ta.'ytßö • (3.77)

(Here a , /?, etc. are spinor indices, and e is the antisymmetric symbol.) One 
can understand this relation by noting tha t the indices a , 7  transform in the 
Lorentz representation of while /?, 6 transform in the separate representa-
tion of 'ipR, and the whole quantity must be a Lorentz invariant. Alternatively, 
one can just verify the 16 components of (3.77) explicitly.

By sandwiching identity (3.77) between the right-handed portions (i.e., 
lower half) of Dirac spinors wi, 1 2̂ , ^ 3 , W4 , we find the identity

{üir(J^U2r){û^r g^uar) = 2ea i üiRaü 3R1 eßsU2RßU4:Rs
(3.78)

=  - { u ir c j V'u ^r ^U z r c j ^ r )-

This nontrivial relation says that the product of bilinears in (3.78) is anti-
symmetric under the interchange of the labels 2 and 4, and also under the
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interchange of 1 and 3. Identity (3.77) also holds for cr^, and so we also find

(■ü 1Lä flU2L){ü3Lä l_lU4L) =  ~ (ü iLä ßuAL)(ü3Lä ̂ l ) -  (3.79)

It is sometimes useful to combine the Fierz identity (3.78) with the iden-
tity linking and

£ctß(v^)ß1 =  (äfJ'T )aß6ß l . (3.80)

This relation is also straightforward to verify explicitly. By the use of (3.80),
(3.79), and the relation

^  =  4, (3.81)

we can, for example, simplify horrible products of bilinears such as 

( ü i L ä ß a Vä XU 2 L ) ( ü z L ° v a v ° * U±L)  =  2 e a ' y Ü i L a Ü3 L l €ßs( (TUä XU 2 L ) ß ( V v ä x U 4 L ) 6

=  2 e a i Ü i L a Ü 3 L ' y £ ß 6 U 2 L ß { o ' X (T1' CF A ^ 4 l ) < 5

=  2 • (4 ) 2  • ea i ÜiLaÜ3L^ß6U2Lß^AL6

=  lQ(ü1Lä ßU2L)(ü3Lä flU4L). (3.82)

There are also Fierz rearrangement identities for 4-component Dirac 
spinors and 4 x 4  Dirac matrices. To derive these, however, it is useful to 
take a more systematic approach. Problem 3.6 presents a general method and 
gives some examples of its application.

3.5 Q uantization o f the  Dirac Field

We are now ready to construct the quantum theory of the free Dirac field. 
From the Lagrangian

C — — m ) ^  — — m )^ , (3.83)

we see that the canonical momentum conjugate to iß is and thus the 
Hamiltonian is

H  = j d3x ïp (—i~f • V  +  rnj'ip — J d 3x ^  [—i 7 ° 7  • V  +  m^y0]^ .  (3.84)

If we define a  — 7 ° 7 , ß  =  7 0, you may recognize the quantity in brackets as
the Dirac Hamiltonian of one-particle quantum mechanics:

h j j  =  — i c t  • V  +  m ß .  (3.85)

H ow N ot to  Quantize th e  Dirac Field:
A  Lesson in Spin and Statistics

To quantize the Dirac field in analogy with the Klein-Gordon field we would 
impose the canonical commutation relations

[V>a(x),^(y)] =  <5(3)(x -  y ) 6ab, (equal times) (3.86)
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where a and b denote the spinor components of tjj. This already looks peculiar: 
If xl)(x) were real-valued, the left-hand side would be antisymmetric under 
x  y, while the right-hand side is symmetric. But ^  is complex, so we 
do not have a contradiction yet. In fact, we will soon find that much worse 
problems arise when we impose commutation relations on the Dirac field. But 
it is instructive to see how far we can get, in order to better understand the 
relation between spin and statistics. So let us press on; just remember that 
the next few pages will eventually turn  out to be a blind alley.

Our first task is to find a representation of the commutation relations in 
terms of creation and annihilation operators that diagonalizes H. From the 
form of the Hamiltonian (3.84), it will clearly be helpful to expand 'ip(x) in a 
basis of eigenfunctions oî hjj. We know these eigenfunctions already from our 
calculations in Section 3.3. There we found that

[ry°9o +  2 7 -V  — m] us (p)e~ip'x — 0 ,

so us(p)ezp'x are eigenfunctions of hp  with eigenvalues E p . Similarly, the 
functions vs (p)e~tp':>c (or equivalently, vs (—p)e+2p'x) are eigenfunctions of 
ho  with eigenvalues — E p . These form a complete set of eigenfunctions, since 
for any p there are two u ’s and two v’s, giving us four eigenvectors of the 4 x 4  
matrix hn.

