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Editor’s Foreword

Perseus Books’s Advanced Book Classics series has been designed to make avail
able, at modest cost and in an attractive format, graduate-level lecture notes, 
texts and monographs that are classics, in that the depth and insight they have 
provided in the past may be expected to continue to play a significant role in 
the education of the present and future generations of graduate students, post
doctoral research associates, and their more senior scientific colleagues. It is 
hoped that although books in the series may, in some cases, have been written 
twenty-five or more years ago, the unique perspective and pedagogical clarity 
provided by the authors will make them  as attractive and useful to today’s 
reader as they were to the generations of readers who received them enthusiastically 
at the time of their original publication.

The Theory of Quantum Liquids brings together, for the first time, the first parts 
of what the authors had intended to be a two volume series dealing with three 
basic quantum liquids: the normal Fermi liquids found in conventional metals 
and liquid 3He, which are described by Landau’s elegant threory; superfluid Bose 
liquids, such as liquid 4He; and the conventional superconductors, so completely 
described by the microscopic theory of s-wave pairing developed by Bardeen, 
Cooper, and Schrieffer. Although written contemporaneously, these two parts 
were published some twenty-three years apart, because, as the authors’ note in 
their preface to Volume II (dealing with superfluid Bose liquids) explains, the vol
ume had been long delayed in the unrealized, and probably unreasonable, hope 
that they might find the time to include in it a discussion of superconductivity at 
the same level of presentation as that found in Volume I and the sections of the 
projected Volume II that dealt with the superfluid Bose liquid. The explosion of 
research results on superconductivity in the mid-sixties rendered this plan moot, 
and so the material dealing with the superfluid Bose liquid was first published 
over twenty years after the time it had been written.

During the past decade, interest in quantum liquids has continued to increase. 
With the discovery of strongly correlated electron systems such as the heavy elec
tron metals and superconductors, the Kondo insulators, and especially the low 
temperature organic superconductors and the high temperature cuprate super
conductors, we now have before us a broad spectrum of materials for which



Landaus description of normal state behavior fails, while their superconducting 
behavior is unconventional in that the pairing state is not the s-wave state found 
in conventional low temperature superconductors. This same decade has 
witnessed a revival of interest in Bose liquids, now that Bose condensation of 
atoms other than Helium can be achieved by ingenious optical techniques. The 
theory of quantum liquids thus continues to be a work-in-progress, and the pre
sent volume may be regarded as providing the backdrop against which these new 
discoveries are played out.

David Pines 
Tesuque, NM 
August 1999
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Special Preface

We began writing this book at a time when field theoretical methods in statistical 
mechanics were expanding rapidly. Our aim was to focus on the physics which lies behind 
such sophisticated techniques, to describe simple physical facts in a simple language. 
Hence our deliberate choice of “elementary” methods in explaining such fundamental 
concepts as elementary excitations, their interactions and collisions, etc.... Rather than 
elaborating on calculations, we tried to explain qualitative and unifying aspects of an 
extremely broad and diversified field. Such a limited scope—albeitambitious—probably 
explains why our book has retained popularity throughout the years. It is a comforting 
thought to evolve from a “frontier” level to a “classic” status. We hope it is not only a 
matter of age!

The book was originally organized in two volumes. Volume I dealt with “nor
mal” Fermi fluids, i.e., those which display no order of any type. Typical examples are 
liquid 3He or electron liquids at temperatures above a possible superfluid transition. We 
discussed at length the nature of elementary excitations, the central concept of response 
functions, the new features brought about by the long range of Coulomb interactions in 
charged systems. Volume n was supposed to deal with superfluid systems, both bosons 
(4He) and fermions (metallic superconductors); it was never completed. The main reason 
was a matter of timing. The year, 1965, marked an explosive growth of the work on 
superconductors, with such new concepts as phase coherence, the Josephson effect, etc. 
Things were moving fast, while our ambition was to provide a carefully thought out 
picture, in which concepts and methods were put in perspective. It was definitely not the 
appropriate time, and consequently Volume II fell into oblivion. We nevertheless had 
completed a long chapter on Bose condensation and liquid 4He, which has been widely 
circulated in the community. After some hesitation, we have decided to take the 
opportunity of this “classic” series to publish as Volume II our text, written in 1964, as it

xiii
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stands. We do this partly because it contains physical concepts that have perhaps not been 
pursued in the detail they deserve (e.g., the interaction of elementary excitations), partly 
because we hope our early work will provide a perspective on the field of 4He which will 
help the reader appreciate the subsequent evolution of ideas.

Altogether, the present volume is centered around a mean field approach, 
appropriately generalized in order to cope with strong coupling situations. Subsequent 
developments involved in a number of fluctuation dominated problems, such as critical 
phenomena, or the Kondo problem in magnetic alloys; these were in a process of 
development in 1965, and we did not consider them. We did, however, emphasize the 
importance of interactions between elementary excitations, "ancestor” of mode-mode 
coupling.

During the past twenty years, the subject of Fermi liquids has developed 
significantly. New Fermi liquids have been discovered (superfluid3He, dilute mixtures of 
3He in 4He, spin polarized 3He, superfluid neutron matter in neutron stars) while under
standing of 3He, the “archetypical” normal Fermi liquid, has been increased substantially 
by careful measurements of its “Landau” properties, such as transport coefficients, 
specific heat, and zero sound, and by neutron scattering experiments which probe the 
density and spin excitation spectra in the “non-Landau” regime.

Review articles which deal with these topics at a level comparable to that of this 
book include:
P.W. Anderson and W.F. Brinkman, Theory of Anistropic Superfluidity in 3He, in the 

Physics of Liquid and Solid Helium, Part II, ed. by K. H. Bennemann and J. B. 
Ketterson, J. Wiley Pub., pp. 177-286 (1978).

A. J. Leggett, A Theoretical Description of the New Phases of Liquid 3He, in the Rev. Mod.
Phys. 47, pp. 331 (1975).

G. Baym and C. J. Pethick, Landau Fermi Liquid Theory and Low Temperature Properties 
of Normal Liquid 3He, and Low Temperature Properties of Dilute Solutions of 3He in 
Superfluid 4He, in The Physics of Liquid and Solid Helium, Part II, ed. K. H. Ben
nemann and J. B. Ketterson, J. Wiley Pub., pp. 1-175 (1978).

D. Pines, Excitations and Transport in Quantum Liquids, in Highlights of Condensed 
Matter Theory, Soc. Italiano di Fisica, pp. 580 (1985); and Can. Jour. Phys. 65, pp. 
1357 (1987).

The subject of broken symmetry in condensed matter physics represents another 
significant concept which has been developed considerably since the appearance of our 
book. A theoretical discussion of magnetic instabilities, Stoner’s theory of ferromagnet
ism, and spin density waves may be found in the review articles in “Magnetism," ed. G. 
Rado and H. Suhl, Academic Press, 1963, with a general discussion of broken symmetry 
may be found inter alia, in “Basic Notions of Condensed Matter Physics,” P. W. 
Anderson, Addison Wesley, 1983, as well as in the review articles on superfluid 3He listed 
above.

Looking over the past twenty-five years since we began work on this book, the 
scene has changed in the field of many-body physics. What was new has become standard 
wisdom, while new phenomena have taken center stage. Nevertheless, the feeling of
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excitement remains the same—as witnessed by the upsurge of work on localizations, 
narrow band materials, the quantum Hall effect, heavy electron systems, high T. super
conductors, etc. All of that must be anchored on solid ground—a ground which we tried 
to lay down in the original edition of this book. We hope that our 196S baby has aged well, 
and it gives us pleasure to “launch her” again.

David Pines 
Philippe Nozifcres
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Preface

Our aim in writing this book has been to provide a unified, yet elementary, account of the 
theory of quantum liquids. Strictly speaking, a quantum liquid is a spatially homogeneous 
system of strongly interacting particles at temperatures sufficiently low that the effects of 
quantum statistics are important. In this category fall liquid 3He and “He. In practice, the 
term is used more broadly, to include those aspects of the behavior of conduction electrons 
in metals and degenerate semiconductors which are not sensitive to the periodic nature of 
the ionic potential. The conduction elections in a metal may thus be regarded as a normal 
Fermi liquid, or a superfluid Fermi liquid, depending on whether the metal in question is 
normal or superconducting.

While the theory of quantum liquids may be said to have had its origin some 
twenty-five years ago in the classic work of Landau on 4He, it is only within the past decade 
that it has emerged as a well-defined subfield of physics. Thanks to the work of many 
people, we possess today a unified point of view and a language appropriate for the 
description of many-particle systems. We understand where elementary excitations 
afford an apt description and where they do not; we appreciate the relationship between 
quasiparticle excitations and collective modes, and how both derive from the basic 
interactions of the system particle. There now exists a number of model solutions for the 
many-body problem, solutions which can be shown to be valid for a given class of particle 
interactions and system densities: examples are an electron system at high densities and 
low temperatures, and a dilute boson system at low temperatures. In addition, there is a 
semi phenomenological theory, due to Landau, which describes the macroscopic behavior 
of an arbitrary normal Fermi liquid at low temperatures. Finally, and most important, has 
been the development of a successful microscopic theory of superconductivity by 
Bardeen, Cooper, and Schrieffer.
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These developments have profoundly altered the main lines of research in 
quantum statistical mechanics: it has changed from the study of dilute, weakly interacting 
gases to an investigation of quantum liquids in which the interaction between particles 
plays an essential role. The resulting body of theory has developed to the point that it 
should be possible to present a coherent account of quantum liquids for the non-specialist, 
and such is our aim.

