SECOND EDITION

Lie Algebras in Particle Physics

From Isospin to Unified Theories

Howard Georgi

Lie Algebras in Particle Physics

Lie Algebras in Particle Physics

Second Edition

Howard Georgi

Sponsoring Consortium for
Open Access Publishing in Particle Physics

Open Access funded by SCOAP3

Copyright 2021 Howard Georgi

This eBook was converted to open access in 2021 through the sponsorship of SCOAP3 licensed under the terms of the creative commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits use, sharing, adaptation distribution and reproduction in any medium or format, as long as you give appropriate credit to the author(s) and the source, provide a link to the creative commons license and indicate if changes were made, this license does not permit the Contribution to be used commercially.

First published 1999 by Westview Press
Published 2019 by CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
First issued in hardback 2019

CRC Press is an imprint of the Taylor \& Francis Group, an informa business

Copyright (C) 1999 by Howard Georgi

No claim to original U.S. Government works

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial 4.0 International.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at http:/ / www.taylorandfrancis.com
and the CRC Press Web site at http:/ /www.crcpress.com

Library of Congress Catalog Card Number: 99-64878
ISBN 13: 978-0-367-09172-9 (hbk)
ISBN 13: 978-0-7382-0233-4 (pbk)

To Herman and Mrs. G

Frontiers in Physics David Pines, Editor

Volumes of the Series published from 1961 to 1973 are not officially numbered. The parenthetical numbers shown are designed to aid librarians and bibliographers to check the completeness of their holdings.
Titles published in this series prior to 1987 appear under either the W. A. Benjamin or the Benjamin/Cummings imprint; titles published since 1986 appear under the Westview Press imprint.

1. N. Bloembergen
2. G. F. Chew
3. R. P. Feynman
4. R. P. Feynman
5. L. Van Hove, N. M. Hugenholtz
L. P. Howland
6. D. Pines
7. H. Frauenfelder
8. L. P. Kadanoff
G. Baym
9. G. E. Pake
10. P. W. Anderson
11. S. C. Frautschi
12. R. Hofstadter J. L. Lebowitz
13. M. Gell-Mann
Y. Ne'eman
14. M. Jacob
G. F. Chew
15. P. Nozières
16. J. R. Schrieffer
17. N. Bloembergen
18. A. M. Lane Nuclear Theory: Pairing Force Correlations to Collective Motion, 1964
19. R. Omnès Mandelstam Theory and Regge Poles: An Introduction M. Froissart for Experimentalists, 1963
20. E. J. Squires Complex Angular Momenta and Particle Physics: A Lecture Note and Reprint Volume, 1963
21. H. L. Frisch The Equilibrium Theory of Classical Fluids: A Lecture

Nuclear Magnetic Relaxation: A Reprint Volume, 1961
S-Matrix Theory of Strong Interactions: A Lecture Note and Reprint Volume, 1961
Quantum Electrodynamics: A Lecture Note and Reprint Volume
The Theory of Fundamental Processes: A Lecture Note Volume, 1961
Problem in Quantum Theory of Many-Particle Systems:
A Lecture Note and Reprint Volume, 1961

The Many-Body Problem: A Lecture Note and Reprint Volume, 1961
The Mössbauer Effect: A Review-With a Collection of Reprints, 1962
Quantum Statistical Mechanics: Green's Function Methods in Equilibrium and Nonequilibrium Problems, 1962
Paramagnetic Resonance: An Introductory Monograph, 1962
[cr. (42)—2nd edition]G. E. Pake
Concepts in Solids: Lectures on the Theory of Solids, 1963
Regge Poles and S-Matrix Theory, 1963
Electron Scattering and Nuclear and Nucleon Structure:
A Collection of Reprints with an Introduction, 1963 Note and Reprint Volume, 1964
The Eightfold Way (A Review-With a Collection of Reprints), 1964
Strong-Interaction Physics: A Lecture Note Volume, 1964

Theory of Interacting Fermi Systems, 1964
Theory of Superconductivity, 1964 (revised 3rd printing, 1983)

Nonlinear Optics: A Lecture Note and Reprint Volume, 1965

Frontiers in Physics

22. R. Brout
23. I. M. Khalatnikov
24. P. G. deGennes
25. W. A. Harrison
26. V. Barger
D. Cline
27. P. Choquàrd
28. T. Loucks
29. Y. Ne'eman
30. S. L. Adler
R. F. Dashen
31. A. B. Migdal
32. J. J. J. Kokkede
33. A. B. Migdal
34. R. Z. Sagdeev
35. J. Schwinger
36. R. P. Feynman
37. R. P. Feynman
38. E. R. Caianiello
39. G. B. Field
H. Arp
J. N. Bahcall
40. D. Horn
F. Zachariasen
41. S. Ichimaru
42. G. E. Pake
T. L. Estle

Phase Transitions, 1965
An Introduction to the Theory of Superfluidity, 1965
Superconductivity of Metals and Alloys, 1966
Pseudopotentials in the Theory of Metals, 1966
Phenomenological Theories of High Energy Scattering:
An Experimental Evaluation, 1967
The Anharmonic Crystal, 1967
Augmented Plane Wave Method: A Guide to
Performing.Electronic Structure Calculations-A Lecture Note and Reprint Volume, 1967
Algebraic Theory of Particle Physics: Hadron Dynamics In Terms of Unitary Spin Current, 1967
Current Algebras and Applications to Particle Physics, 1968
Nuclear Theory: The Quasiparticle Method, 1968
The Quark Model, 1969
Approximation Methods in Quantum Mechanics, 1969
Nonlinear Plasma Theory, 1969
Quantum Kinematics and Dynamics, 1970
Statistical Mechanics: A Set of Lectures, 1972
Photon-Hadron Interactions, 1972
Combinatorics and Renormalization in Quantum Field Theory, 1973
The Redshift Controversy, 1973

Hadron Physics at Very High Energies, 1973

Basic Principles of Plasma Physics: A Statistical Approach, 1973 (2nd printing, with revisions, 1980)
The Physical Principles of Electron Paramagnetic Resonance, 2nd Edition, completely revised, enlarged, and reset, 1973 [cf. (9)-1st edition