Expanding ^  in this basis, we obtain

^ ( x )  =  /  (2t0 3 ^ / P -X E  ( a P u S ( P )  +  b- P v S ( - P ) ) -  ( 3 -8 7 )

where ap and 6 p are operator coefficients. (For now we work in the Schrödinger 
picture, where ^  does not depend on time.) Postulate the commutation rela-
tions

[ap> aq1 =  [brp ,b$] =  (2tt)V3)(p -  q)6™. (3.88)

It is then easy to verify the commutation relations (3.86) for ip and ^ :

[V'(x),V’t(y)] = J d 3p d 3q 1 =ei (p .x -q .y )
(2 tt ) 6  \/'2Ep 2 £ q

/ d3p 1 evP' (x—y)

7°

(2tr) 3  2Ep

x ( 7 °EP -  7  • p +  m)  +  ( l ° E p +  7  • p -  1 

=  <5 (3 ) ( x - y )  x l 4x4. (3.89)

In the second step we have used the spin sum completeness relations (3.66) 
and (3.67).
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We are now ready to write H  in terms of the a ’s and 6 ’s. After another 
short calculation (making use of the orthogonality relations (3.60), (3.63), and 
(3.65)), we find

H =  /  T 0 f T , { E< • «  -  e <#SK\ (3-90)

Something is terribly wrong with the second term: By creating more and 
more particles with we can lower the energy indefinitely. (It would not 
have helped to rename & since doing so would ruin the commutation
relation (3.89).)

We seem to be in rather deep trouble, but again le t’s press on, and inves-
tigate the causality of this theory. To do this we should compute (y)]
(or more conveniently, {ip(x),xß(y)]) at non-equal times and hope to get zero 
outside the light-cone. First we must switch to the Heisenberg picture and 
restore the time-dependence of -0 and -0. Using the relations

eiHtaspe~iHt = a spe~iE^ ,  eiHtbspe~iHt = bspe+iE^ ,  (3.91)

we immediately have

d3p 1

(3.92)

We can now calculate the general commutator 

d3p 1

h
[ M x ) , M v ) \  = J  +Va(p)vsb(p)etp-{x- y))

{%  êrp (v-+

=  {i$x + m ) ab[

Since [0(æ), 0(y)] (the commutator of a real Klein-Gordon field) vanishes 
outside the light-cone, this quantity does also.

There is something odd, however, about this solution to the causality 
problem. Let |0) be the state that is annihilated by all the a* and b*: a® |0) =  
bsp |0) -  0. Then

[ ^ a { x ) 3 b{y)\  =  (0| [ ^ a { x ) ^ b{y)]  |0)

=  (0| ipa( x ) ÿ b(y)  |0) -  (0| ï>b(y)'tpa(x )  |0>,
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just as for the Klein-Gordon field. But in the Klein-Gordon case, we got one 
term of the commutator from each of these two pieces: the propagation of 
a particle from y to x  was canceled by the propagation of an antiparticle 
from x  to y outside the light-cone. Here both terms come from the first piece, 
(0| rijj{x)ril){y) |0), since the second piece is zero. The cancellation is between 
positive-energy particles and negative-energy particles, both propagating from 
y to x.

This observation can actually lead us to a resolution of the negative- 
energy problem. One of the assumptions we made in quantizing the Dirac 
theory must have been incorrect. Let us therefore forget about the postulated 
commutation relations (3.86) and (3.88), and see whether we can find a way 
for positive-energy particles to propagate in both directions. We will also have 
to drop our definition of the vacuum |0 ) as the state tha t is annihilated by all 
a® and 6 p. We will, however, retain the expressions (3.92) for x/j (x ) and ip{x) 
as Heisenberg operators, since if ip(x) and 'ip(x) solve the Dirac equation, they 
must be decomposable into such plane-wave solutions.

