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Preface to the Revised Edition 

Lie Algebras in Particle Physics has been a very successful book. I have 
long resisted the temptation to produce a revised edition. I do so finally, 
because I find that there is so much new material that should be included, 
and so many things that I would like to say slightly differently. On the other 
hand, one of the good things about the first edition was that it did not do too 
much. The material could be dealt with in a one semester course by students 
with good preparation in quantum mechanics. In an attempt to preserve this 
advantage while including new material, I have flagged some sections that 
can be left out in a first reading. The titles of these sections begin with an 
asterisk, as do the problems that refer to them. 

I may be prejudiced, but I think that this material is wonderful fun to 
teach, and to learn. I use this as a text for what is formally a graduate class, 
but it is taken successfully by many advanced undergrads at Harvard. The 
important prerequisite is a good background in quantum mechanics and linear 
algebra. 

It has been over five years since I first began to revise this material and 
typeset it in ~TEX. Between then and now, many many students have used the 
evolving manuscript as a text. I am grateful to many of them for suggestions 
of many kinds, from typos to grammar to pedagogy. 

As always, I am enormously grateful to my family for putting up with 
me for all this time. I am also grateful for their help with my inspirational 
epilogue. 

xi 

Howard Georgi 
Cambridge, MA 
May, 1999 
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Why Group Theory? 

Group theory is the study of symmetry. It is an incredible labor saving device. 
It allows us to say interesting, sometimes very detailed things about physical 
systems even when we don't understand exactly what the systems are! When 
I was a teenager, I read an essay by Sir Arthur Stanley Eddington on the 
Theory of Groups and a quotation from it has stuck with me for over 30 
years: 1 

We need a super-mathematics in which the operations are as un-
known as the quantities they operate on, and a super-mathematician 
who does not know what he is doing when he performs these op-
erations. Such a super-mathematics is the Theory of Groups. 

In this book, I will try to convince you that Eddington had things a little 
bit wrong, as least as far as physics is concerned. A lot of what physicists 
use to extract information from symmetry is not the groups themselves, but 
group representations. You will see exactly what this means in more detail as 
you read on. What I hope you will take away from this book is enough about 
the theory of groups and Lie algebras and their representations to use group 
representations as labor-saving tools, particularly in the study of quantum 
mechanics. 

The basic approach will be to alternate between mathematics and physics, 
and to approach each problem from several different angles. I hope that you 
will learn that by using several techniques at once, you can work problems 
more efficiently, and also understand each of the techniques more deeply. 

1in The World of Mathematics, Ed. by James R. Newman, Simon & Schuster, New York, 
1956. 

1 DOI: 10.1201/9780429499210-1 

https://doi.org/10.1201/9780429499210-1


Chapter 1 

Finite Groups 

We will begin with an introduction to finite group theory. This is not intended 
to be a self-contained treatment of this enormous and beautiful subject. We 
will concentrate on a few simple facts that are useful in understanding the 
compact Lie algebras. We will introduce a lot of definitions, sometimes prov-
ing things, but often relying on the reader to prove them. 

1.1 Groups and representations 

A Group, G, is a set with a rule for assigning to every (ordered) pair of 
elements, a third element, satisfying: 

(l.A.l) If f,g E G then h = fg E G. 
(l.A.2)For f,g,h E G,f(gh) = (fg)h. 
(l.A.3) There is an identity element, e, such that for all f E G, ef = 

fe =f. 
(l.A.4) Every element f E G has an inverse, J-1, such that f f- 1 = 

f- 1! =e. 

Thus a group is a multiplication table specifying g1g2 Vg1, gz E G. If 
the group elements are discrete, we can write the multiplication table in the 
form 

\ II e I g1 I gz I · · · 
e e gl gz ... 
gl gl glgl glg2 ... (1.1) 
gz gz gzgl gzgz ... 

2 DOI: 10.1201/9780429499210-2 
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1.2. EXAMPLE- Z3 3 

A Representation of G is a mapping, D of the elements of G onto a set of 
linear operators with the following properties: 

l.B.l D(e) = 1, where 1 is the identity operator in the space on which 
the linear operators act. 

l.B.2 D(9I)D(92) = D(9192). in other words the group multiplica-
tion law is mapped onto the natural multiplication in the linear 
space on which the linear operators act. 