Volumes published from 1974 onward are being numbered as an integral part of the bibliography.
43. C. Davidson
44. S. Doniach
E. H. Sondheimer
45. P. H. Frampton
46. S. K. Ma
47. D. Forster
48. A. B. Migdal
49. S. W. Lovesey
50. L. D. Faddeev A. A. Slavnov
51. P. Ramond
52. R. A. Broglia A. Winther
53. R. A. Broglia A. Winther

Theory of Nonneutral Plasmas, 1974
Green's Functions for Solid State Physicists, 1974

Dual Resonance Models, 1974
Modern Theory of Critical Phenomena, 1976
Hydrodynamic Fluctuation, Broken Symmetry, and Correlation Functions, 1975
Qualitative Methods in Quantum Theory, 1977
Condensed Matter Physics: Dynamic Correlations, 1980
Gauge Fields: Introduction to Quantum Theory, 1980
Field Theory: A Modern Primer, 1981 [cf. 74—2nd ed.]
Heavy Ion Reactions: Lecture Notes Vol. I, Elastic and Inelastic Reactions, 1981
Heavy Ion Reactions: Lecture Notes Vol. II, 1990

Frontiers in Physics

54. H. Georgi
55. P. W. Anderson
56. C. Quigg
57. S. I. Pekar
58. S. J. Gates
M. T. Grisaru
M. Rocek
W. Siegel
59. R. N. Cahn
60. G. G. Ross
61. S. W. Lovesey
62. P. H. Frampton
63. J. I. Katz
64. T. J. Ferbel
65. T. Appelquist
A. Chodos
P. G. O. Freund
66. G. Parisi
67. R. C. Richardson
E. N. Smith
68. J. W. Negele
H. Orland
69. E. W. Kolb
M. S. Turner
70. E. W. Kolb
M. S. Turner
71. V. Barger
R. J. N. Phillips
72. T. Tajima
73. W. Kruer
74. P. Ramond
75. B. F. Hatfield
76. P. Sokolsky
77. R. Field
78. J. F. Gunion
H. E. Haber
G. Kane
S. Dawson
79. R. C. Davidson
80. E. Fradkin
81. L. D. Faddeev
A. A. Slavnov
82. R. Broglia
A. Winther
83. R. D. Hazeltine Plasma Confinement, 1992
J. D. Meiss
84. S. Ichimaru
85. N. Goldenfeld Lectures on Phase Transitions and the Renormalization Group, 1992
Lie Algebras in Particle Physics: From Isospin to Unified Theories, 1982
Basic Notions of Condensed Matter Physics, 1983
Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 1983
Crystal Optics and Additional Light Waves, 1983
Superspace or One Thousand and One Lessons in Supersymmetry, 1983

Semi-Simple Lie Algebras and Their Representations, 1984
Grand Unified Theories, 1984
Condensed Matter Physics: Dynamic Correlations, 2nd Edition, 1986.
Gauge Field Theories, 1986
High Energy Astrophysics, 1987
Experimental Techniques in High Energy Physics, 1987
Modern Kaluza-Klein Theories, 1987

Statistical Field Theory, 1988
Techniques in Low-Temperature Condensed Matter Physics, 1988
Quantum Many-Particle Systems, 1987
The Early Universe, 1990
The Early Universe: Reprints, 1988
Collider Physics, 1987

Computational Plasma Physics, 1989
The Physics of Laser Plasma Interactions, 1988
Field Theory: A Modern Primer, 2nd edition, 1989 [cf. 511st edition]
Quantum Field Theory of Point Particles and Strings, 1989
Introduction to Ultrahigh Energy Cosmic Ray Physics, 1989
Applications of Perturbative QCD, 1989
The Higgs Hunter's Guide, 1990

Physics of Nonneutral Plasmas, 1990
Field Theories of Condensed Matter Systems, 1991
Gauge Fields, 1990
Heavy Ion Reactions, Parts I and II, 1990

Statistical Plasma Physics, Volume I: Basic Principles,

Frontiers in Physics

1992

88. S. Ichimaru Statistical Plasma Physics, Volume II: Condensed Plasmas, 1994
89. G. Grüner Density Waves in Solids, 1994
90. S. Safran

Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, 1994
91. B. d'Espagnat Veiled Reality: An Analysis of Present Day Quantum Mechanical Concepts, 1994
92. J. Bahcall
R. Davis, Jr.
P. Parker
A. Smirnov
R. Ulrich
93. R. Feynman

Feynman Lectures on Gravitation
F. Morinigo
W. Wagner
94. M. Peskin
D. Schroeder
95. R. Feynman Feynman Lectures on Computation
96. M. Brack
R. Bhaduri
97. D. Cline
98. T. Tajima
K. Shibata
99. J. Rammer
100. R. Hazeltine
F. Waelbroeck
101. P. Ramond
102. Nutku

Saclioglu
Turgut
103. P. Philips

Preface to the Revised Edition

Lie Algebras in Particle Physics has been a very successful book. I have long resisted the temptation to produce a revised edition. I do so finally, because I find that there is so much new material that should be included, and so many things that I would like to say slightly differently. On the other hand, one of the good things about the first edition was that it did not do too much. The material could be dealt with in a one semester course by students with good preparation in quantum mechanics. In an attempt to preserve this advantage while including new material, I have flagged some sections that can be left out in a first reading. The titles of these sections begin with an asterisk, as do the problems that refer to them.

I may be prejudiced, but I think that this material is wonderful fun to teach, and to learn. I use this as a text for what is formally a graduate class, but it is taken successfully by many advanced undergrads at Harvard. The important prerequisite is a good background in quantum mechanics and linear algebra.

It has been over five years since I first began to revise this material and typeset it in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. Between then and now, many many students have used the evolving manuscript as a text. I am grateful to many of them for suggestions of many kinds, from typos to grammar to pedagogy.

As always, I am enormously grateful to my family for putting up with me for all this time. I am also grateful for their help with my inspirational epilogue.