First consider the propagation amplitude (0| ïp(x)îp(y) |0), which is to rep-
resent a positive-energy particle propagating from y to x. In this case we 
want the (Heisenberg) state îp(y) |0) to be made up of only positive-energy, 
or negative-frequency components (since a Heisenberg state ^ h  — e+lHtl$s)-  
Thus only the a ÿ  term of ÿ(y )  can contribute, which means that bÿ  must 
annihilate the vacuum. Similarly (0| ïp(x) can contain only positive-frequency 
components. Thus we have

<0 | iP (xß(y)  |0 > =  <0 | j  ( ^ 3  J _ - ^ a X ( p ) e - * *

P 3r (3.93)

We can say something about the matrix element (0| aJpa ^  |0) even without 
knowing how to interchange arp and a ÿ , by using translational and rotational 
invariance. If the ground state |0) is to be invariant under translations, we 
must have |0) =  ezP x |0). Furthermore, since creates momentum q, we 
can use Eq. (2.48) to compute

(0 | a X t |0 > =  (0 | a X t eiP 'x |0 >

=  ei(p- q)'x <0 | eiP xarpasJ  |0 )

=  ei(P -‘i>'x ( O l a ^ l O ) .

This says tha t if (0| o'pa ^  |0) is to be nonzero, p  must equal q. Similarly, it 
can be shown that rotational invariance of |0) implies r =  s. (This should be 
intuitively clear, and can be checked after we discuss the angular momentum 
operator later in this section.) From these considerations we conclude that
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the matrix element can be written

(0 | 1 0 } =  (2 t t ) V 3)(p -  • A(p),

where A(p) is so far undetermined. Note, however, that if the norm of a state 
is always positive (as it should be in any self-respecting Hilbert space), A (p) 
must be greater than zero. We can now go back to (3.93), and write

(0| (̂x)îp(y) |0) =  J  - ^ ^ ^ - ^ u s{p)us{p)A{ p)e-lp{x~v)

This expression is properly invariant under boosts only if A(p) is a Lorentz 
scalar, i.e., A (p)= A (p2). Since p 2  =  m 2, A  must be a constant. So finally we 
obtain

(0| ipa(x)ïpb(y) |0 ) =  {ißx + m ) abJ • A. (3.94)

Similarly, in the amplitude (0\iß(y)'ijj(x) \0), we want the only contri-
butions to be from the positive-frequency terms of ÿ(y )  and the negative- 
frequency terms of 'ip(x). So a* still annihilates the vacuum, but b* does not. 
Then by arguments identical to those given above, we have

(0| My'j'ipaix) |0) =  ~ ( i ß x + m ) ab J ^ 3  - ^ r e tp{x~y) • B , (3.95)

where B  is another positive constant. The minus sign is important; it comes 
from the completeness relation (3.67) for and the sign of x  in the ex-
ponential factor. It implies that we cannot have (0| [t/j(x),'ip(y)\ |0) =  0 out-
side the light-cone: The two terms (3.94) and (3.95) would indeed cancel if 
A = —B,  but this is impossible since A  and B  must both be positive.

The solution, however, is now at hand. By setting A  — B  — 1, it is easy 
to obtain (outside the light-cone)

(0| ipa{x)îî>b(y) |0) =  -  (0| ^ b(y )^a(x) |0) .

That is, the spinor fields anticommute  at spacelike separation. This is enough 
to preserve causality, since all reasonable observables (such as energy, charge, 
and particle number) are built out of an even number of spinor fields; for any 
such observables 0 \ and C>2 , we still have [ö i ( x ), Ö2 (y)} = 0  for (x — y ) 2 < 0 .

And remarkably, postulating antzcommutation relations for the Dirac field 
solves the negative energy problem. The equal-time anticommutation relations 
will be

{■0 a(x),-0 b(y)} = 6 {3)( x - y ) 6ab;

{^a(x),V>&( y)} =  { ^ ( x ) , ^ ( y ) }  =  0 .
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We can expand ^ ( x ) in terms of a® and b* as before (Eq. (3.87)). The creation 
and annihilation operators must now obey

{arp ,a*t} =  {brp,b $ }  = (2tt)30 ^ ( p  -  q )6rs (3.97)

(with all other anticommutators equal to zero) in order tha t (3.96) be satisfied. 
Another computation gives the Hamiltonian,

H  = / ( § i E f v ? « ; - « ' » ; ) .

which is the same as before; bÿ  still creates negative energy. However, the 
relation {b^^bÿ} — (27r)36 ^  (p — q)£rs is symmetric between brp and b ÿ . So 
let us simply redefine

% =  b ÿ = b sp . (3.98)

These of course obey exactly the same anticommutation relations, but now 
the second term in the Hamiltonian is

- E pb^bsp = + E pbsJ b sp -  (const).