1.2 Example - Z3 

A group is finite if it has a finite number of elements. Otherwise it is infinite. 
The number of elements in a finite group G is called the order of G. Here is 
a finite group of order 3. 

\II e I a I b I 
e e a b 
a a b e 

(1.2) 

b b e a 

This is Z3 , the cyclic group of order 3. Notice that every row and column 
of the multiplication table contains each element of the group exactly once. 
This must be the case because the inverse exists. 

An Abelian group in one in which the multiplication law is commutative 

9192 = 9291. (1.3) 

Evidently, Z3 is Abelian. 
The following is a representation of z3 

D(e) = 1, D(a) = e21ri/3 , D(b) = e41ril3 (1.4) 

The dimension of a representation is the dimension of the space on which 
it acts- the representation (1.4) is 1 dimensional. 



4 CHAPTER 1. FINITE GROUPS 

1.3 The regular representation 

Here's another representation of Z3 

(1 0 0) (0 D(e) = 0 1 0 D(a) = 1 0 0 1 0 
(0 1 0) 

D(b) = 0 0 1 
1 0 0 

(1.5) 

This representation was constructed directly from the multiplication ta-
ble by the following trick. Take the group elements themselves to form an 
orthonormal basis for a vector space, !e), Ia}, and lb}. Now define 

D(9I) 192} = 19192} (1.6) 

The reader should show that this is a representation. It is called the regular 
representation. Evidently, the dimension of the regular representation is the 
order of the group. The matrices of ( 1.5) are then constructed as follows. 

le1} = le} , le2} = Ia} , le3} = lb} 
[D(9)]ij = (eiiD(9)Iej} 

(1.7) 

(1.8) 

The matrices are the matrix elements of the linear operators. (1.8) is a 
simple, but very general and very important way of going back and forth from 
operators to matrices. This works for any representation, not just the regular 
representation. We will use it constantly. The basic idea here is just the 
insertion of a complete set of intermediate states. The matrix corresponding 
to a product of operators is the matrix product of the matrices corresponding 
to the operators -

[D(9192)]ij = [D(91)D(92)]ij 

= (eiiD(9I)D(92)Iej} 

= L(eiiD(9l)lek} (ek!D(92)1ej} 
k 

= L[D(91)]ik[D(92)]kj 
k 

(1.9) 

Note that the construction of the regular representation is completely gen-
eral for any finite group. For any finite group, we can define a vector space in 
which the basis vectors are labeled by the group elements. Then (1.6) defines 
the regular representation. We will see the regular representation of various 
groups in this chapter. 
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1.4 Irreducible representations 

What makes the idea of group representations so powerful is the fact that they 
live in linear spaces. And the wonderful thing about linear spaces is we are 
free to choose to represent the states in a more convenient way by making 
a linear transformation. As long as the transformation is invertible, the new 
states are just as good as the old. Such a transformation on the states produces 
a similarity transformation on the linear operators, so that we can always 
make a new representation of the form 

D(g) -+ D'(g) = s-1 D(g)S (1.10) 

Because of the form of the similarity transformation, the new set of operators 
has the same multiplication rules as the old one, so D' is a representation if 
D is. D' and D are said to be equivalent representations because they differ 
just by a trivial choice of basis. 

Unitary operators (0 such that ot = o-1) are particularly important. A 
representation is unitary if all the D (g) s are unitary. Both the representations 
we have discussed so far are unitary. It will tum out that all representations of 
finite groups are equivalent to unitary representations (we'll prove this later-
it is easy and neat). 

A representation is reducible if it has an invariant subspace, which 
means that the action of any D (g) on any vector in the subspace is still in 
the subspace. In terms of a projection operator P onto the subspace this con-
dition can be written as 

PD(g)P = D(g)P Vg E G (1.11) 

For example, the regular representation of Z3 (1.5) has an invariant sub-
space projected on by 

P= ~ (i 
3 1 

1 
1 
1 

(1.12) 

because D(g)P = P Vg. The restriction of the representation to the invariant 
subspace is itself a representation. In this case, it is the trivial representa-
tion for which D (g) = 1 (the trivial representation, D (g) = 1, is always a 
representation- every group has one). 