Contents

Why Group Theory? 1
1 Finite Groups 2
1.1 Groups and representations 2
1.2 Example - Z_{3} 3
1.3 The regular representation 4
1.4 Irreducible representations 5
1.5 Transformation groups 6
1.6 Application: parity in quantum mechanics 7
1.7 Example: S_{3} 8
1.8 Example: addition of integers 9
1.9 Useful theorems 10
1.10 Subgroups 11
1.11 Schur's lemma 13
1.12 * Orthogonality relations 17
1.13 Characters 20
1.14 Eigenstates 25
1.15 Tensor products 26
1.16 Example of tensor products 27
1.17 * Finding the normal modes 29
1.18 * Symmetries of $2 n+1$-gons 33
1.19 Permutation group on n objects 34
1.20 Conjugacy classes 35
1.21 Young tableaux 37
1.22 Example - our old friend S_{3} 38
1.23 Another example - S_{4} 38
1.24 * Young tableaux and representations of S_{n} 38
2 Lie Groups 43
2.1 Generators 43
2.2 Lie algebras 45
2.3 The Jacobi identity 47
2.4 The adjoint representation 48
2.5 Simple algebras and groups 51
2.6 States and operators 52
2.7 Fun with exponentials 53
3 SU(2) 56
$3.1 J_{3}$ eigenstates 56
3.2 Raising and lowering operators 57
3.3 The standard notation 60
3.4 Tensor products 63
$3.5 \quad J_{3}$ values add 64
4 Tensor Operators 68
4.1 Orbital angular momentum 68
4.2 Using tensor operators 69
4.3 The Wigner-Eckart theorem 70
4.4 Example 72
4.5 * Making tensor operators 75
4.6 Products of operators 77
5 Isospin 79
5.1 Charge independence 79
5.2 Creation operators 80
5.3 Number operators 82
5.4 Isospin generators 82
5.5 Symmetry of tensor products 83
5.6 The deuteron 84
5.7 Superselection rules 85
5.8 Other particles 86
5.9 Approximate isospin symmetry 88
5.10 Perturbation theory 88
6 Roots and Weights 90
6.1 Weights 90
6.2 More on the adjoint representation 91
6.3 Roots 92
6.4 Raising and lowering 93
6.5 Lots of $S U(2) \mathrm{s}$ 93
6.6 Watch carefully - this is important! 95
7 SU(3) 98
7.1 The Gell-Mann matrices 98
7.2 Weights and roots of $S U(3)$ 100
8 Simple Roots 103
8.1 Positive weights 103
8.2 Simple roots 105
8.3 Constructing the algebra 108
8.4 Dynkin diagrams 111
8.5 Example: G_{2} 112
8.6 The roots of G_{2} 112
8.7 The Cartan matrix 114
8.8 Finding all the roots 115
8.9 The $S U(2) \mathrm{s}$ 117
8.10 Constructing the G_{2} algebra 118
8.11 Another example: the algebra C_{3} 120
8.12 Fundamental weights 121
8.13 The trace of a generator 123
9 More $S U(3)$ 125
9.1 Fundamental representations of $S U(3)$ 125
9.2 Constructing the states 127
9.3 The Weyl group 130
9.4 Complex conjugation 131
9.5 Examples of other representations 132
10 Tensor Methods 138
10.1 lower and upper indices 138
10.2 Tensor components and wave functions 139
10.3 Irreducible representations and symmetry 140
10.4 Invariant tensors 141
10.5 Clebsch-Gordan decomposition 141
10.6 Triality 143
10.7 Matrix elements and operators 143
10.8 Normalization 144
10.9 Tensor operators 145
10.10The dimension of (n, m) 145
10.11* The weights of (n, m) 146
10.12Generalization of Wigner-Eckart 152
10.13* Tensors for $S U(2)$ 154
10.14* Clebsch-Gordan coefficients from tensors 156
10.15* Spin $s_{1}+s_{2}-1$ 157
10.16* Spin $s_{1}+s_{2}-k$ 160
11 Hypercharge and Strangeness 166
11.1 The eight-fold way 166
11.2 The Gell-Mann Okubo formula 169
11.3 Hadron resonances 173
11.4 Quarks 174
12 Young Tableaux 178
12.1 Raising the indices 178
12.2 Clebsch-Gordan decomposition 180
12.3 $S U(3) \rightarrow S U(2) \times U(1)$ 183
$13 S U(N)$ 187
13.1 Generalized Gell-Mann matrices 187
13.2 $S U(N)$ tensors 190
13.3 Dimensions 193
13.4 Complex representations 194
$13.5 S U(N) \otimes S U(M) \in S U(N+M)$ 195
14 3-D Harmonic Oscillator 198
14.1 Raising and lowering operators 198
14.2 Angular momentum 200
14.3 A more complicated example 200
$15 S U(6)$ and the Quark Model 205
15.1 Including the spin 205
15.2 $S U(N) \otimes S U(M) \in S U(N M)$ 206
15.3 The baryon states 208
15.4 Magnetic moments 210
16 Color 214
16.1 Colored quarks 214
16.2 Quantum Chromodynamics 218
16.3 Heavy quarks 219
16.4 Flavor $S U(4)$ is useless! 219
17 Constituent Quarks 221
17.1 The nonrelativistic limit 221
18 Unified Theories and $S U(5)$ 225
18.1 Grand unification 225
18.2 Parity violation, helicity and handedness 226
18.3 Spontaneously broken symmetry 228
18.4 Physics of spontaneous symmetry breaking 229
18.5 Is the Higgs real? 230
18.6 Unification and $S U(5)$ 231
18.7 Breaking $S U(5)$ 234
18.8 Proton decay 235
19 The Classical Groups 237
19.1 The $S O(2 n)$ algebras 237
19.2 The $S O(2 n+1)$ algebras 238
19.3 The $S p(2 n)$ algebras 239
19.4 Quaternions 240
20 The Classification Theorem 244
20.1Π-systems 244
20.2 Regular subalgebras 251
20.3 Other Subalgebras 253
$21 S O(2 n+1)$ and Spinors 255
21.1 Fundamental weight of $S O(2 n+1)$ 255
21.2 Real and pseudo-real 259
21.3 Real representations 261
21.4 Pseudo-real representations 262
21.5 R is an invariant tensor 262
21.6 The explicit form for R 262
$22 S O(2 n+2)$ Spinors 265
22.1 Fundamental weights of $S O(2 n+2)$ 265
$23 S U(n) \subset S O(2 n)$ 270
23.1 Clifford algebras 270
23.2 Γ_{m} and R as invariant tensors 272
23.3 Products of $\Gamma \mathrm{s}$ 274
23.4 Self-duality 277
23.5 Example: $S O(10)$ 279
23.6 The $S U(n)$ subalgebra 279
$24 S O(10)$ 282
$24.1 S O(10)$ and $S U(4) \times S U(2) \times S U(2)$ 282
24.2 * Spontaneous breaking of $S O(10)$ 285
24.3 * Breaking $S O(10) \rightarrow S U(5)$ 285
24.4 * Breaking $S O(10) \rightarrow S U(3) \times S U(2) \times U(1)$ 287
$24.5 *$ Breaking $S O(10) \rightarrow S U(3) \times U(1)$ 289
24.6 * Lepton number as a fourth color 289
25 Automorphisms 291
25.1 Outer automorphisms 291
25.2 Fun with $S O(8)$ 293
$26 S p(2 n)$ 297
26.1 Weights of $S U(n)$ 297
26.2 Tensors for $S p(2 n)$ 299
27 Odds and Ends 302
27.1 Exceptional algebras and octonians 302
27.2 E_{6} unification 304
27.3 Breaking E_{6} 308
27.4 $S U(3) \times S U(3) \times S U(3)$ unification 308
27.5 Anomalies 309
Epilogue 311
Index 312