If we choose |0) to be the state that is annihilated by ap and then all 
excitations of |0 ) have positive energy.

W hat happened? To better understand this trick, let us abandon the field 
theory for a moment and consider a theory with a single pair of b and 
operators obeying {b ,tf}  — 1  and {6 , 6 } =  = 0 . Choose a state |0 )
such that fe |0) =  0. Then bî |0) is a new state; call it |1). This state satisfies 
b |1) =  |0) and |1) =  0. So b and act on a Hilbert space of only two states, 
|0) and |1). We might say tha t |0) represents an “empty” state, and that 
“fills” the state. But we could equally well call |1) the empty state and say 
that b — œ fills it. The two descriptions are completely equivalent, until we 
specify some observable that allows us to distinguish the states physically. In 
our case the correct choice is to take the state of lower energy to be the empty 
one. And it is less confusing to put the dagger on the operator that creates 
positive energy. That is exactly what we have done.

Note, by the way, that since (œ ) 2  =  0, the state cannot be filled twice. 
More generally, the anticommutation relations imply that any multiparticle 
state is antisymmetric under the interchange of two particles: |0 ) =
— |0). Thus we conclude that if the ladder operators obey anticommuta-
tion relations, the corresponding particles obey Fermi-Dirac statistics.

We have just shown that in order to insure that the vacuum has only 
positive-energy excitations, we must quantize the Dirac field with anticom-
mutation relations; under these conditions the particles associated with the 
Dirac field obey Fermi-Dirac statistics. This conclusion is part of a more gen-
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eral result, first derived by Pauli*: Lorentz invariance, positive energies, pos-
itive norms, and causality together imply tha t particles of integer spin obey 
Bose-Einstein statistics, while particles of half-odd-integer spin obey Fermi- 
Dirac statistics.

T he Q uantized Dirac Field

Let us now summarize the results of the quantized Dirac theory in a systematic 
way. Since the dust has settled, we should clean up our notation: From now 
on we will write bp (the operator that lowers the energy of a state) simply 
as 6 p , and ^  as b̂p . All the expressions we will need in our later work are 
listed below; corresponding expressions above, where they differ, should be 
forgotten.

First we write the field operators:

^  £ ( < “» ' " * ■'  + (3.99)

î>(z) =  I +  < s ' ( p ) e * » “ ) .  (3.100)

The creation and annihilation operators obey the anticommutation rules

{ap> aq } =  =  (27r)V 3) ( p - q ) ^ s , (3.101)

with all other anticommutators equal to zero. The equal-time anticommuta-
tion relations for if) and ^  are then

{V’o(x),V,6(y)} =<5(3)( x - y  )Sab;
{i/>a(x),if>b(y) j  =  {ipl(x),i/>t( y )}  = 0.

The vacuum |0) is defined to be the state such that

a; 10) = b°p |0> = 0 .

The Hamiltonian can be written

where we have dropped the infinite constant term that comes from anticom- 
muting 6 p and b ÿ . From this we see that the vacuum is the state of lowest 
energy, as desired. The momentum operator is

p  =  /  d3x = J - ^ 3  ^ 2  p ( aP aP + bp bp)- (3.105)

*W. Pauli, Phys. Rev. 58, 716 (1940), reprinted in Schwinger (1958). A rigorous 
treatment is given by R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, 
and All That (Benjamin/Cummings, Reading, Mass., 1964).

(3.102)

(3.103)

(3.104)
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Thus both a ÿ  and bÿ  create particles with energy + E p and momentum p. 
We will refer to the particles created by a ÿ  as fermions and to those created 
by bÿ  as antifermions.

The one-particle states

|p ,s)  =  ^ /2E pasJ  |0) (3.106)

are defined so that their inner product

< p ,r |q ,s) =  2Ep (27r)V 3)(p -  q ) ^  (3.107)

is Lorentz invariant. This implies that the operator U(A) tha t implements 
Lorentz transformations on the states of the Hilbert space is unitary, even 
though for boosts, A i is not unitary.