A representation is irreducible if it is notreducible. 
A representation is completely reducible if it is equivalent to a represen-
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tation whose matrix elements have the following form: 

... .. ") (1.13) 

where D j (9) is irreducible V j. This is called block diagonal form. 
A representation in block diagonal form is said to be the direct sum of 

the subrepresentations, D j (9), 

(1.14) 

In transforming a representation to block diagonal form, we are decom-
posing the original representation into a direct sum of its irreducible com-
ponents. Thus another way of defining complete reducibility is to say that 
a completely reducible representation can be decomposed into a direct 
sum of irreducible representations. This is an important idea. We will use 
it often. 

We will show later that any representation of a finite group is completely 
reducible. For example, for (1.5), take 

~c 
1 :, ) S= 3 i w2 (1.15) 
w 

where 
w = e27ri/3 (1.16) 

then 

D'(e) = 0 0 0) 
D'(a) = 0 0 

~,) 1 0 w 
0 1 0 (1.17) 

D'(b) = G 0 

~) w2 
0 

1.5 Transformation groups 

There is a natural multiplication law for transformations of a physical system. 
If 91 and 92 are two transformations, 9 192 means first do 92 and then do 91 . 
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Note that it is purely convention whether we define our composition law to 
be right to left, as we have done, or left to right. Either gives a perfectly 
consistent definition of a transformation group. 

If this transformation is a symmetry of a quantum mechanical system, 
then the transformation takes the Hilbert space into an equivalent one. Then 
for each group element g, there is a unitary operator D (g) that maps the 
Hilbert space into an equivalent one. These unitary operators form a repre-
sentation of the transfo@lation group because the transformed quantum states 
represent the transformed physical system. Thus for any set of symmetries, 
there is a representation of the symmetry group on the Hilbert space - we 
say that the Hilbert space transforms according to some representation of the 
group. Furthermore, because the transformed states have the same energy as 
the originals, D(g) commutes with the Hamiltonian, [D(g), H] = 0. As we 
will see in more detail later, this means that we can always choose the energy 
eigenstates to transform like irreducible representations of the group. It is 
useful to think about this in a simple example. 

1.6 Application: parity in quantum mechanics 

Parity is the operation of reflection in a mirror. Reflecting twice gets you 
back to where you started. If p is a group element representing the parity 
reflection, this means that p2 = e. Thus this is a transformation that together 
with the identity transformation (that is, doing nothing) forms a very simple 
group, with the following multiplication law: 

(1.18) 

This group is called Z2 . For this group there are only two irreducible rep-
resentations, the trivial one in which D(p) = 1 and one in which D(e) = 1 
and D(p) = -1. Any representation is completely reducible. In particular, 
that means that the Hilbert space of any parity invariant system can be de-
composed into states that behave like irreducible representations, that is on 
which D(p) is either 1 or -1. Furthermore, because D(p) commutes with 
the Hamiltonian, D (p) and H can be simultaneously diagonalized. That is 
we can assign each energy eigenstate a definite value of D(p). The energy 
eigenstates on which D(p) = 1 are said to transform according to the trivial 
representation. Those on which D(p) = -1 transform according to the other 
representation. This should be familiar from nonrelativistic- quantum me-
chanics in one dimension. There you know that a particle in a potential that is 
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symmetric about x = 0 has energy eigenfunctions that are either symmetric 
under x -+ -x (corresponding to the trivial representation), or antisymmetric 
(the representation with D(p) = -1). 

1.7 Example: 83 

The permutation group (or symmetric group) on 3 objects, called s3 where 

a1 = {1, 2, 3) a2 = (3, 2, 1) 
(1.19) 

a3 = {1, 2) a4 = (2, 3) a5 = {3, 1) 

The notation means that a 1 is a cyclic permutation of the things in positions 1, 
2 and 3; a2 is the inverse, anticyclic permutation; a3 interchanges the objects 
in positions 1 and 2; and so on. The multiplication law is then determined by 
the transformation rule that 9192 means first do 92 and then do 91· It is 

e e a1 a2 a3 a4 a5 
a1 a1 a2 e a5 a3 a4 
a2 a2 e a1 a4 a5 a3 (1.20) 
a3 a3 a4 a5 e a1 a2 
a4 a4 a5 a3 a2 e a1 
a5 a5 a3 a4 a1 a2 e 

We could equally well define it to mean first do 91 and then do 92· These 
two rules define different multiplication tables, but they are related to one 
another by simple relabeling of the elements, so they give the same group. 
There is another possibility of confusion here between whether we are per-
muting the objects in positions 1, 2 and 3, or simply treating 1, 2 and 3 as 
names for the three objects. Again these two give different multiplication ta-
bles, but only up to trivial renamings. The first is a little more physical, so we 
will use that. The permutation group is an another example of a transforma-
tion group on a physical system. 