Why Group Theory?

Group theory is the study of symmetry. It is an incredible labor saving device. It allows us to say interesting, sometimes very detailed things about physical systems even when we don't understand exactly what the systems are! When I was a teenager, I read an essay by Sir Arthur Stanley Eddington on the Theory of Groups and a quotation from it has stuck with me for over 30 years: ${ }^{1}$

We need a super-mathematics in which the operations are as unknown as the quantities they operate on, and a super-mathematician who does not know what he is doing when he performs these operations. Such a super-mathematics is the Theory of Groups.

In this book, I will try to convince you that Eddington had things a little bit wrong, as least as far as physics is concerned. A lot of what physicists use to extract information from symmetry is not the groups themselves, but group representations. You will see exactly what this means in more detail as you read on. What I hope you will take away from this book is enough about the theory of groups and Lie algebras and their representations to use group representations as labor-saving tools, particularly in the study of quantum mechanics.

The basic approach will be to alternate between mathematics and physics, and to approach each problem from several different angles. I hope that you will learn that by using several techniques at once, you can work problems more efficiently, and also understand each of the techniques more deeply.

[^0]
Chapter 1

Finite Groups

We will begin with an introduction to finite group theory. This is not intended to be a self-contained treatment of this enormous and beautiful subject. We will concentrate on a few simple facts that are useful in understanding the compact Lie algebras. We will introduce a lot of definitions, sometimes proving things, but often relying on the reader to prove them.

1.1 Groups and representations

A Group, G, is a set with a rule for assigning to every (ordered) pair of elements, a third element, satisfying:
(1.A.1) If $f, g \in G$ then $h=f g \in G$.
(1.A.2) For $f, g, h \in G, f(g h)=(f g) h$.
(1.A.3) There is an identity element, e, such that for all $f \in G, e f=$ $f e=f$.
(1.A.4) Every element $f \in G$ has an inverse, f^{-1}, such that $f f^{-1}=$ $f^{-1} f=e$.
Thus a group is a multiplication table specifying $g_{1} g_{2} \forall g_{1}, g_{2} \in G$. If the group elements are discrete, we can write the multiplication table in the form

\backslash	e	g_{1}	g_{2}	\cdots
e	e	g_{1}	g_{2}	\cdots
g_{1}	g_{1}	$g_{1} g_{1}$	$g_{1} g_{2}$	\cdots
g_{2}	g_{2}	$g_{2} g_{1}$	$g_{2} g_{2}$	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots

A Representation of G is a mapping, D of the elements of G onto a set of linear operators with the following properties:
1.B. $D(e)=1$, where 1 is the identity operator in the space on which the linear operators act.
1.B. $2 D\left(g_{1}\right) D\left(g_{2}\right)=D\left(g_{1} g_{2}\right)$, in other words the group multiplication law is mapped onto the natural multiplication in the linear space on which the linear operators act.

1.2 Example - Z_{3}

A group is finite if it has a finite number of elements. Otherwise it is infinite. The number of elements in a finite group G is called the order of G. Here is a finite group of order 3 .

$\\) & \(e$	a	b	
e	e	a	b
a	a	b	e
b	b	e	a

This is Z_{3}, the cyclic group of order 3. Notice that every row and column of the multiplication table contains each element of the group exactly once. This must be the case because the inverse exists.

An Abelian group in one in which the multiplication law is commutative

$$
\begin{equation*}
g_{1} g_{2}=g_{2} g_{1} \tag{1.3}
\end{equation*}
$$

Evidently, Z_{3} is Abelian.
The following is a representation of Z_{3}

$$
\begin{equation*}
D(e)=1, \quad D(a)=e^{2 \pi i / 3}, \quad D(b)=e^{4 \pi i / 3} \tag{1.4}
\end{equation*}
$$

The dimension of a representation is the dimension of the space on which it acts - the representation (1.4) is 1 dimensional.