It will be reassuring to do a consistency check, to see tha t /7(A) imple-
ments the right transformation on i/;(x). So calculate

Ui>(x)U-l = U  / (g 3  L . _ ^ 2 ( a spu s ( p ) e - ^  + b ÿ v s (p)eiPx) u - 1. (3.108)

We can concentrate on the first term; the second is completely analogous. 
Equation (3.106) implies that a^ transforms according to

U(A)aspU~1(A) =  «Ap, (3-109)

assuming that the axis of spin quantization is parallel to the boost or rotation
axis. To use this relation to evaluate (3.108), rewrite the integral as

f  d3P 1 ,S . [  d3P 1 IKFJ (2tt)3 ^ : aP J (2tt)3 2Ep ' V 1
Pap*

The second factor is transformed in a simple way by 17, and the first is a 
Lorentz-invariant integral. Thus, if we apply (3.109) and make the substitution 
p =  Ap, Eq. (3.108) becomes

U(A)'>p(x)U~x(A) = J _1p) V ^ ^ ip'Ax + ■■■■

But u s(A~1p) = A~ius (p), so indeed we have

U(A)4'{x)U~1(A) -  J f â  - ^ =  Ç  A - f r V X , - * -  +  (3 u o )

=  A1L/0(Ax ).

This result says that the transformed field creates and destroys particles 
at the point Ax, as it must. Note, however, that this transformation appears 
to be in the wrong direction compared to Eq. (3.2), where the transformed
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field cf) was evaluated at A_1 x. The difference is that in Section 3.1 we imag-
ined that we transformed a pre-existing field distribution tha t was measured 
by <fi(x). Here, we are transforming the action of (j>{x) in creating or destroy-
ing particles. These two ways of implementing the Lorentz transformation 
work in opposite directions. Notice, though, that the matrix acting on ^  and 
the transformation of the coordinate x  have the correct relative orientation, 
consistent with Eq. (3.8).

Next we should discuss the spin of a Dirac particle. We expect Dirac 
fermions to have spin 1 / 2 ; now we can demonstrate this property from our 
formalism. We have already shown that the particles created by a ÿ  and bÿ  
each come in two “spin” states: s = 1,2. But we haven’t proved yet that this 
“spin” has anything to do with angular momentum. To do this, we must write 
down the angular momentum operator.

Recall that we found the linear momentum operator in Section 2.2 by 
looking for the conserved quantity associated with translational invariance. 
We can find the angular momentum operator in a similar way as a consequence 
of rotational invariance. Under a rotation (or any Lorentz transformation), the 
Dirac field ip transforms (in our original convention) according to

0 ( x ) —> ip'(x) = Aiip(A~1x).

To apply Noether’s theorem we must compute the change in the field at a 
fixed point, that is,

# 0  =  i / j ' ( x )  — x ) =  Ai \ j ) { h r 1x )  — ÿ ( x ) .

Consider for definiteness an infinitesimal rotation of coordinates by an angle
0 about the z-axis. The parametrization of this transformation is given just 
below Eq. (3.19): coi2 = —CJ2 1  =  Using the same parameters in Eq. (3.30), 
we find

A i «  1 — =  1 -  | 0 £ 3.

We can now compute

6îp(x) =  (l — f  6>E 3 )'0(t, x  +  0y, y — Ox, z) — ÿ{x)

=  — 0(xdy — ydx +  | S 3 )'0(x) =  OAïp.

The time-component of the conserved Noether current is then
BC -

j ° =  d[d^ p ) A ^  =  - i i ß l 0(xdy -  ydx +  §E 3)^ .

Similar expressions hold for rotations about the x- and y-axes, so the angular 
momentum operator is

J  =  / r f W ( x x H V ) +  I S > .  (3.111)

For nonrelativistic fermions, the first term of (3.111) gives the orbital angular 
momentum. The second term therefore gives the spin angular momentum.
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Unfortunately, the division of (3.111) into spin and orbital parts is not so 
straightforward for relativistic fermions, so it is not simple to write a general 
expression for this quantity in terms of ladder operators.