S3 is non-Abelian because the group multiplication law is not commuta-
tive. We will see that it is the lack of commutativity that makes group theory 
so interesting. 
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Here is a unitary irreducible representation of S3 

(1 0) (_l -~) D(e) = 0 1 , D(al) = J _f , 
( 

~ 2 2 _l _l -1 0 
D(a,) ~ -1 ~~), D(a,) ~ ( 0 1), 

( 1 ~) ( 1 ~) 
D(a4) = 1 -\ , D(as) = -1 ~! 

(1.21) 

The interesting thing is that the irreducible unitary representation is more 
than 1 dimensional. It is necessary that at least some of the representations 
of a non-Abelian group must be matrices rather than numbers. Only matri-
ces can reproduce the non-Abelian multiplication law. Not all the operators 
in the representation can be diagonalized simultaneously. It is this that is 
responsible for a lot of the power of the theory of group representations. 

1.8 Example: addition of integers 

The integers form an infinite group under addition. 

xy = x+y (1.22) 

This is rather unimaginatively called the additive group of the integers. Since 
this group is infinite, we can't write down the multiplication table, but the 
rule above specifies it completely. 

Here is a representation: 

D(x)=(~ ~) (1.23) 

This representation is reducible, but you can show that it is not completely 
reducible and it is not equivalent to a unitary representation. It is reducible 
because 

D(x)P = P (1.24) 

where 

p = (~ ~) (1.25) 

However, 
D(x)(I- P) =J (I- P) (1.26) 

so it is not completely reducible. 
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The additive group of the integers is infinite, because, obviously, there are 
an infinite number of integers. For a finite group, all reducible representations 
are completely reducible, because all representations are equivalent to unitary 
representations. 

1.9 Useful theorems 

Theorem 1.1 Every representation of a finite group is equivalent to a unitary 
representation. 

Proof: Suppose D(g) is a representation of a finite group G. Construct the 
operator 

s = L D(g)tD(g) (1.27) 
gEG 

S is hermitian and positive semidefinite. Thus it can be diagonalized and its 
eigenvalues are non-negative: 

(1.28) 

where d is diagonal 

(1.29) 

where dj 2: 0 \;/ j. Because of the group property, all of the dj s are actually 
positive. Proof- suppose one of the djs is zero. Then there is a vector A 
such that SA = 0. But then 

At sA= o = 'L IID(g)AW. (1.30) 
gEG 

Thus D(g)A must vanish for all g, which is impossible, since D(e) = 1. 
Therefore, we can construct a square-root of S that is hermitian and invertible 

(1.31) 

X is invertible, because none of the djs are zero. We can now define 

D'(g) =X D(g) x-1 (1.32) 
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Now, somewhat amazingly, this representation is unitary! 

(1.33) 

but 

D(g)t SD(g) = D(g)t (L D(h)t D(h)) D(g) 
hEG 

= L D(hg)t D(hg) (1.34) 
hEG 

= L D(h)tD(h) = s = X 2 

hEG 

where the last line follows because hg runs over all elements of G when h 
does. QED. 

We saw in the representation (1.23) of the additive group of the integers 
an example of a reducible but not completely reducible representation. The 
way it works is that there is a P that projects onto an invariant subspace, but 
(1 - P) does not. This is impossible for a unitary representation, and thus 
representations of finite groups are always completely reducible. Let's prove 
it. 

Theorem 1.2 Every representation of a finite group is completely reducible. 

Proof: By the previous theorem, it is sufficient to consider unitary repre-
sentations. If the representation is irreducible, we are finished because it is 
already in block diagonal form. If it is reducible, then :3 a projector P such 
that P D (g) P = D (g) P V g E G. This is the condition that P be an invariant 
subspace. Taking the adjoint gives PD(g)tp = PD(g)t Vg E G. But be-
cause D(g) is unitary, D(g)t = D(g)-1 = D(g-1 ) and thus since g-1 runs 
over all G when g does, PD(g)P = PD(g) Vg E G. But this implies that 
(1- P)D(g)(1- P) = D(g)(1- P) Vg E G and thus 1- P projects onto 
an invariant subspace. Thus we can keep going by induction and eventually 
completely reduce the representation. 