1.3 The regular representation

Here's another representation of Z_{3}

$$
\begin{gather*}
D(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad D(a)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \tag{1.5}\\
D(b)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{gather*}
$$

This representation was constructed directly from the multiplication table by the following trick. Take the group elements themselves to form an orthonormal basis for a vector space, $|e\rangle,|a\rangle$, and $|b\rangle$. Now define

$$
\begin{equation*}
D\left(g_{1}\right)\left|g_{2}\right\rangle=\left|g_{1} g_{2}\right\rangle \tag{1.6}
\end{equation*}
$$

The reader should show that this is a representation. It is called the regular representation. Evidently, the dimension of the regular representation is the order of the group. The matrices of (1.5) are then constructed as follows.

$$
\begin{gather*}
\left|e_{1}\right\rangle \equiv|e\rangle, \quad\left|e_{2}\right\rangle \equiv|a\rangle, \quad\left|e_{3}\right\rangle \equiv|b\rangle \tag{1.7}\\
{[D(g)]_{i j}=\left\langle e_{i}\right| D(g)\left|e_{j}\right\rangle} \tag{1.8}
\end{gather*}
$$

The matrices are the matrix elements of the linear operators. (1.8) is a simple, but very general and very important way of going back and forth from operators to matrices. This works for any representation, not just the regular representation. We will use it constantly. The basic idea here is just the insertion of a complete set of intermediate states. The matrix corresponding to a product of operators is the matrix product of the matrices corresponding to the operators -

$$
\begin{gather*}
{\left[D\left(g_{1} g_{2}\right)\right]_{i j}=\left[D\left(g_{1}\right) D\left(g_{2}\right)\right]_{i j}} \\
=\left\langle e_{i}\right| D\left(g_{1}\right) D\left(g_{2}\right)\left|e_{j}\right\rangle \\
=\sum_{k}\left\langle e_{i}\right| D\left(g_{1}\right)\left|e_{k}\right\rangle\left\langle e_{k}\right| D\left(g_{2}\right)\left|e_{j}\right\rangle \tag{1.9}\\
=\sum_{k}\left[D\left(g_{1}\right)\right]_{i k}\left[D\left(g_{2}\right)\right]_{k j}
\end{gather*}
$$

Note that the construction of the regular representation is completely general for any finite group. For any finite group, we can define a vector space in which the basis vectors are labeled by the group elements. Then (1.6) defines the regular representation. We will see the regular representation of various groups in this chapter.

1.4 Irreducible representations

What makes the idea of group representations so powerful is the fact that they live in linear spaces. And the wonderful thing about linear spaces is we are free to choose to represent the states in a more convenient way by making a linear transformation. As long as the transformation is invertible, the new states are just as good as the old. Such a transformation on the states produces a similarity transformation on the linear operators, so that we can always make a new representation of the form

$$
\begin{equation*}
D(g) \rightarrow D^{\prime}(g)=S^{-1} D(g) S \tag{1.10}
\end{equation*}
$$

Because of the form of the similarity transformation, the new set of operators has the same multiplication rules as the old one, so D^{\prime} is a representation if D is. D^{\prime} and D are said to be equivalent representations because they differ just by a trivial choice of basis.

Unitary operators (O such that $O^{\dagger}=O^{-1}$) are particularly important. A representation is unitary if all the $D(g)$ s are unitary. Both the representations we have discussed so far are unitary. It will turn out that all representations of finite groups are equivalent to unitary representations (we'll prove this later it is easy and neat).

A representation is reducible if it has an invariant subspace, which means that the action of any $D(g)$ on any vector in the subspace is still in the subspace. In terms of a projection operator P onto the subspace this condition can be written as

$$
\begin{equation*}
P D(g) P=D(g) P \forall g \in G \tag{1.11}
\end{equation*}
$$

For example, the regular representation of $Z_{3}(1.5)$ has an invariant subspace projected on by

$$
P=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \tag{1.12}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

because $D(g) P=P \forall g$. The restriction of the representation to the invariant subspace is itself a representation. In this case, it is the trivial representation for which $D(g)=1$ (the trivial representation, $D(g)=1$, is always a representation - every group has one).

A representation is irreducible if it is not reducible.
A representation is completely reducible if it is equivalent to a represen-
tation whose matrix elements have the following form:

$$
\left(\begin{array}{ccc}
D_{1}(g) & 0 & \cdots \tag{1.13}\\
0 & D_{2}(g) & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

where $D_{j}(g)$ is irreducible $\forall j$. This is called block diagonal form.
A representation in block diagonal form is said to be the direct sum of the subrepresentations, $D_{j}(g)$,

$$
\begin{equation*}
D_{1} \oplus D_{2} \oplus \cdots \tag{1.14}
\end{equation*}
$$

In transforming a representation to block diagonal form, we are decomposing the original representation into a direct sum of its irreducible components. Thus another way of defining complete reducibility is to say that a completely reducible representation can be decomposed into a direct sum of irreducible representations. This is an important idea. We will use it often.

We will show later that any representation of a finite group is completely reducible. For example, for (1.5), take

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{1.15}\\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right)
$$

where

$$
\begin{equation*}
\omega=e^{2 \pi i / 3} \tag{1.16}
\end{equation*}
$$

then

$$
\begin{gather*}
D^{\prime}(e)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
D^{\prime}(a)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \tag{1.17}\\
D^{\prime}(b)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
\end{gather*}
$$

1.5 Transformation groups

There is a natural multiplication law for transformations of a physical system. If g_{1} and g_{2} are two transformations, $g_{1} g_{2}$ means first do g_{2} and then do g_{1}.

Note that it is purely convention whether we define our composition law to be right to left, as we have done, or left to right. Either gives a perfectly consistent definition of a transformation group.

If this transformation is a symmetry of a quantum mechanical system, then the transformation takes the Hilbert space into an equivalent one. Then for each group element g, there is a unitary operator $D(g)$ that maps the Hilbert space into an equivalent one. These unitary operators form a representation of the transformation group because the transformed quantum states represent the transformed physical system. Thus for any set of symmetries, there is a representation of the symmetry group on the Hilbert space - we say that the Hilbert space transforms according to some representation of the group. Furthermore, because the transformed states have the same energy as the originals, $D(g)$ commutes with the Hamiltonian, $[D(g), H]=0$. As we will see in more detail later, this means that we can always choose the energy eigenstates to transform like irreducible representations of the group. It is useful to think about this in a simple example.