In writing this book, we have had three sorts of readers in mind:

(i) Students who have completed the equivalent of an undergraduate physics 
major, and have taken one year of a graduate course in quantum mechanics.

(ii) Experimental physicists working in the fields of low-temperature or solid- 
state physics.

(iii) Theoretical physicists or chemists who have not specialized in many- 
particle problems.

Our book is intended both as a text for a graduate course in quantum statistical mechanics 
or low temperature theory and as a monograph for reference and self-study. The reader 
may be surprised by its designation as a text for a course on statistical mechanics, since 
a perusal of the table of contents shows few topics that are presently included in most such 
courses. In fact, we believe it is time for extension of our teaching of statistical mechanics, 
to take into account all that we have learned in the past decade. We hope that this book 
may prove helpful in that regard and that it may also prove useful as a supplementary 
reference for an advanced course in solid-state physics.

We have attempted to introduce the essential physical concepts with a minimum 
of mathematical complexity; therefore, we have not made use of either Green’s functions 
or Feynman diagrams. We hope that their absence is compensated for by our book being 
more accessible to the experimentalist and the nonspecialist. Accounts of field-theoretic 
methods in many-particle problems may be found in early books by the authors [D. Pines, 
The Many-Body Problem, Benjamin, New York (1962), P. Noziferes, The Theory of 
Interacting Fermi Systems, Benjamin, New York (1963)] and in L. P. Kadanoff and G. 
Baym, Quantum Statistical Mechanics, Benjamin, New York (1962), and by A. A. 
Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in 
Statistical Physics, Prentice-Hall, New York (1964), to mention but a few reference 
works.

The decision to publish the book in two volumes stems, in part, from its length, 
and in part, from the natural division of quantum liquids into two classes, normal and 
supcrfluid. A third and perhaps controlling factor has been that a single volume would 
have meant a delay in publication of the present material of well over a year.

Although our book is a large one, we have not found it possible to describe all 
quantum liquids, or every aspect of the behavior of a given liquid. For example, we have 
not included a description of nuclear matter, of phase transitions, or of variational 
calculations of the ground state of various many-particle systems. On the other hand, we 
have compared theory with experiment in a number of places and, where appropriate, have
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compared and contrasted the behavior of different quantum liquids.
We have chosen to begin the book with the Landau theory of a neutral Fermi 

liquid in order to illustrate, in comparatively elementary fashion, the way both quantum 
statistics and particle interaction determine system behavior. We next consider the 
description of an arbitrary quantum liquid; we discuss the mathematical theory of linear 
response and correlations, which establishes the language appropriate for that description. 
We then go on to discuss, in Volume I, charged Fermi liquids, and in Volume II, the 
superfluid Bose liquid and superconductors.

The authors began work on this book in Paris, at the Laboratoire de Physique of 
the Ecole Normale Superidure, in the fall of 1962, when one of us was on leave from the 
University of Illinois. Since then we worked on thebookboth in Paris and at the University 
of Illinois. We should like to thankProfessor YvesRocard, of the University de Paris, and 
Professor G. M. Almy, head of the Physics Department at the University of Illinois, for 
their support and encouragement. One of us (DP.) would also like to thank the John Simon 
Guggenheim Memorial Foundation for their support during 1962and 1963, and the Army 
Research Office (Durham) for their support during 1963 and 1964.

We should like to express our gratitude to the many friends and colleagues to 
whom we have turned for advice and discussion, and particularly to Professor John 
Bardeen for his advice and encouragement. We are deeply indebted to Dr. Conyers 
Herring for his careful reading of a preliminary version of Chapter 1, and to Professor 
Gordon Baym, who read carefully the entire manuscript and whose comments have 
improved both the accuracy and the clarity of our presentation. We owe an especial debt 
of gratitude to Dr. Odile Betbeder-Matibet, who has been of substantial assistance in the 
correction of the proof, and to Mme. M. Audouin, who has helped in the preparation of 
the index.

David Pines 
Philippe Nozieres

December 1966
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IN T R O D U C TIO N

Let us consider a gas of neutral atoms interacting through a short-range 
binary potential. At high enough temperatures and low enough pres
sures, the gas is dilute. Each atom moves as if it were essentially free, 
apart from infrequent collisions with other atoms or with the container 
walls. The system is well described by the elementary kinetic theory of 
gases. I t  displays the usual properties of a classical gas; the specific 
heat Cv is temperature independent; in the case of fermions (particles 
with spin) the spin susceptibility varies inversely with the temperature, 
according to Curie's law.

As the pressure is increased and the temperature is lowered, the above 
picture tends to break down for two distinct reasons. On the one hand, 
because of the increase in density, the interaction between particles 
becomes far more efficient. On the other hand, the decrease in the tem
perature weakens the kinetic energy compared to the particle “inter
action" energy. At some stage, the gas undergoes a first-order tran
sition to a liquid state. This state is characterized by strong particle 
correlations, which insure the cohesion of the liquid. The transition is 
essentially dynamic in character, since it arises from the particle inter
action. I t  corresponds to a purely classical effect, giving rise to a 
classical liquid.

As the temperature is lowered still further, the kinetic energy of the 
liquid is further decreased, while the interaction between the particles 
plays a correspondingly more important role. As a result, in almost all 
cases one observes a first-order phase transition from the liquid state to a 
solid state. The only exceptions are the isotopes of helium, 3He and 
4He, which remain liquid down to the lowest attainable temperatures. 
Helium is anomalous because the forces between the atoms are relatively 
weak, while, because of its low mass, the zero-point oscillations of the 
individual atoms are large.

Helium thus remains liquid through a temperature regime in which
1



2 Introduction

quantum effects must be taken into account. These become important 
when the thermal de Broglie wavelength of a particle, (*2/2 M kT)h, 
becomes comparable to the average spacing between particles; this 
occurs a t about 3-4°K  for helium. Quantum effects may be viewed 
as deriving from the symmetry properties of the many-body wave 
function, and are essentially statistical in their nature. One expects (and 
finds) tha t a t sufficiently low temperatures, where the quantum nature 
of the liquid has become manifest, 3He, which obeys Fermi-Dirac 
statistics, and 4He, which obeys Bose-Einstein statistics, will behave 
quite differently. We are thus led to consider the theory of quantum 
liquids, in which an important role is played by both the degeneracy 
characteristic of a quantum many-particle system, and the interaction 
between the particles.

8He (a Fermi liquid) and 4He (a Bose liquid) are the only “real” 
quantum liquids found in nature. However, one can also regard the 
conduction electrons in metals, semimetals, and degenerate semi
conductors as a quantum liquid; this electron “liquid” is not homo
geneous, since the electrons in a solid move in the periodic field of the 
ion cores. For many purposes, however, one can neglect the influence 
of this periodic potential. For conduction electrons in metals the 
degeneracy temperature (at which quantum effects become of impor
tance) is of the order of 50,000°K; it is ~100°K  for a semimetal, and 
~ 3°K for a typical semiconductor with a conduction electron density 
of 1016.

Strangely enough, despite the often quite sizable particle interaction 
and despite the fact tha t one is dealing with a quantum-mechanical 
many-particle system, quantum liquids a t sufficiently low temperatures 
are better understood than their classical counterparts. The explana
tion lies in the concept of elementary excitations, which under suitable 
circumstances provide a complete description of the low-lying excited 
states of the quantum liquid. At very low temperatures, only a few 
such excitations are present; the excitations are long-lived and interact 
weakly with one another; most properties of the system can be explained 
in terms of them.

In  Volume I of this book we shall be concerned with a single group 
of quantum liquids, normal Fermi liquids. A normal Fermi liquid may 
be roughly defined as a degenerate Fermi liquid in which the properties 
of the system are not drastically modified by the particle interactions, 
no m atter how strong they might be. In  other words, the liquid retains 
the essential properties of the noninteracting fermion system. (It 
has a well-defined Fermi surface, its specific heat varies linearly with the 
temperature, etc.) Examples of normal Fermi liquids are 3He above 
4 millidegrees and conduction electrons in metals which are not super
conducting. In  1956 Landau constructed an elegant, semiphenomeno-



Introduction 3

logical theory of the macroscopic behavior of normal Fermi liquids in 
the low-temperature limit. We present the Landau theory for neutral 
Fermi liquids in Chapter 1, and apply it to 3He.