To prove that a Dirac particle has spin 1/2, however, it suffices to consider 
particles at rest. We would like to apply Jz to the state |0) and show that 
this state is an eigenvector. This is most easily done using a trick: Since 
Jz must annihilate the vacuum, Jzaŝ  |0) =  |0). The commutator is
nonzero only for the terms in Jz that have annihiliation operators at p =  0. 
For these terms, the orbital part of (3.111) does not contribute. To write the 
spin term of (3.111) in terms of ladder operators, use expansions (3.99) and 
(3.100), evaluated at t =  0:

Jz J d X J ( 2  7T)6 J 2 E p 2Ep,
x E ( v v ' V )  +  < y t / t ( - P ,) ) Ç ( a > r(p) +  & :>r ( - p )) .

r , r '

Taking the commutator with aj^, the only nonzero term has the structure 
[ßp^ßp, a^] =  (27r)3^^3^(p)ao^rs ; the other three terms in the commutator 
either vanish or annihilate the vacuum. Thus we find

J*a° |0> = 2m E ( u8t(0) T “r(0)) o5t |0> = |0) ’
r  r

where we have used the explicit form (3.47) of w(0) to obtain the last expres-
sion. The sum over r  is accomplished most easily by choosing the spinors 
to be eigenstates of a 3. We then find that for =  (*), the one-particle state 
is an eigenstate of Jz with eigenvalue + 1 / 2 , while for £s =  (J), it is an eigen-
state of Jz with eigenvalue —1 / 2 . This result is exactly what we expect for 
electrons.

An analogous calculation determines the spin of a zero-momentum an- 
tifermion. But in this case, since the order of the b and bt terms in Jz is 
reversed, we get an extra minus sign from evaluating [bptfp ,bl\ = — [ ^ 6 p , 6 j]. 
Thus for positrons, the association between the spinors r]s and the spin angular 
momentum is reversed: (J) corresponds to spin —1 / 2 , while (J) corresponds 
to spin +1/2 . This reversal of sign agrees with the prediction of Dirac hole 
theory. From that viewpoint, a positron is the absence of a negative-energy 
electron. If the missing electron had positive its absence has negative Jz .

In summary, the angular momentum of zero-momentum fermions is given
by

J 2 aSf |0) =  ± 1 « #  |0>, J ^ I O H t ^ I O ) ,  (3.112)

where the upper sign is for =  (J) and the lower sign is for =  (°).
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There is one more important conserved quantity in the Dirac theory. In 
Section 3.4 we saw that the current is conserved. The charge
associated with this current is

Q = /  f x ^ x M x )  =  J  + &V-p)>

or, if we ignore another infinite constant,

o  =  < 3 1 1 3 >

So a ÿ  creates fermions with charge +1, while bÿ  creates antifermions with 
charge —1 . When we couple the Dirac field to the electromagnetic field, we 
will see that Q is none other than the electric charge (up to a constant factor 
that depends on which type of particle we wish to describe; e.g., for electrons, 
the electric charge is Qe).

In Quantum Electrodynamics we will use the spinor field ip to describe 
electrons and positrons. The particles created by a ÿ  are electrons; they have 
energy E p , momentum p, spin 1/2 with polarization appropriate to and 
charge +1 (in units of e). The particles created by bÿ  are positrons; they have 
energy E p , momentum p, spin 1/2 with polarization opposite to th a t of 
and charge —1 . The state ipa (%) |0) contains a positron at position x, whose 
polarization corresponds to the spinor component chosen. Similarly, vpa (x) |0) 
is a state of one electron at position x.

T he Dirac Propagator

Calculating propagation amplitudes for the Dirac field is by now a straight-
forward exercise:

(0\i)a(x)rpb{y) |0 > =

(0 | ipbivWafr) 1°) =

Just as we did for the Klein-Gordon equation, we can construct Green’s 
functions for the Dirac equation obeying various boundary conditions. For 
example, the retarded Green’s function is

S n t x - y ) = 0{x° - y ° ) ( 0| {V’aOc), V>&(3/)} |0 ) . (3.116)

( i ß x + m ) ab J d p  1

(2tt) 3  2Ep
(3.114)

d3p  1 
(2 tt ) 3  2 £^I

~ ( i ß x + m ) ab j

J 2 v sa( p K ( p ) e - lMy-

d3P 1 iv. 
(2 t t )3 2 E d

i p - ( y - x ) (3.115)
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It is easy to verify that