1.6 Application: parity in quantum mechanics

Parity is the operation of reflection in a mirror. Reflecting twice gets you back to where you started. If p is a group element representing the parity reffection, this means that $p^{2}=e$. Thus this is a transformation that together with the identity transformation (that is, doing nothing) forms a very simple group, with the following multiplication law:

\backslash	e	p
e	e	p
p	p	e

This group is called Z_{2}. For this group there are only two irreducible representations, the trivial one in which $D(p)=1$ and one in which $D(e)=1$ and $D(p)=-1$. Any representation is completely reducible. In particular, that means that the Hilbert space of any parity invariant system can be decomposed into states that behave like irreducible representations, that is on which $D(p)$ is either 1 or -1 . Furthermore, because $D(p)$ commutes with the Hamiltonian, $D(p)$ and H can be simultaneously diagonalized. That is we can assign each energy eigenstate a definite value of $D(p)$. The energy eigenstates on which $D(p)=1$ are said to transform according to the trivial representation. Those on which $D(p)=-1$ transform according to the other representation. This should be familiar from nonrelativistic quantum mechanics in one dimension. There you know that a particle in a potential that is
symmetric about $x=0$ has energy eigenfunctions that are either symmetric under $x \rightarrow-x$ (corresponding to the trivial representation), or antisymmetric (the representation with $D(p)=-1$).

1.7 Example: S_{3}

The permutation group (or symmetric group) on 3 objects, called S_{3} where

$$
\begin{gather*}
a_{1}=(1,2,3) \quad a_{2}=(3,2,1) \tag{1.19}\\
a_{3}=(1,2) \quad a_{4}=(2,3) \quad a_{5}=(3,1)
\end{gather*}
$$

The notation means that a_{1} is a cyclic permutation of the things in positions 1 , 2 and $3 ; a_{2}$ is the inverse, anticyclic permutation; a_{3} interchanges the objects in positions 1 and 2 ; and so on. The multiplication law is then determined by the transformation rule that $g_{1} g_{2}$ means first do g_{2} and then do g_{1}. It is

\mid	e	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
e	e	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{1}	a_{1}	a_{2}	e	a_{5}	a_{3}	a_{4}
a_{2}	a_{2}	e	a_{1}	a_{4}	a_{5}	a_{3}
a_{3}	a_{3}	a_{4}	a_{5}	e	a_{1}	a_{2}
a_{4}	a_{4}	a_{5}	a_{3}	a_{2}	e	a_{1}
a_{5}	a_{5}	a_{3}	a_{4}	a_{1}	a_{2}	e

We could equally well define it to mean first do g_{1} and then do g_{2}. These two rules define different multiplication tables, but they are related to one another by simple relabeling of the elements, so they give the same group. There is another possibility of confusion here between whether we are permuting the objects in positions 1,2 and 3 , or simply treating 1,2 and 3 as names for the three objects. Again these two give different multiplication tables, but only up to trivial renamings. The first is a little more physical, so we will use that. The permutation group is an another example of a transformation group on a physical system.
S_{3} is non-Abelian because the group multiplication law is not commutative. We will see that it is the lack of commutativity that makes group theory so interesting.

Here is a unitary irreducible representation of S_{3}

$$
\begin{gather*}
D(e)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad D\left(a_{1}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \\
D\left(a_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), D\left(a_{3}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \tag{1.21}\\
D\left(a_{4}\right)=\left(\begin{array}{ll}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), D\left(a_{5}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
\end{gather*}
$$

The interesting thing is that the irreducible unitary representation is more than 1 dimensional. It is necessary that at least some of the representations of a non-Abelian group must be matrices rather than numbers. Only matrices can reproduce the non-Abelian multiplication law. Not all the operators in the representation can be diagonalized simultaneously. It is this that is responsible for a lot of the power of the theory of group representations.

1.8 Example: addition of integers

The integers form an infinite group under addition.

$$
\begin{equation*}
x y=x+y \tag{1.22}
\end{equation*}
$$

This is rather unimaginatively called the additive group of the integers. Since this group is infinite, we can't write down the multiplication table, but the rule above specifies it completely.

Here is a representation:

$$
D(x)=\left(\begin{array}{ll}
1 & x \tag{1.23}\\
0 & 1
\end{array}\right)
$$

This representation is reducible, but you can show that it is not completely reducible and it is not equivalent to a unitary representation. It is reducible because

$$
\begin{equation*}
D(x) P=P \tag{1.24}
\end{equation*}
$$

where

$$
P=\left(\begin{array}{ll}
1 & 0 \tag{1.25}\\
0 & 0
\end{array}\right)
$$

However,

$$
\begin{equation*}
D(x)(I-P) \neq(I-P) \tag{1.26}
\end{equation*}
$$

so it is not completely reducible.

The additive group of the integers is infinite, because, obviously, there are an infinite number of integers. For a finite group, all reducible representations are completely reducible, because all representations are equivalent to unitary representations.

1.9 Useful theorems

Theorem 1.1 Every representation of a finite group is equivalent to a unitary representation.

Proof: Suppose $D(g)$ is a representation of a finite group G. Construct the operator

$$
\begin{equation*}
S=\sum_{g \in G} D(g)^{\dagger} D(g) \tag{1.27}
\end{equation*}
$$

S is hermitian and positive semidefinite. Thus it can be diagonalized and its eigenvalues are non-negative:

$$
\begin{equation*}
S=U^{-1} d U \tag{1.28}
\end{equation*}
$$

where d is diagonal

$$
d=\left(\begin{array}{ccc}
d_{1} & 0 & \cdots \tag{1.29}\\
0 & d_{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

where $d_{j} \geq 0 \forall j$. Because of the group property, all of the $d_{j} \mathrm{~s}$ are actually positive. Proof - suppose one of the $d_{j} \mathrm{~s}$ is zero. Then there is a vector λ such that $S \lambda=0$. But then

$$
\begin{equation*}
\lambda^{\dagger} S \lambda=0=\sum_{g \in G}\|D(g) \lambda\|^{2} . \tag{1.30}
\end{equation*}
$$

Thus $D(g) \lambda$ must vanish for all g, which is impossible, since $D(e)=1$. Therefore, we can construct a square-root of S that is hermitian and invertible

$$
X=S^{1 / 2} \equiv U^{-1}\left(\begin{array}{ccc}
\sqrt{d_{1}} & 0 & \cdots \tag{1.31}\\
0 & \sqrt{d_{2}} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) U
$$

X is invertible, because none of the $d_{j} \mathrm{~s}$ are zero. We can now define

$$
\begin{equation*}
D^{\prime}(g)=X D(g) X^{-1} \tag{1.32}
\end{equation*}
$$

Now, somewhat amazingly, this representation is unitary!

$$
\begin{equation*}
D^{\prime}(g)^{\dagger} D^{\prime}(g)=X^{-1} D(g)^{\dagger} S D(g) X^{-1} \tag{1.33}
\end{equation*}
$$

but

$$
\begin{align*}
& D(g)^{\dagger} S D(g)=D(g)^{\dagger}\left(\sum_{h \in G} D(h)^{\dagger} D(h)\right) D(g) \\
&=\sum_{h \in G} D(h g)^{\dagger} D(h g) \tag{1.34}\\
&=\sum_{h \in G} D(h)^{\dagger} D(h)=S=X^{2}
\end{align*}
$$

where the last line follows because $h g$ runs over all elements of G when h does. QED.