There are shortcomings to the Landau theory. I t  is not applicable 
to microscopic phenomena, those which involve distances of the order of 
the interparticle spacing, or energies comparable to tha t of a particle 
on the Fermi surface. Moreover, it is, in a certain sense, too complete 
in that it provides far more information than any experiment will ever 
sample. I t  is therefore of interest to develop a direct description of 
experimental measurements on many-particle systems. An exact 
formalism can be developed so long as the system responds linearly to 
the measuring apparatus. The general theory of linear response, 
applicable to both microscopic and macroscopic phenomena, is presented 
in Chapter 2. I t  establishes the connections between response and cor
relation functions and the extent to which these may be related to the 
spectrum of elementary excitations. The theory provides a number of 
exact results of great practical importance. More important, it estab
lishes the language one should use in discussing the properties of quan
tum liquids, in both the microscopic and macroscopic regimes, and thus 
enables one to appreciate the physical features which are common to all 
quantum liquids; these unifying aspects are too often obscured by a 
diversity of mathematical descriptions.

Chapters 3 and 4 are devoted to charged Fermi liquids. Because of 
the long range of the Coulomb interaction, a charged Fermi liquid differs 
appreciably from its neutral counterpart. In  Chapter 3 the new 
physical features introduced by the Coulomb interaction, screening and 
plasma oscillation, are introduced, and described in detail. The 
Landau theory is then generalized and applied to the description of a 
number of macroscopic phenomena encountered in electron liquids. 
Chapter 3 is analogous to Chapter 1 in that important physical concepts 
are introduced and described in the macroscopic limit. Chapter 4 
resembles Chapter 2; it contains a formal description of measurements 
on charged particle systems and is concerned with microscopic as well 
as macroscopic phenomena; the various dielectric functions of interest 
are defined, and applied to a number of problems of physical interest.

In Chapters 1 through 4, we deal with certain exact relationships 
between various physical quantities, or with macroscopic theories, 
whose validity is limited to phenomena in the macroscopic regime. 
Detailed microscopic theories are, by contrast, subject to certain limita
tions: either they represent solutions to model problems (the description 
of a physical system in a limited range of densities or interaction 
strength, one which rarely corresponds to physical reality); or they pro
vide an approximate account of real physical systems, to an extent which 
is difficult to estimate with precision. Both kinds of microscopic
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theories are considered in Chapter 5. The random phase approximation 
is developed and applied to the high-density electron gas, a model 
problem for which it provides an accurate description. The structure 
of the generalized random phase approximation for both neutral and 
charged particle systems is described, and connection is made, in the 
macroscopic limit, to the Landau theory. Approximate microscopic 
theories, which are intended for an electron liquid a t metallic densities, 
are developed and applied to the description of simple metals.

Volume II of this book is devoted to the theory of superfluid quantum 
liquids. Mathematically, a superfluid is characterized by macroscopic 
occupation of a single quantum state, the “condensate.” Physically, 
the most dramatic manifestation of superfluid behavior is the resistance- 
free motion associated with that single state. Bose liquids, such as 
4He, may be regarded as the simplest superfluid systems, since the 
existence of a condensate is already evident in the lowest-order per
turbation-theoretic treatment. Superfluidity in Fermi liquids is, on 
the other hand, a far more subtle matter. As a result, many years 
passed between the experimental discovery of superconductivity by 
Kammerlingh Onnes in 1911, and the successful microscopic theory of 
Bardeen, Cooper, and Schrieffer in 1957.

The theory of Bose liquids is developed and applied to 4He in Chap
ter 6 , while the theory of superfluid Fermi liquids is developed and 
applied to superconductivity in Chapter 7. The essential features of 
superfluid behavior are described in Chapters 8 to 14. We attem pt to 
present the treatments in parallel as much as possible, in order to 
emphasize the similarities in behavior of the two kinds of superfluids. 
There is, however, one important difference. For the superfluid Fermi 
liquid, there exists an excellent microscopic theory, that of Bardeen, 
Cooper, and Schrieffer, which is in close agreement with essentially all 
experiments on superconductivity. On the other hand, no satisfactory 
microscopic theory exists for the only Bose liquid found in nature, 4He. 
As a result, our primary emphasis in developing the Bose liquid theory 
is on phenomenological considerations, and on the macroscopic theory 
to which Landau and his collaborators have made so many important 
contributions.

One final comment: although the title of our book indicates that we 
shall confine our attention to quantum liquids, this is not quite the case 
in practice. Since the interacting fermion system of principal physical 
interest is that formed by conduction electrons in a metal, we have 
attempted to indicate, a t the appropriate places, the generalizations 
required to take into account the effects of the ionic periodic potential. 
These “solid-state” effects are discussed in Sections 1.3, 3.8, 4.5, 5.6, 
and 7.6.



C H A P T E R  1

NEUTRAL FERMI LIQUIDS

Let us consider a noninteracting Fermi gas in equilibrium at a tem
perature T . The probability that a single particle has energy 6 is given 
by the well-known expression

1 +  exp [(e -  h) / kT)

where k is Boltzmann’s constant. The constant m, known as the 
chemical potential, is adjusted in such a way as to give the correct total 
number of particles. At high temperatures is negative and very 
much smaller than —kT] /(c) reduces to the usual Maxwell-Boltzmann 
expression; the gas is “classical.” In the opposite limit, T —► 0, /(e) 
becomes a Fermi-Dirac step function, which jumps from 1 to zero at 
the positive chemical potential mo- the gas is said to be fully degenerate. 
The transition from one regime to the other occurs around the “degen
eracy temperature,”

TV =  - •
K

In the degenerate region, the number of excited states available to 
the system is very much reduced by the exclusion principle, which acts 
to “freeze” the distribution; a t a temperature T, only those particles 
whose energy is within kT  of the Fermi energy are affected by a change in 
temperature. This reduction has striking physical consequences: the 
specific heat becomes proportional to T , instead of being constant; the 
spin susceptibility becomes temperature independent, instead of vary
ing as 1/T.

5
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For real fermion systems, the particle interaction and the exclusion 
principle act simultaneously; we are thus led to study degenerate Fermi 
liquids, in which both effects are important. In  some systems, the 
nature of the degenerate gas is drastically modified by the particle 
interactions. Such is the case, for instance, in a superconducting elec
tron gas. Frequently, the interacting liquid retains many properties 
of the gas: it is then said to be normal (a definition which will be made 
more explicit in the course of this chapter). A normal Fermi liquid at 
T = 0 has a sharply defined Fermi surface S f ; its elementary excita
tions may be pictured as quasiparticles outside S f and quasiholes inside 
S f, in close analogy with the single-particle excitations of a noninter
acting Fermi gas. Such a resemblance explains why so many properties 
of the liquid can be interpreted in terms of a “one-particle approxima
tion.’J To consider another example, the one-electron theory rof solids 
provides a correct account of a large number of “sophisticated” phe
nomena in metals (de Haas-van Alphen effect, transport properties, 
etc.) even though it ignores the not-inappreciable particle interaction. 
Again, the explanation of this success is found in the concept of quasi
particle excitations. Let us emphasize that such single-particle theories 
are not complete; there exist “many-body” effects which arise as a con
sequence of particle interaction, and which are characteristic of the 
liquid state.

At the present time, we do not possess a theory th a t completely 
describes the properties of an interacting Fermi liquid a t an arbitrary 
temperature. The problem may be formulated by means of sophisti
cated field-theoretic techniques. However, the general solutions that 
have been obtained (see, for example, Balian and de Dominicis) are of 
a somewhat formal character, and have not led, as yet, to explicit 
results which may be compared with experiment. Fortunately, one 
may obtain a number of simple results in the limit of low temperatures 
(T<$CTf), for phenomena occurring on a macroscopic scale. The 
relevant theory was constructed by Landau (1956) on a semiphe- 
nomenological basis; Landau’s assumptions have since been substanti
ated by detailed microscopic analysis [Pitaevskii (1959), Luttinger and 
Nozi&res (1962)]. In this chapter, we shall adopt Landau’s semi- 
phenomenological point of view, and explore the applications of the 
theory to neutral systems such as degenerate liquid 3He.

As we have pointed out in the introduction, 3He is the only degenerate 
Fermi liquid found in nature. With minor modifications the theory of 
Fermi liquids may also be applied to electrons in metals or semimetals 
(and to nuclear matter). The extension of Landau’s theory to charged 
systems (such as electrons in metals) involves certain difficulties which 
arise from the long-range character of the Coulomb interaction. For
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that reason we postpone a detailed discussion of charged Fermi liquids 
until Chapter 3.