1.10 Subgroups 

A group H whose elements are all elements of a group G is called a subgroup 
of G. The identity, and the group G are trivial subgroups of G. But many 
groups have nontrivial subgroups (which just means some subgroup other 
than G or e) as well. For example, the permutation group, S3, has a Z3 
subgroup formed by the elements { e, a1, a2}. 
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We can use a subgroup to divide up the elements of the group into subsets 
called cosets. A right-coset of the subgroup H in the group G is a set of 
elements formed by the action of the elements of H on the left on a given 
element of G, that is all elements of the form H g for some fixed g. You can 
define left-cosets as well. 

For example, { a3, a4, as} is a coset of Z3 in 83 in ( 1.20) above. The 
number of elements in each coset is the order of H. Every element of G 
must belong to one and only one coset. Thus for finite groups, the order of 
a subgroup H must be a factor of order of G. It is also sometimes useful to 
think about the coset-space, G I H defined by regarding each coset as a single 
element of the space. 

A subgroup H of G is called an invariant or normal subgroup if for 
every g E G 

gH=Hg (1.35) 

which is (we hope) an obvious short-hand for the following: for every g E G 
and h1 E H there exists an h2 E H such that h1g = gh2, or gh2g-1 = h 1. 
The trivial subgroups e and G are invariant for any group. It is less ob-
vious but also true of the subgroup Z3 of 83 in (1.20) (you can see this 
by direct computation or notice that the elements of Z3 are those permuta-
tions that involve an even number of interchanges). However, the set { e, a4 } 

is a subgroup of G which is not invariant. as { e, a4} = {as, al} while 
{ e, a4}as = {as, a2}. 

If H is invariant, then we can regard the coset space as a group. The 
multiplication law in G gives the natural multiplication law on the cosets, 
Hg: 

(1.36) 

But if H is invariant Hg1Hg1 1 = H, so the product of elements in two 
cosets is in the coset represented by the product of the elements. In this case, 
the coset space, G I H, is called the factor group of G by H. 

What is the factor group 83 I z3? The answer is z2. 
The center of a group G is the set of all elements of G that commute 

with all elements of G. The center is always an Abelian, invariant subgroup 
of G. However, it may be trivial, consisting only of the identity, or of the 
whole group. 

There is one other concept, related to the idea of an invariant subgroup, 
that will be useful. Notice that the condition for a subgroup to be invariant 
can be rewritten as 

gHg-1 = H Vg E G (1.37) 
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This suggests that we consider sets rather than subgroups satisfying same 
condition. 

(1.38) 

Such sets are called conjugacy classes. We will see later that there is a one-
to-one correspondence between them and irreducible representations. A sub-
group that is a union of conjugacy classes is invariant. 

Example-
The conjugacy classes of S3 are { e}, {at, a2} and { a3, a4, as}. 
The mapping 

(1.39) 

for a fixed g is also interesting. It is called an inner automorphism. An 
isomorphism is a one-to-one mapping of one group onto another that pre-
serves the multiplication law. An automorphism is a one-to-one mapping 
of a group onto itself that preserves the multiplication law. It is easy to see 
that (1.39) is an automorphism. Because g-1919 g-1929 = g-191929· it pre-
serves the multiplication law. Since g-1919 = g-1929::::} 91 = 92. it is one 
to one. An automorphism of the form (1.39) where g is a group element is 
called an inner automorphism). An outer automorphism is one that cannot 
be written as g-1Gg for any group element g. 

1.11 Schur's lemma 

Theorem 1.3 If Dt(g)A = AD2(g) 't/g E G where Dt and D2 are inequiv-
alent, irreducible representations, then A = 0. 