We saw in the representation (1.23) of the additive group of the integers an example of a reducible but not completely reducible representation. The way it works is that there is a P that projects onto an invariant subspace, but $(1-P)$ does not. This is impossible for a unitary representation, and thus representations of finite groups are always completely reducible. Let's prove it.

Theorem 1.2 Every representation of a finite group is completely reducible.
Proof: By the previous theorem, it is sufficient to consider unitary representations. If the representation is irreducible, we are finished because it is already in block diagonal form. If it is reducible, then \exists a projector P such that $P D(g) P=D(g) P \forall g \in G$. This is the condition that P be an invariant subspace. Taking the adjoint gives $P D(g)^{\dagger} P=P D(g)^{\dagger} \forall g \in G$. But because $D(g)$ is unitary, $D(g)^{\dagger}=D(g)^{-1}=D\left(g^{-1}\right)$ and thus since g^{-1} runs over all G when g does, $P D(g) P=P D(g) \forall g \in G$. But this implies that $(1-P) D(g)(1-P)=D(g)(1-P) \forall g \in G$ and thus $1-P$ projects onto an invariant subspace. Thus we can keep going by induction and eventually completely reduce the representation.

1.10 Subgroups

A group H whose elements are all elements of a group G is called a subgroup of G. The identity, and the group G are trivial subgroups of G. But many groups have nontrivial subgroups (which just means some subgroup other than G or e) as well. For example, the permutation group, S_{3}, has a Z_{3} subgroup formed by the elements $\left\{e, a_{1}, a_{2}\right\}$.

We can use a subgroup to divide up the elements of the group into subsets called cosets. A right-coset of the subgroup H in the group G is a set of elements formed by the action of the elements of H on the left on a given element of G, that is all elements of the form $H g$ for some fixed g. You can define left-cosets as well.

For example, $\left\{a_{3}, a_{4}, a_{5}\right\}$ is a coset of Z_{3} in S_{3} in (1.20) above. The number of elements in each coset is the order of H. Every element of G must belong to one and only one coset. Thus for finite groups, the order of a subgroup H must be a factor of order of G. It is also sometimes useful to think about the coset-space, G / H defined by regarding each coset as a single element of the space.

A subgroup H of G is called an invariant or normal subgroup if for every $g \in G$

$$
\begin{equation*}
g H=H g \tag{1.35}
\end{equation*}
$$

which is (we hope) an obvious short-hand for the following: for every $g \in G$ and $h_{1} \in H$ there exists an $h_{2} \in H$ such that $h_{1} g=g h_{2}$, or $g h_{2} g^{-1}=h_{1}$. The trivial subgroups e and G are invariant for any group. It is less obvious but also true of the subgroup Z_{3} of S_{3} in (1.20) (you can see this by direct computation or notice that the elements of Z_{3} are those permutations that involve an even number of interchanges). However, the set $\left\{e, a_{4}\right\}$ is a subgroup of G which is not invariant. $a_{5}\left\{e, a_{4}\right\}=\left\{a_{5}, a_{1}\right\}$ while $\left\{e, a_{4}\right\} a_{5}=\left\{a_{5}, a_{2}\right\}$.

If H is invariant, then we can regard the coset space as a group. The multiplication law in G gives the natural multiplication law on the cosets, Hg :

$$
\begin{equation*}
\left(H g_{1}\right)\left(H g_{2}\right)=\left(H g_{1} H g_{1}^{-1}\right)\left(g_{1} g_{2}\right) \tag{1.36}
\end{equation*}
$$

But if H is invariant $H g_{1} H g_{1}^{-1}=H$, so the product of elements in two cosets is in the coset represented by the product of the elements. In this case, the coset space, G / H, is called the factor group of G by H.

What is the factor group S_{3} / Z_{3} ? The answer is Z_{2}.
The center of a group G is the set of all elements of G that commute with all elements of G. The center is always an Abelian, invariant subgroup of G. However, it may be trivial, consisting only of the identity, or of the whole group.

There is one other concept, related to the idea of an invariant subgroup, that will be useful. Notice that the condition for a subgroup to be invariant can be rewritten as

$$
\begin{equation*}
g H g^{-1}=H \forall g \in G \tag{1.37}
\end{equation*}
$$

This suggests that we consider sets rather than subgroups satisfying same condition.

$$
\begin{equation*}
g^{-1} S g=S \forall g \in G \tag{1.38}
\end{equation*}
$$

Such sets are called conjugacy classes. We will see later that there is a one-to-one correspondence between them and irreducible representations. A subgroup that is a union of conjugacy classes is invariant.

Example -
The conjugacy classes of S_{3} are $\{e\},\left\{a_{1}, a_{2}\right\}$ and $\left\{a_{3}, a_{4}, a_{5}\right\}$.
The mapping

$$
\begin{equation*}
G \rightarrow g G g^{-1} \tag{1.39}
\end{equation*}
$$

for a fixed g is also interesting. It is called an inner automorphism. An isomorphism is a one-to-one mapping of one group onto another that preserves the multiplication law. An automorphism is a one-to-one mapping of a group onto itself that preserves the multiplication law. It is easy to see that (1.39) is an automorphism. Because $g^{-1} g_{1} g g^{-1} g_{2} g=g^{-1} g_{1} g_{2} g$, it preserves the multiplication law. Since $g^{-1} g_{1} g=g^{-1} g_{2} g \Rightarrow g_{1}=g_{2}$, it is one to one. An automorphism of the form (1.39) where g is a group element is called an inner automorphism). An outer automorphism is one that cannot be written as $g^{-1} G g$ for any group element g.