In Section 1.1, we shall introduce the notion of a quasiparticle by 
means of a careful study of the relation between interacting and non
interacting systems. In a real Fermi liquid, the quasiparticles are not 
quite independent; there remains a certain interaction energy between 
excited quasiparticles. This new physical feature is the key to the 
Landau theory, the fundamentals of which are presented in Section 1.2 . 
The theory is applied to various equilibrium properties in Section 1.3; 
its extension to electrons in metals is also briefly discussed. We then 
proceed to study nonequilibrium properties. The transport equation 
for quasiparticles is set up in Section 1.4; it is applied to a calculation of 
the current density in Section 1.5. Section 1.6 is devoted to an exten
sive discussion of “localized” quasiparticle excitations, and of their 
interaction with the surrounding medium; we are led to develop a formal 
solution of the transport equation, which proves useful in other respects. 
The important concept of collective modes is introduced in Section 1.7; 
the damping of the collective modes is discussed in some detail, and the 
stability of the ground state against collective excitations is studied from 
both a static and a dynamic point of view. Section 1.8 is concerned 
with the consequences of real collisions between quasiparticles; physical 
phenomena that are discussed include the lifetime of quasiparticles, the 
usual transport coefficients, and the collision-induced damping of 
collective modes. A comparison between zero sound and first sound is 
carried out in the following section. Finally, the theory is applied to 
degenerate 3He in Section 1.10.

This whole chapter is based on the Landau theory of Fermi liquids, 
which shows clearly all the important features brought about by the 
interaction. This theory is rigorous only in well-defined limits. We 
shall stress the conditions of applicability throughout our discussion of 
the theory.

1 .1.  T H E  Q U A S I P A R T I C L E  C O N C E P T

E L E M E N T A R Y  E X C IT A T IO N S  OF A 
N O N IN T E R A C T IN G  F E R M I  GAS

Let us first consider a system of N  noninteracting free fermions, each of 
mass m, enclosed in a volume 12. The eigenstates of the total system 
are antisymmetrized combinations of N  different single-particle states. 
Each single particle is characterized by two quantum numbers, its 
momentum p and its spin, a = ± i ;  its normalized wave function in
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configuration space is a simple plane wave:

(i-D

The total wave function is a Slater determinant made up of N  such plane 
waves. All the eigenstates of the system can be characterized by the 
distribution function n,*, which is equal to 1 if the state p, <r is occupied, 
to zero otherwise. (In what follows, we shall omit the spin index <r, and 
include it in p, unless specified otherwise.)

A particle with momentum p possesses a kinetic energy p2/2m. In 
the absence of interaction, the energies of the particles are simply 
additive: the total energy E  of the system is given by

<*■»
P

The ground state is obtained by filling the N  plane wave states of lowest 
energy. The ground state distribution is shown in Fig. 1.1, the Fermi 
momentum pp  being given by

All the plane wave states lying inside the Fermi surface S f (here the 
sphere of radius pp) are filled in the ground state; those lying outside Sp  
are empty.

Let us add a single particle to the system. The ground state of the 
(N  +  l)-particle system is obtained if the additional particle is added in 
the lowest available momentum state, one on the Fermi surface. The
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chemical potential y, defined as

dE
n = E 0(N  +  1) -  E0(N) = — °> (1.4a)

is thus given by
y = P f 2/ 2m. (1.4b)

The chemical potential is equal to the energy of a particle on the Fermi 
surface. This result will be seen to apply equally well in the presence of 
particle interaction.

Excited states of the system are best specified with reference to the 
ground state. A given excited state is obtained by “exciting” a certain 
number of particles across the Fermi surface. Such a procedure is 
equivalent to creating an equal number of particles outside S f and of 
holes inside <Sf* Particles and holes thus appear as “elementary
excitations,” whose configurations give rise to all excited states. The
amount of “excitation” is characterized by the departure of the dis
tribution function from its value in the ground state

bnp =  np — np°. (1.5)

A particle excitation of momentum p ' > Pf corresponds to 6np = 5PP>, 
while a hole excitation of momentum p f < Pf corresponds to bnv = 
— 6PP/. For the noninteracting system, the excitation energy is simply

E - E ‘ ~ X ^ r  <L6)
p

At low temperatures, particles and holes will only be excited near the 
Fermi surface; bnp will typically be of order 1 in a small region surround
ing S fj and will otherwise be negligible.

In an isolated system, the total number of particles is conserved : the 
number of excited particles must therefore be equal to tha t of excited 
holes. This restriction is sometimes inconvenient. I t  is then prefera
ble to work with what is equivalent to the grand canonical ensemble of 
statistical mechanics, a system which is characterized by its chemical 
potential y  rather than by its number of particles N. Such a situation 
may be realized by imagining the system to be in contact with a reservoir 
of particles. In such cases, the quantity of interest is not the energy E , 
but rather the free energy, given by F  = E  — yN  a t zero temperature. 
I t  follows from Eq. (1.6) that the excitation free energy associated with 
the distribution bnp is given by

f  -  < i - 7 )
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Equation (1.7) obviously reduces to (1.6) when the number of particles 
is conserved, i.e., when 2 p5np =  0 .

According to (1.7), the free energy of a particle with momentum p is 
(p2/ 2m — m) ; it corresponds to the free energy of an elementary excita
tion outside the Fermi surface. Inside S f , the excitations are holes, for 
which Bnp = — 1. The free energy associated with these excitations is 
then (m — p 2/2m), rather than (p2/2m  — m)« Since n is equal to 
p 2/2m  on the Fermi surface, the free energy of an elementary excitation 
of momentum p (not to be confused with that of a particle) may be 
written as |p2/ 2m — p\9 a result valid both inside and outside £/?. 
Note that the excitation free energy is always positive: this is necessary 
to ensure the stability of the ground state.

D E F I N IT IO N  OF Q U A SIPA R T IC L ES AND  QUASIHOLES

Let us now turn  to the case of an interacting Fermi liquid. We are 
interested in the nature of its elementary excitations. A “frontal” 
attack on the problem involves the introduction of Green's functions, 
and the mathematical apparatus of many-body perturbation theory, an 
approach which lies far beyond the scope of this book. We therefore 
adopt an alternative approach, which consists in comparing the inter
acting “real” liquid with the noninteracting “ideal” gas; we establish 
a one-to-one correspondence between the eigenstates of the two systems. 
Such an approach will provide us with a qualitative understanding of the 
excitation spectrum of an interacting system.

Consider an eigenstate of the ideal system, characterized by a dis
tribution function np. In order to establish a connection with the real 
system, we imagine that the interaction between the particles is switched 
on infinitely slowly. Under such “adiabatic” conditions, the ideal 
eigenstates will progressively transform into certain eigenstates of the 
real interacting system. However, there is no a priori reason why such 
a procedure should generate all real eigenstates. For instance, it may 
well happen that the real ground state may not be obtained in that way; 
superconductors furnish us with a specific example of such a failure. 
We therefore must assume th a t the real ground state may be adia- 
batically generated starting from some ideal eigenstate with a distribu
tion np°. This statement may be considered as the definition of a 
normal fermion system.

For reasons of symmetry, the distribution np° of an isotropic system is 
spherical. As a result, the spherical Fermi surface is not changed when 
the interaction between particles is switched on: the real ground state 
is generated adiabatically from the ideal ground state. M atters are 
otherwise when the Fermi surface for the noninteracting system is
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anisotropic (as is the case for metals). Under these circumstances, 
the Fermi surface will certainly be deformed when the interaction is 
switched on. In  such cases, the real ground state may be shown to 
follow adiabatically from some excited state of the noninteracting sys
tem. This situation will not cause any major difficulty with the theory.

Let us now add a particle with momentum p to the ideal distribution 
np° and, again, turn on the interaction between the particles adiabati
cally. We generate an excited state of the real liquid, which likewise 
has momentum p, since momentum is conserved in particle collisions. 
As the interaction is increased we may picture the bare particle as slowly 
perturbing the particles in its vicinity; if the change in interaction pro
ceeds sufficiently slowly, the entire system of N  +  1 particles will 
remain in equilibrium. Once the interaction is completely turned on, 
we find that our particle moves together with the surrounding particle 
distortion brought about by the interaction. In  the language of field 
theory, we would say that the particle is “dressed” with a self-energy 
cloud. We shall consider the “dressed” particle as an independent 
entity, which we call a quasiparticle. The above excited state cor
responds to the real ground state plus a quasiparticle of momentum p.

Let S f be the Fermi surface characterizing the unperturbed distribu
tion np° from which the real ground state is built up. Because of the 
exclusion principle, quasiparticle excitations can be generated only if 
their momentum p lies outside S f• The quasiparticle distribution in 
p space is thus sharply bounded by the Fermi surface S f -

Using the same adiabatic switching procedure, we can define a 
quasihole, with a momentum p lying inside the Fermi surface S f ; we 
may do likewise for higher configurations involving several excited 
quasiparticles and quasiholes. The quasiparticles and quasiholes thus 
appear as elementary excitations of the real system which, when com
bined, give rise to a large class of excited states. We have estab
lished our desired one-to-one correspondence between ideal and real 
eigenstates.