Proof: This is part of Schur's lemma. First suppose that there is a vector IJL) 
such that AIJL) = 0. Then there is a non-zero projector, P, onto the subspace 
that annihilates A on the right. But this subspace is invariant with respect to 
the representation D 2, because 

AD2(g)P = D1(g)AP = 0 't/g E G (1.40) 

But because D2 is irreducible, P must project onto the whole space, and 
A must vanish. If A annihilates one state, it must annihilate them all. A 
similar argument shows that A vanishes if there is a (vI which annihilates 
A. If no vector annihilates A on either side, then it must be an invertible 
square matrix. It must be square, because, for example, if the number of 
rows were larger than the number of columns, then the rows could not be a 
complete set of states, and there would be a vector that annihilates A on the 
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right. A square matrix is invertible unless its determinant vanishes. But if the 
determinant vanishes, then the set of homogeneous linear equations 

Al~-t) = 0 (1.41) 

has a nontrivial solution, which again means that there is a vector that anni-
hilates A. But if A is square and invertible, then 

(1.42) 

so D 1 and D2 are equivalent, contrary to assumption. QED. 
The more important half of Schur's lemma applies to the situation where 

D 1 and D2 above are equivalent representations. In this case, we might as 
well take D 1 = D2 = D, because we can do so by a simple change of basis. 
The other half of Schur's lemma is the following. 

Theorem 1.4 If D(g)A = AD(g) '1/g E G where Dis a finite dimensional 
irreducible representation, then A ex: I. 

In words, if a matrix commutes with all the elements of a finite dimensional 
irreducible representation, it is proportional to the identity. 
Proof: Note that here the restriction to a finite dimensional representation 
is important. We use the fact that any finite dimensional matrix has at least 
one eigenvalue, because the characteristic equation det(A- >..I) = 0 has at 
least one root, and then we can solve the homogeneous linear equations for 
the components of the eigenvector IJ.t). But then D(g)(A - >..I) = (A -
>..I)D(g) \;/g E G and (A- >..I)IJ.t) = 0. Thus the same argument we used in 
the proof of the previous theorem implies (A - >..I) = 0. QED. 

A consequence of Schur's lemma is that the form of the basis states of an 
irreducible representation are essentially unique. We can rewrite theorem 1.4 
as the statement 

A-1 D(g)A = D(g) \;/g E G =>A ex: I (1.43) 

for any irreducible representation D. This means once the form of D is fixed, 
there is no further freedom to make nontrivial similarity transformations on 
the states. The only unitary transformation you can make is to multiply all 
the states by the same phase factor. 

In quantum mechanics, Schur's lemma has very strong consequences for 
the matrix elements of any operator, 0, corresponding to an observable that 
is invariant under the symmetry transformations. This is because the matrix 
elements (a, j, x!Oib, k, y) behave like the A operator in (1.40). To see this, 
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let's consider the complete reduction of the Hilbert space in more detail. The 
symmetry group gets mapped into a unitary representation 

g-+ D(g) Vg E G (1.44) 

where D is the (in general very reducible) unitary representation of G that 
acts on the entire Hilbert space of the quantum mechanical system. But if the 
representation is completely reducible, we know that we can choose a basis 
in which D has block diagonal form with each block corresponding to some 
unitary irreducible representation of G. We can write the orthonormal basis 
states as 

ja,j,x) (1.45) 

satisfying 
(a, j, X I b, k, y) = dab djk dxy (1.46) 

where a labels the irreducible representation, j = 1 to na labels the state 
within the representation, and x represents whatever other physical parame-
ters there are. 

Implicit in this treatment is an important assumption that we will almost 
always make without talking about it. We assume that have chosen a basis in 
which all occurences of each irreducible representation a, is described by the 
same set of unitary representation matrices, D a (g). In other words, for each 
irreducible representation, we choose a canonical form, and use it exclusively 

In this special basis, the matrix elements of D (g) are 

(a, j, xi D(g) jb, k, y) = dab dxy [Da(Y )]jk (1.47) 

This is just a rewriting of ( 1.13) with explicit indices rather than as a matrix. 
We can now check that our treatment makes sense by writing the representa-
tion D in this basis by inserting a complete set of intermediate states on both 
sides: 

I= L la,j,x)(a,j,xl 
a,j,x 

Then we can write 

D(g) = L ja,j,x)(a,j,xjD(g) L jb,k,y)(b,k,yj 
a,j,x b,k,y 

= L ja,j, x) dab dxy [Da(g)]jdb, k, Yi 
a,j,x 
b,k,y 

= L ja,j,x) [Da(g)]jk(a,k,xl 
a,j,k,x 

(1.48) 

(1.49) 