1.11 Schur's lemma

Theorem 1.3 If $D_{1}(g) A=A D_{2}(g) \forall g \in G$ where D_{1} and D_{2} are inequivalent, irreducible representations, then $A=0$.

Proof: This is part of Schur's lemma. First suppose that there is a vector $|\mu\rangle$ such that $A|\mu\rangle=0$. Then there is a non-zero projector, P, onto the subspace that annihilates A on the right. But this subspace is invariant with respect to the representation D_{2}, because

$$
\begin{equation*}
A D_{2}(g) P=D_{1}(g) A P=0 \forall g \in G \tag{1.40}
\end{equation*}
$$

But because D_{2} is irreducible, P must project onto the whole space, and A must vanish. If A annihilates one state, it must annihilate them all. A similar argument shows that A vanishes if there is a $\langle\nu|$ which annihilates A. If no vector annihilates A on either side, then it must be an invertible square matrix. It must be square, because, for example, if the number of rows were larger than the number of columns, then the rows could not be a complete set of states, and there would be a vector that annihilates A on the
right. A square matrix is invertible unless its determinant vanishes. But if the determinant vanishes, then the set of homogeneous linear equations

$$
\begin{equation*}
A|\mu\rangle=0 \tag{1.41}
\end{equation*}
$$

has a nontrivial solution, which again means that there is a vector that annihilates A. But if A is square and invertible, then

$$
\begin{equation*}
A^{-1} D_{1}(g) A=D_{2}(g) \forall g \in G \tag{1.42}
\end{equation*}
$$

so D_{1} and D_{2} are equivalent, contrary to assumption. QED.
The more important half of Schur's lemma applies to the situation where D_{1} and D_{2} above are equivalent representations. In this case, we might as well take $D_{1}=D_{2}=D$, because we can do so by a simple change of basis. The other half of Schur's lemma is the following.

Theorem 1.4 If $D(g) A=A D(g) \forall g \in G$ where D is a finite dimensional irreducible representation, then $A \propto I$.

In words, if a matrix commutes with all the elements of a finite dimensional irreducible representation, it is proportional to the identity.
Proof: Note that here the restriction to a finite dimensional representation is important. We use the fact that any finite dimensional matrix has at least one eigenvalue, because the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has at least one root, and then we can solve the homogeneous linear equations for the components of the eigenvector $|\mu\rangle$. But then $D(g)(A-\lambda I)=(A-$ $\lambda I) D(g) \forall g \in G$ and $(A-\lambda I)|\mu\rangle=0$. Thus the same argument we used in the proof of the previous theorem implies $(A-\lambda I)=0$. QED.

A consequence of Schur's lemma is that the form of the basis states of an irreducible representation are essentially unique. We can rewrite theorem 1.4 as the statement

$$
\begin{equation*}
A^{-1} D(g) A=D(g) \forall g \in G \Rightarrow A \propto I \tag{1.43}
\end{equation*}
$$

for any irreducible representation D. This means once the form of D is fixed, there is no further freedom to make nontrivial similarity transformations on the states. The only unitary transformation you can make is to multiply all the states by the same phase factor.

In quantum mechanics, Schur's lemma has very strong consequences for the matrix elements of any operator, O, corresponding to an observable that is invariant under the symmetry transformations. This is because the matrix elements $\langle a, j, x| O|b, k, y\rangle$ behave like the A operator in (1.40). To see this,
let's consider the complete reduction of the Hilbert space in more detail. The symmetry group gets mapped into a unitary representation

$$
\begin{equation*}
g \rightarrow D(g) \forall g \in G \tag{1.44}
\end{equation*}
$$

where D is the (in general very reducible) unitary representation of G that acts on the entire Hilbert space of the quantum mechanical system. But if the representation is completely reducible, we know that we can choose a basis in which D has block diagonal form with each block corresponding to some unitary irreducible representation of G. We can write the orthonormal basis states as

$$
\begin{equation*}
|a, j, x\rangle \tag{1.45}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\langle a, j, x \mid b, k, y\rangle=\delta_{a b} \delta_{j k} \delta_{x y} \tag{1.46}
\end{equation*}
$$

where a labels the irreducible representation, $j=1$ to n_{a} labels the state within the representation, and x represents whatever other physical parameters there are.

Implicit in this treatment is an important assumption that we will almost always make without talking about it. We assume that have chosen a basis in which all occurences of each irreducible representation a, is described by the same set of unitary representation matrices, $D_{a}(g)$. In other words, for each irreducible representation, we choose a canonical form, and use it exclusively

In this special basis, the matrix elements of $D(g)$ are

$$
\begin{equation*}
\langle a, j, x| D(g)|b, k, y\rangle=\delta_{a b} \delta_{x y}\left[D_{a}(g)\right]_{j k} \tag{1.47}
\end{equation*}
$$

This is just a rewriting of (1.13) with explicit indices rather than as a matrix. We can now check that our treatment makes sense by writing the representation D in this basis by inserting a complete set of intermediate states on both sides:

$$
\begin{equation*}
I=\sum_{a, j, x}|a, j, x\rangle\langle a, j, x| \tag{1.48}
\end{equation*}
$$

Then we can write

$$
\begin{align*}
D(g)= & \sum_{a, j, x}|a, j, x\rangle\langle a, j, x| D(g) \sum_{b, k, y}|b, k, y\rangle\langle b, k, y| \\
= & \sum_{\substack{a, j, x \\
b, k, y}}|a, j, x\rangle \delta_{a b} \delta_{x y}\left[D_{a}(g)\right]_{j k}\langle b, k, y| \tag{1.49}\\
& =\sum_{a, j, k, x}|a, j, x\rangle\left[D_{a}(g)\right]_{j k}\langle a, k, x|
\end{align*}
$$

[^0]: ${ }^{\text {' in The World of Mathematics, Ed. by James R. Newman, Simon \& Schuster, New York, }}$ 1956.