Actually, our adiabatic switching method is likely to run into dif
ficulties when the real state under study is damped as a consequence of 
particle interaction. If the time over which the interaction is turned 
on is longer than the lifetime of the state that we wish to generate, the 
switching on of the interaction is no longer reversible, since the state has 
decayed long before the physical value of the interaction is reached. 
On the other hand, if the interaction is turned on too fast, the process is 
no longer adiabatic, and we do not generate eigenstates of the interacting 
system. This limitation is not due to mathematical clumsiness: it 
follows from the physical uncertainty arising from the finite lifetime of 
the state under consideration.
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Such difficulties do not arise for the ground state, which, being stable, 
can be precisely specified. On the other hand, since quasiparticles and 
quasiholes undergo real collisions, which lead to damping, any definition 
of the elementary excitations is somewhat imprecise. Fortunately, the 
quasiparticle lifetime becomes sufficiently long in the immediate 
vicinity of the Fermi surface, tha t the quasiparticle concept makes sense 
in that region. In pure systems at zero temperature, the lifetime varies 
as the inverse square of the energy separation from S f- Since the 
quasiparticle is better and better defined as one gets closer and closer 
to the Fermi surface, S f remains sharply defined. I t  should be kept in 
mind that a quasiparticle is only strictly defined if it is right on the 
Fermi surface. In order for our theory to make sense, we must be 
careful to introduce quasiparticles only in the neighborhood of S f -

Let us consider an eigenstate of the noninteracting system, charac
terized by some distribution function np for the usual “bare” particles. 
By switching on the interaction adiabatically, we obtain an eigenstate 
of the real system, which may be labeled by the same function np. In 
the interacting system, np describes the distribution of quasiparticles. 
The “excitation” of the system is measured by the departure 5np from 
the ground state distribution

6np =  np — np°. (1.8)

At low temperatures, one only samples low-lying excited states, for which 
5np is restricted to the immediate vicinity of the Fermi surface. Under 
such conditions, quasiparticle damping is negligible, and our overall 
picture becomes meaningful.

Let us emphasize tha t the physically meaningful quantity is 5np, 
rather than np. (It does not make much sense to define an equilibrium 
distribution np° in a range where quasiparticles are unstable.) We shall 
thus be careful to formulate our theory in terms of the departure from 
equilibrium, 5np; np° will be used only as an intermediate step. In 
fact, our results will always involve the gradient Vnp°, a quantity which 
is localized on the Fermi surface.

E N E R G Y  OF Q U A SIPA R TIC LES

For the ideal system, there exists a simple linear relation between the 
energy of a given state and the corresponding distribution function. 
When particle interaction is taken into account, the relation between 
the state energy, E , and the quasiparticle distribution function, np, 
becomes much more complicated. I t  may be expressed in a functional 
form, E[np], which one cannot in general specify explicitly. If, how
ever, np is sufficiently close to the ground state distribution np°, we can
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carry out a Taylor expansion of this functional. On writing np in the 
form (1.8), and taking 8np to be small, or to extend over a small region in 
momentum space, we obtain

E[np] = B 0 +  ^  €p8np +  0(5n2), (1-9)
p

where cp is the first functional derivative of E. Since each summation 
over p carries a factor 12, ep is of order 12° = 1.

If 5np describes a state with one extra quasiparticle p, the energy of 
the state is (E0 +  ep) : ep is the energy of the quasiparticle. According 
to Eq. (1.9), the energies of several excited quasi particles are simply 
additive, within corrections of order (hn)2. We shall assume that tp is 
continuous when p crosses the Fermi surface. This statement is not 
obvious and, again, should be considered as a characteristic of “normal” 
systems.

On the Fermi surface, ep must equal a constant €f (the Fermi energy): 
otherwise, we could lower the ground state energy by transferring a 
particle from a state inside the Fermi surface to one of lower energy 
outside S f- Since the ground state for (N  +  1) particles is obtained 
by adding a quasiparticle on the Fermi surface, ep is simply the chemical 
potential, n = d E J d N , a t zero temperature. This very important 
property was first established by Hugenholtz and Van Hove (1958).

In practice, we need only values of €p in the vicinity of the Fermi 
surface, where we can use a series expansion. The gradient of ep,

vP = (1*19)

plays the role of a “group velocity” of the quasiparticle. We shall see 
later tha t vp is the velocity of a quasiparticle wave packet. In the 
absence of a magnetic field, and for a system which is reflection invari
ant, cp and vp do not depend on the spin a. For an isotropic system, 
€p depends only on p, and may be denoted as ep. The velocity vp is 
then parallel to p, so that we can write (on the Fermi surface)

vPr = Pf/™,*, (1.11)

where m* is called the effective mass of the quasiparticle. We remark 
that the present definition of the effective mass differs from that adopted 
to describe the motion of independent particles in a periodic lattice; in 
the latter case, 1/m* is defined as the second derivative of ep with 
respect to p.

In an anisotropic syctem, the velocity |vp| varies over the Fermi sur
face; the notion of an effective mass is somewhat artificial. I t  is then 
convenient to introduce the density v(t) of quasiparticle states having
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an energy (/* +  <):
"(«) = £  $(«p — M -  «)• (1-12)

P

At low temperatures, all physical properties will depend on the density 
of states on the Fermi surface, p(0).

This discussion shows the similarity between bare particles in a Fermi 
gas and quasiparticles in a Fermi liquid. They have the same distribu
tion in momentum space, bounded at T  = 0 by a sharp Fermi surface. 
Both follow Fermi statistics. The main difference that we have pointed 
out is the change of energy and velocity brought about by the inter
action with the surrounding medium. Actually, quasiparticles have 
physical features that do not appear in noninteracting systems: these 
are discussed in the next section.

1 .2 .  I N T E R A C T I O N  B E T W E E N  Q U A S I P A R T I C L E S :  
L A N D A U ’S T H E O R Y  OF F E R M I L I Q U I D S

E X P A N S IO N  OF T H E  F R E E  E N E R G Y

As we pointed out earlier, the quantity of physical interest is the free 
energy F = E  — nN, rather than the energy E. The “excitation” free 
energy, as measured from the ground state value F0, is given by

F — FQ = E  — E a — n(N  -  N 0), (1.13)

where N Q is the number of particles in the ground state. In order to 
generalize the expansion (1.9), we need to calculate (AT — N 0). For 
that purpose, we note that by adding one quasiparticle to the ground 
state, we add exactly one bare particle to the system as a whole. This 
follows at once from our “adiabatic” definition of quasiparticles: the 
state with one extra quasiparticle is derived from an ideal state con
taining (N  +  1) particles, and the total number of particles is con
served when the interaction is switched on adiabatically. The differ
ence (AT — No) may thus be written as

N  -  N a =  £  «np. (1.14)
P

Using Eqs. (1.9) and (1.14), we obtain, within corrections of order (6n)2, 

F -  Fa = 2  (e» “  (L15)
P

If the number of particles of the system is kept constant, the difference
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(1.14) vanishes: (E  — E0) is then equal to (F — F0), and may be written 
in the form (1.15), as well as (1.9).

Most of the properties tha t we shall consider will involve a displace
ment of the Fermi surface by a small amount 8. The corresponding 
value of 8nv is equal to ± 1 in a thin sheet of width 8 centered on the 
Fermi surface; it vanishes outside this sheet. Where 8np is nonzero, 
(ep — m) is of order 8. The difference (F — F0), given by Eq. (1.15), 
is thus of order 62. The expansion (1.15), which looks like a first-order 
expansion, is actually a second-order one. Our approach is therefore 
consistent only if we push the Taylor expansion of the functional 
(F  —  Fo) one step further, to include all terms of second order in the 
displacement of the Fermi surface. We are thus led to write

Equation (1.16) is the heart of the phenomenological theory of Fermi 
liquids proposed by Landau (1956). Its  most important feature is the 
new quadratic term, which describes the interaction between quasi
particles. Such a term is not present in the approximate theory of 
Sommerfeld; we shall see later that it considerably modifies a number of 
physical properties of the system.

Equation (1.16) furnishes the leading terms of an expansion of 
(F — F0) in powers of the relative number of excited quasiparticles. 
The latter is measured by the ratio

Landau’s approximation is valid whenever a is small. We must be 
careful to maintain consistent approximations throughout any calcula
tion, and to keep in our results only the leading terms with respect to 
the parameter a.

The coefficient / pp/ is the second variational derivative of E  (or F) with 
respect to np. I t  is accordingly invariant under permutation of p and 
p'. Since each summation over a momentum index carries a factor 12, 
/pp/ is of order I/O. This is easily understood if we realize that / pp/ is 
the interaction energy of the excited quasiparticles p and p '. Each of 
the latter is spread out over the whole volume 12; the probability that 
they interact with one another is of order a 3/ 12, where a is the range of 
the interaction.

We shall assume th a t /pp/ is continuous when p or p ' crosses the Fermi 
surface. Once again, this may be considered as characteristic of a 
“normal system.” In practice, we shall only need values of /  on the

F -
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Fermi surface, a t points such that = cp> = /x. Then / pp, depends 
only on the direction of p and p ', and on the spins c and <r'.