S r (x  - y )  = ( ißx +  m ) D R(x -  y), (3.117)

since on the right-hand side the term involving do0(x° — y°) vanishes. Using 
(3.117) and the fact tha t ß ß  =  <92, we see that S r  is a Green’s function of 
the Dirac operator:

( iß x -  m ) S R(x - y ) =  iè{A)(x -  y) • l 4x4- (3.118)

The Green’s function of the Dirac operator can also be found by Fourier 
transformation. Expanding S n (x  — y) as a Fourier integral and acting on both 
sides with (i$x — m), we find

i S ^ i x  - y )  = j  ( ^ 4  W -  m ) e - ip< ^ S R(p), (3.119)

and hence

s«(p) =ji- = i4 ±4 - (3.120)p — m  pz — m A

To obtain the retarded Green’s function, we must evaluate the p° integral in 
(3.120) along the contour shown on page 30. For x° > y° we close the contour 
below, picking up both poles to obtain the sum of (3.114) and (3.115). For 
x° < y° we close the contour above and get zero.

The Green’s function with Feynman boundary conditions is defined by 
the contour shown on page 31:

J  (27r)4 pl — m l +  te

f  (0 | %p{x)'ijj{y) |0 ) for x° > y° (close contour below)
\  — (0 | ïp(y)ïp(x) |0 ) for x° < y° (close contour above)

— (0| T'tp(x)’tp(y) |0 ) , (3.121)

where we have chosen to define the time-ordered product of spinor fields with 
an additional minus sign when the operators are interchanged. This minus 
sign is extremely important in the quantum field theory of fermions; we will 
meet it again in Section 4.7.

As with the Klein-Gordon theory, the expression (3.121) for the Feynman 
propagator is the most useful result of this chapter. When we do perturbative 
calculations with Feynman diagrams, we will associate the factor Sp(p)  with 
each internal fermion line.
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3.6 D iscrete Sym m etries of the  Dirac Theory

In the last section we discussed the implementation of continuous Lorentz 
transformations on the Hilbert space of the Dirac theory. We found that for 
each transformation A there was a unitary operator £7(A), which induced the 
correct transformation on the fields:

In this section we will discuss the analogous operators tha t implement various 
discrete symmetries on the Dirac field.

In addition to continuous Lorentz transformations, there are two other 
spacetime operations that are potential symmetries of the Lagrangian: par-
ity and time reversal. Parity, denoted by P , sends (£, x) —» (t, — x), reversing 
the handedness of space. Time reversal, denoted by T, sends (£,x) —► (—t, x), 
interchanging the forward and backward light-cones. Neither of these opera-
tions can be achieved by a continuous Lorentz transformation starting from 
the identity. Both, however, preserve the Minkowski interval x 2 =  t2 — x 2. In 
standard terminology, the continuous Lorentz transformations are referred to 
as the proper, orthochronous Lorentz group, L+. Then the full Lorentz group 
breaks up into four disconnected subsets, as shown below.

At the same time that we discuss P  and T, it will be convenient to discuss a 
third (non-spacetime) discrete operation: charge conjugation, denoted by C. 
Under this operation, particles and antiparticles are interchanged.

erations in the real world? From experiment, we know tha t three of the forces 
of Nature— the gravitational, electromagnetic, and strong interactions—are 
symmetric with respect to P , C, and T. The weak interactions violate C and 
P  separately, but preserve C P  and T. But certain rare processes (all so far 
observed involve neutral K  mesons) also show C P  and T  violation. All obser-
vations indicate that the combination C P T  is a perfect symmetry of Nature.

The currently accepted theoretical model of the weak interactions is the 
Glashow-Weinberg-Salam gauge theory, described in Chapter 20. This theory 
violates C  and P  in the strongest possible way. It is actually a surprise (though 
not quite an accident) that C  and P  happen to be quite good symmetries in the 
most readily observable processes. On the other hand, no one knows a really 
beautiful theory that violates CP.  In the current theory, when there are three 
(or more) fermion generations, there is room for a parameter that, if nonzero,

U (A)^(æ)[/_1 (A) =  A~fo(Ax). (3.122)

P
l !  =  PL +  “orthochronous”

L+ =  TL+ L i  =  PTh\_  “nonorthochronous”

“proper” “improper”

Although any relativistic field theory must be invariant under L^_, it need 
not be invariant under P , T, or C. W hat is the status of these symmetry op-