If there is no applied magnetic field, the system is invariant under time 
reversal, which implies

/p ir.p V  =  / —p —<r, — p '—<r' (1.18)

(we have explicitly introduced the spin indices). If furthermore the
Fermi surface is invariant under reflection p —» —p, Eq. (1.18) becomes

/p * ,p V  =  / p - f f fp'-<r/ . (1.19)

In tha t case, /p,,pv depends only on the relative orientation of the spins 
<t and <r'; there are only two independent components, corresponding 
respectively to parallel spins and antiparallel spins. I t  is convenient 
to write these in the form

/p p ' ~  / pp' “t“ /p p 'j  

/p p ' =  / pp' /pp'»

where / pp/ and are the spin symmetric and spin antisymmetric parts 
of the quasiparticle interaction. The antisymmetric term may be 
interpreted as due to an exchange interaction energy 2/ ^ ,  which appears 
only when the spins are parallel. In the Russian literature, Eq. 
(1.20) is usually replaced by

/pr.pv =  +  d - dV'pp', (1-21)

where d and d' are the spin matrices. The coefficient ^  is four times 
bigger than our f a. We prefer to use the more symmetric decomposi
tion (1.20).

If the system is isotropic, (1.20) may be further simplified. In  that 
case, for p and p ' on the Fermi surface, f t#  and depend only on the 
angle £ between the directions of p and p '. They may be expanded in a 
series of Legendre polynomials

00

t i p  =  X  ^ (0)jP̂ cos *)• (i-22)
*«0

/  is completely determined by the set of coefficients f f  and f t . I t  is 
convenient to express the latter in “reduced” units by setting

(a) = (1.23)
t  n

The dimensionless quantities F t  and F t  measure the strength of the 
interaction as compared to the kinetic energy.



1.2] Interaction Between Quasiparticles 17

LOCAL E N E R G Y  OF A Q U A S IP A R T IC L E

Let us consider a state of the system with a certain distribution of 
excited quasiparticles dnp>. To this system we now add an extra quasi
particle, p. According to Eq. (1.16), the free energy of the additional 
quasiparticle is equal to

h  -  M = (*P “  m) +  ^/pp'SrV. (1*24)
p'

If p is close enough to the Fermi surface, both terms of Eq. (1.24) have 
the same order of magnitude. The free energy of a quasiparticle thus 
depends on the state of the system through its interaction energy with 
other excited quasiparticles. This physical effect, which does not exist 
in noninteracting systems, arises from the quadratic term of (1.16).

The quantity ip plays a central role in the development of the Landau 
theory. In  order to clarify its physical meaning, let us suppose that the 
system is slightly inhomogeneous. The departure from equilibrium 
may be characterized by a position-dependent distribution of excited 
quasiparticles, $np>(r) (see Section 1.4). As a result, ip depends on r : it 
may be regarded as a local energy, perturbed by the surrounding dis
tortion of the medium. We shall see that the gradient of ip in ordinary 
space

“  *» {£/»•'*»*'} (1-25)
P'

may be interpreted as an average force exerted by the surrounding 
medium on the quasiparticle p.

I t  is mathematically convenient to introduce the distribution function

V  = n°(ip -  m), (1.26)

where n° is the usual Fermi-Dirac step function defined by

*•<*>-{ i  « x>S:  <i27>
I t  will be seen tha t for the slightly inhomogeneous system, the dis
tribution np° corresponds to a “local equilibrium” of quasiparticles, in 
much the same way as np° = n°(ep — y) describes the true equilibrium.

The departure from this state of local equilibrium is measured by the 
difference

hnv =  np — rip®. (1.28)

On comparing the definitions of Snv and fiflp, we see that

-  »> (i( _  (,.29,
d€p
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Using Eq. (1.24), we obtain

(1.30)

In practice, Bnp will always contain a factor dn°/dep. At zero tempera
ture, we have

it follows that both Bn and Bfi are restricted to the Fermi surface Sp.
For an isotropic system at zero temperature, the relation between 

Bnv and Bnv may be greatly simplified. We split Bnv and 5np into a spin 
symmetric and a spin antisymmetric part, by setting

(with a similar expression for drip). We further expand these quantities 
in a series of normalized spherical harmonics, such as

where (0, <p) are the polar angles of p. By putting these expanded forms 
of Bnv and Bfip back into Eq. (1.30), together with the expansion (1.22) 
of /pp/, and by making use of the addition theorem for spherical har
monics, we find

where the coefficients Ft9 and F f  are given by (1.23). The passage 
from Bn9 to Bn9 is thus straightforward.

The quantity Bnv will prove to be extremely useful in the following 
sections. Many properties are worked out much more easily in terms 
of Bnp than of Bnv. The interplay of the two quantities is important 
and Eqs. (1.30) and (1.34) will be used very often.

E Q U IL IB R IU M  D IS T R IB U T IO N  OF Q U A S IP A R T IC L ES  AT A 
F I N I T E  T E M P E R A T U R E

Let us consider a system a t temperature T, with a chemical potential /x: 
the latter may be defined as the adiabatic derivative

(1.31)

Bn9t± =  Bn9 ±  Bnva (1.32)

(1.33)

ft =  (dE/dN)s- (1.35)
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Using elementary thermodynamics, we may show that

M = (dE/dN)T -  T(dS/dN)T. (1.36)

At very low temperatures, the second term of Eq. (1.36) is negligible 
compared to the first; the chemical potential is then equal to the iso
thermal derivative of E  with respect to N , which is easily calculated.

We obtain the equilibrium distribution of quasiparticles, np°(7T, jli), 
by a well-known procedure: given a distribution np, one counts the 
number of ways W  in which the quasiparticles may be distributed 
among the various occupied states; one then chooses np in such a way 
as to maximize W, while keeping the total free energy constant. We

where cp is the quasiparticle local energy appropriate to the distribution 
np°(Tr, n). From the maximum value Wmax, we may obtain the entropy 
S  = k log Wmax.

The “local” energy ip is given by Eq. (1.24), dn9 being here equal to

is of order T 2 in any direction of momentum space. The interaction 
energy between excited quasiparticles vanishes to the same order, and 
may therefore be neglected in comparison to (cp — m), which is of order 
T. Hence in the low temperature limit, we may replace ip by cp in the 
equilibrium distribution (1.37). By the same token, we prove that the 
number of particles a t constant m (or conversely the chemical potential 
a t constant N ) remains constant up to order T 2.

The thermal motion will only excite quasiparticles within a distance 
kT  from the Fermi surface. The percentage of excited quasiparticles is 
kT/h,  which is essentially the expansion parameter of (1.16). In  neg
lecting the terms of order 5n 3, we make an error in the energy of the order 
of (kT/m)3. In view of this uncertainty, it would be meaningless to 
evaluate to this order the temperature dependence of any other factor 
entering the theory. To keep in the spirit of Landau’s theory, we 
should retain only the leading terms with respect to T  (usually of order 
0 or 1). There is no need to consider higher-order corrections, which are 
of the same order as the terms of (1.16) that are regarded as negligible.

find

(1.37)

Snp =  np°(!T, fi) -  wp°(0, m). 

At very low temperatures, the integral

/  bn#* dp

(1.38)
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1 . 3 .  E Q U I L I B R I U M  P R O P E R T I E S

We shall now apply the Landau theory to the study of a number of 
macroscopic properties, characteristic of the system a t equilibrium. 
We shall find that some of these properties are affected by the inter
action between quasiparticles, while others are not.

S P E C I F IC  H E A T

Let us first consider the specific heat, defined as

Cv =  («BE/dT)N. (1.39)

I t  is left as a problem to the reader to show that at low temperature Cv 
may be put in the more convenient form

Cv =  (<BF/dT)„. (1.40)

In order to calculate Cv, we write the free energy in the form (1.16), 
bnv being given by (1.38). We have seen that the integral of bnp in
any direction of momentum space vanishes up to order T2. The inter
action energy in Eq. (1.16) is therefore of order T4, and is thus negligible 
with respect to the main term of order T 2. The “thermal” free energy 
[F(T) — F 0] is given by an expression of the same form as for a non
interacting system. A straightforward calculation leads to

F(T) = J  KOXkT)2, (1.41)

where the density of states v(0) is defined by (1.12). For an isotropic 
system, v(0) is given by

HO) -  (1.42)

from which we obtain the specific heat

c '  = nw L *2T- (L43>

A measurement of the slope of the linear specific heat therefore yields 
the effective mass of the quasiparticles. We remark that Cv is not 
affected by the interaction between quasiparticles.

C O M P R E S S IB IL IT Y  A N D  SOUND V ELO CITY

Let E o(0) be the ground state energy of the system, regarded as a func
tion of the volume 12. The pressure P  may be defined as

P  = -dEJdQ. (1.44)
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(At an arbitrary temperature, Eq. (1.44) should be an adiabatic deriva
tive: we have seen that near T  = 0 there is no difference between adia
batic and isothermal processes). The compressibility k is then given by

1 dP
-  = - 0  —  • (1.45)
k d\l

For a large system, E 0 is an “extensive” quantity, proportional to the 
volume when the density p = N/SI is kept constant. We may thus 
write

E 0 = Q/(p). (1.46)

One finds directly from Eqs. (1.44) and (1.46) that

-  = p2/ " ( p). (1-47)K

These quantities may be related to the chemical potential p = B E J d N . 
Indeed, it is straightforward to establish that

-  = Np{dy./dN)a. (1.48)
K

The compressibility is related to the velocity of sound, s, in the usual 
way:

S2 = —  =  -  ~  (1-49)temp m dN

We now calculate dp/dN  or, rather, its inverse dN/dp. Let us in
crease p by an infinitesimal amount dp. The Fermi surface swells 
slightly. (We assume reflection invariance, in order to have the same 
Fermi surface for both spin directions.) An arbitrary point A of the 
original Fermi surface undergoes a normal displacement

dPF = (dpjp/dp) dp (1.50)

which brings it to the position B  (Fig. 1.2). On the new Fermi surface,
the quasiparticle energy must be equal to (p +  dp): this fixes the dis
placement dp/?. More precisely, B  must be such that

€B(p +  dp) — eA(p) = dp. (L51)

The left-hand side of Eq. (1.51) contains two terms:

(i) When passing from A to B, the momentum p changes, giving 
rise to an energy shift vp dp

(ii) Increasing p by an amount dp means adding quasiparticles in 
the shaded area of Fig. 1.2. ep is then increased by the interaction 
energy with these extra quasiparticles.
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Let 8np be the change of the distribution function resulting from the 
displacement of the Fermi surface. hnp is equal to + 1  in the shaded 
area of Fig. 1.2 and to 0 outside. Collecting the two contributions to 
Eq. (1.51), we obtain

t'p dpF +  ^ / PP'6np- = dii. (1.52)
P'

Since/pp/ is a smooth function of p and p ', we may replace the above 
8np by a suitably normalized 5-function. The correct choice is easily 
verified to be (at zero temperature)

dn° dev
5np = -  —  —  dpF = d(ep — p)vpdpF. (1.53)

FIGURE 1.2. Deformation of the 
Fermi surface when the chemical poten
tial is increased from p to (p +  dp).

Inserting this into Eq. (1.52), and dividing by dp, we obtain

Vp(dp F /dv )  +  ^  /p p 'V  ( dp '  f / dn )  5 (tp> — m) =  1. (1 .5 4 )
p'

This integral equation gives dpF/dp in every direction: we have thus 
derived the change of the Fermi surface as p varies. In order to get 
dN/dp,  we remark that

dN  = ^  8np = ^  8(€p — p)vp dpF. (1.55)
p p

The sound velocity is then given by

N /m s 2 = dN/dp  =  ^  5(«p — p)vp(dpF/dp). (1.56)
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For an isotropic system, dpp/dy  is independent of direction. In 
that case, only the I  = 0 , spin-independent term of / pp' contributes to 
Eq. (1.54). Using the definition (1.23), we find that

»F0 p,/d#«) = Y ^ T p T  (L57)

Inserting this into Eq. (1.56), we finally obtain

N  dN p(0)
m s  d y  1 +  F 0*

(1.58)

In Eq. (1.58) we have the usual result for independent particles (of 
mass m*) modified by the factor (1 +  F 0*)_1; the latter term is a direct 
consequence of the interaction between the quasiparticles.

We have gone at length through this demonstration to show clearly 
how the new features brought about by the particle interaction came 
into the problem. Actually, the result (1.58) may be readily obtained 
if we note that the local energy of a quasiparticle on the Fermi surface is 
always equal to the chemical potential, y. When y increases by an 
amount dy, the local Fermi energy is increased by the same amount. 
The new distribution may thus be written as n°(ip — /i — dy). The 
departure from the local equilibrium distribution w°(ip — y) is equal to

5np = -d y (d n °/d ep). (1.59)

For an isotropic system, bnp is isotropic and spin independent. Making 
use of (1.34), we obtain

._ 5”p dn°/dtp
*"• -  T + f ?  -  ~  T + K - *■ (I '60)

from which Eqs. (1.57) and (1.58) follow a t once. This derivation 
stresses the usefulness of bnv for practical calculations.

Let us now return to the result (1.58). Replacing p(0 ) by its expres
sion (1.42), we obtain the sound velocity

s2 = (pF2/3mm*)(l +  F0*). (1.61)

Since m* is known from the specific heat, a measurement of s yields F 0*. 
In the limit of weak interactions, m* —> m, while FQ* —► 0 . The velocity 
of sound then tends toward We note that Eq. (1.61) only
makes sense if (1 +  FQ*) >  0. Otherwise, the system is unstable: an 
imaginary value of sound velocity signifies an exponential buildup of 
density fluctuations.
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S P IN  S U S C E P T IB IL IT Y

Let us apply to our Fermi liquid a uniform dc magnetic field 3C. As 
usual, the system will develop a paramagnetic spin moment and a dia
magnetic orbital moment. We shall postpone until Sections 4.7 and 
5.4 consideration of the orbital effects which, although important, are 
much more difficult to treat.

In the field 3C, a particle of spin a = ± i  acquires a magnetic energy 
— gfoZQ, where g = 2 is the Land6 0-factor and fi the Bohr magneton, 
eh/2 me. The two spin orientations are no longer in equilibrium, having 
different chemical potentials (y ± gP3Q/2). In order to restore equi
librium, the Fermi surfaces for spins must split, in such a way as to 
have the same chemical potential. In weak fields, the two Fermi sur
faces are displaced by opposite amounts, the final chemical potential 
remaining equal to y (within corrections of order 3C2).

The displacement of the Fermi surface with spin a must be such as to 
bring the corresponding chemical potential from (y — g/3a3C) back to y. 
Since the chemical potential is equal to the local energy of a quasi
particle on the Fermi surface, the equilibrium distribution in the pres
ence of the field may be written as

By repeating the argument which led to Eq. (1.59), we obtain the de
parture from local equilibrium

we must pass from bh^ to bn^. This is easily done if we assume the 
system to be isotropic, bh^ is then isotropic and spin antisymmetric. 
Making use of Eq. (1.34), we find

Wp„(3C) = n°(ip — y — gfaX). (1.62)

dn°
bn^ =  — 0/3<r3C - —

(J€p
(1.63)

In order to calculate the total magnetization

(1.64)
p

gf}<r3C dn° 
1 +  F0a dep

(1.65)

The calculation of 9TC is then straightforward. One finds (putting 
9 =  2)
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The spin susceptibility x p  is given by

_  jJR _  m*pF 02 , .
XP 03C *2h3 1 +  F0a

We see in (1.67) that the spin susceptibility is modified by the 
exchange interaction F 0°. We cannot derive x p  from the simple
knowledge of the density of states, as is the case for a noninteracting
system. Indeed, by comparing experimental values of the specific 
heat (i.e., of m*) and of the susceptibility, one can “measure” the 
coefficient F0a. Again, Eq. (1.67) is meaningful only when

1 +  F 0a >  0 . (1.68)

Otherwise, the long wavelength fluctuations of the magnetic moment 
become unstable: the system becomes ferromagnetic.

E X T E N S IO N  TO E LE C T R O N S  IN  METALS

To what extent can the Landau theory be applied to electrons in metals? 
In the present section, we shall answer this question in a rather general 
way, putting aside until Chapter 3 the new features brought about by 
the long range of the Coulomb interaction.

Let us first summarize the main properties of a system of noninter
acting electrons which move in the periodic potential of the crystalline 
lattice of a solid. The single-particle eigenstates are Bloch waves, 
with a wave function

iM r )  -  e % ( r ) ,  (1.69)

where upn has the periodicity of the lattice. The eigenstates are char
acterized by two quantum numbers, a “band index” n, and a wave 
vector p, the latter lying in the first Brillouin zone of the crystal. The 
Bloch wave (1.69) may be considered as a mixture of plane waves, each 
having a wave vector (p +  K) where K is a vector of the reciprocal 
lattice. If, as above, the wave vectors are restricted to the first Bril
louin zone, we may conclude th a t the wave vector (or the momentum) 
is still a good quantum number, despite the presence of a periodic 
potential.

The ground state of an N-electron system is obtained by filling the N  
lowest Bloch wave states. The solid is a metal whenever there remain 
unfilled bands. The ground state  distribution then levels off on some 
surface in momentum space, lying in the first Brillouin zone, which is 
called the Fermi surface S f - We note that several bands may remain 
unfilled: the Fermi surface then possesses several sheets, one per unfilled 
band.



26 Neutral Fermi Liquids [1.3

The Fermi surface has the symmetry of the crystalline lattice; it will 
certainly be anisotropic. Due to invariance under time reversal, the 
Fermi surface is invariant under combined spin inversion and spatial 
reflection with respect to the origin. If the crystal does not have a 
center of symmetry, the Fermi surfaces corresponding to the two direc
tions of spin will be different.

Having surveyed very quickly the fundamentals of the one-electron 
approximation in metals, we now ask how Landau’s theory can be used 
to take account of the Coulomb interaction between electrons. By 
using the adiabatic switching procedure introduced in Section 1.2, we 
can again establish a one-to-one correspondence between the eigen
states of the real system and those of the noninteracting system. For 
a normal metal, the ground state will be adiabatically generated starting 
from some “ideal” eigenstate characterized by a Fermi surface S f (as 
we have mentioned S f will most likely correspond to an excited state 
of the noninteracting system). In the same way, we can define a 
quasiparticle by adding one particle with quantum numbers (w, p) to 
the noninteracting system, and then switching on the interaction very 
slowly. Since the total momentum is conserved in the interaction, 
the final quasiparticle will possess the same quantum numbers as 
the original Bloch wave, namely a momentum p in the first Brillouin 
zone and a band index. The quasiparticle thus acquires the same 
characteristics as a Bloch wave, and we may define a Fermi surface, 
etc.

Because of the damping due to particle collisions, the concept of a 
quasiparticle is only valid in the immediate vicinity of the Fermi sur
face, where damping effects are negligible. This represents a major 
departure from the one-electron approximation, in which Bloch waves 
were defined over the entire Brillouin zone. However, for most prac
tical purposes this restriction is unimportant. Most physical effects, 
such as transport properties, cyclotron resonance, etc., involve thermally 
excited electrons, lying within a distance kT  from the Fermi surface. 
kT  is typically 10" 4 to H P 2 eV, far smaller than the Fermi energy, of 
the order of 10 eV. The percentage of excited quasiparticles will 
always remain very small, so th a t we can neglect their damping.

In the absence of interaction, a Bloch wave possesses an energy €°p, 
which depends on p in a rather complicated way. Everywhere on the 
Fermi surface, we may define a velocity vp°, equal to the gradient of 
€®p. As a result of the periodic potential vp° will be different from the 
velocity ftp/m of a free particle. Let us now turn on the interaction. 
The quasiparticles have an energy «np, equal to the first derivative of 
the energy functional. enp is constant over the Fermi surface, and is 
equal to the chemical potential /x. We can again define a t every point
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of S F a velocity vp, which will be different from vp°. The difference 
between vp and hp /m  is now due to two distinct effects:

(a) The influence of the periodic lattice on each electron;
(b) The “many-body” effect arising from the Coulomb interaction.

In  the case of a nearly isotropic Fermi surface, such as one finds in the 
alkali metals, we can write

where m*, the effective mass, represents the combined influence of the 
periodic field and electron interactions. Usually these two “influ
ences” are so deeply intermingled that it is not possible to disentangle 
them. We return to this question in Sections 3.8 and 5.6.

Just as for the Fermi liquid, by considering the second variational 
derivative of the energy with respect to np, we can define an inter
action energy between quasiparticles, However, since the Fermi 
surface of a metal is not, in general, isotropic, depends on the direc
tions of both p  and p '. As a result, the calculations of quasiparticle 
properties are very much more complicated. Consider, for example, 
the preceding calculation of the paramagnetic susceptibility, which is, 
in principle, still valid for metals. Where there is anisotropy, the dis
placement of the Fermi surface, dpF/d3C, varies over S f , and satisfies an 
integral equation which must be solved to obtain x p - Gone, then, is 
the simplicity of a result like Eq. (1.67); indeed, there may appear so 
many parameters tha t a comparison between theory and experiment is 
not very fruitful. We conclude that comparison between theory and 
experiment for equilibrium properties is likely to be fruitful only in 
cases in which the Fermi surface is essentially isotropic.

Another complication in dealing with electrons in metals arises from 
the long range of the Coulomb interaction. We shall discuss ways of 
dealing with this in Chapter 3; here we merely remark that the above 
considerations go through formally provided one regards / pp/ as the 
screened quasiparticle interaction. Thus when due account is taken of 
screening it is possible to define an electronic compressibility which, 
for a metal with an isotropic Fermi surface, is related to the state den
sity and F0* through Eqs. (1.48) and (1.58),

Again, let us emphasize th a t a simple formula like (1.69b) applies only 
to the case of an essentially isotropic electronic Fermi surface.

(1.69b)
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Because of the difficulties with anisotropy, one of the most interesting 
applications of the Landau theory to metal physics is the determination 
of those effects which are not influenced by particle interaction. Phe
nomena in which the interaction, / pp/, plays no role may then be safely 
used to determine the Fermi surface and other properties. We return 
to this question in our consideration of electron transport phenomena 
in Chapter 3.

We mention one final complication for electrons in metals. Not 
only do the electrons interact with each other, they interact as well with 
the lattice vibrations or phonons of the crystal. One must therefore 
inquire in detail as to which phenomena are influenced by this further 
electron-phonon interaction. Of the equilibrium properties considered 
here, it has recently been shown [Simkin (1963), Kadanoff and Prange 
(1964)] that the spin susceptibility and compressibility are not influenced 
by the electron-phonon interaction, while the specific heat is altered. 
Thus Eqs. (1.67) and (1.69b) may be applied directly to the case of an 
isotropic electron system, while the m* one measures in a specific heat 
experiment will differ from that one would estimate via Eq. (1.69a) on 
the basis of electron-electron interactions alone. A comparison between 
theory and experiment for the equilibrium properties of some simple, 
isotropic metals is given in Section 5.6.

1 . 4 .  T R A N S P O R T  E Q U A T I O N  FOR Q U A S I P A R T I C L E S

D E F I N IT IO N  OF N O N HO M O GENEO US D IS T R IB U T IO N  F U N C T IO N S

Until now, we have considered stable, homogeneous distributions, for 
which the function np was independent of both position and time. We 
shall now consider a more general problem, in which a weak time- 
dependent inhomogeneous perturbation is applied to the ground state. 
Such a perturbation may arise either from an external field, or as a 
consequence of an internal fluctuation of the system. We assume the 
perturbation is sufficiently weak that the response of the system is 
linear. (The formal theory of linear response functions is developed in 
Chapter 2.)

Let us consider a distribution function np(r, t)} which depends ex
plicitly on both the position r  and the time t. Such a description obvi
ously violates the uncertainty principle: it is not possible to specify 
simultaneously both the momentum p of a quasi particle and its position 
r, or its energy ep and the time t. This is a major difficulty, which 
fortunately disappears if we restrict ourselves to macroscopic phe
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nomena, such that the typical wave vectors and frequencies remain 
much smaller than the corresponding atomic parameters.

Let us consider the Fourier transform of np(r, t) with respect to space 
and time. Within our assumption of linear response, each Fourier com
ponent may be treated independently. Thus, it suffices to consider a 
particular plane wave perturbation, of wave vector q and frequency w. 
We shall write the distribution function as

np(r, t) = np° +  $7ip(q, o))e,(q'r~w<). (1.70)

The uncertainty principle gives rise to an uncertainty ftq in the momen
tum p, and ho) in the energy tv. This will be relatively unimportant if 
the distribution function np is smooth enough over that range of p and 
ep. At a temperature T , the characteristic “width” of the Fermi surface 
is kT for the energy, kT / vf for the momentum. We might thus expect 
the distribution function 5np(q, o>) to make sense if the following con
ditions are m et:

a . n >

Under such conditions, the concept of a distribution function is mean
ingful: we are essentially in a classical regime, at least as far as the uncer
tainty principle is concerned.

The conditions (1.71) are rather restrictive. Actually, the Landau 
theory applies in the much broader range

(1.72)no3«  n,

with, however, a different interpretation of the distribution function 
5np(q, o>). Thus far, we have defined 8np as the probability for finding 
a quasiparticle with wave vector p. In order to extend the Landau 
theory to the range (1.72), we must consider dn9 as the probability 
amplitude for finding a “pair,” consisting in a quasiparticle of momen
tum (p +  ftq / 2) and a quasihole with momentum (p — ftq /2). (Ob
viously, this no longer violates the uncertainty principle, since the 
momentum is not exactly equal to p.) Such a description is equivalent 
to Wigner’s semiclassical approach to statistical mechanics. We shall 
discuss this point further in Chapter 5. Here we simply assume that 
the uncertainty principle can be ignored when the conditions (1.72) 
are met.

According to (1.72), Landau’s theory may be applied to a macroscopic 
perturbation, the scale of which is very large compared to the atomic 
scale. Thus the wavelength of the perturbation must be much larger
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than the interparticle distance, the frequency much smaller than typical 
atomic frequencies. Put another way, the Landau result represents 
the leading term of an expansion of the system response in powers of 
q/kF and w/p. This limitation of the theory must be kept in mind.

Let us consider a state characterized by a distribution function

The departure 6np from the ground state is supposed to be small. We 
assume 5np to contain only long wavelength fluctuations, and to be 
restricted to the vicinity of the Fermi surface, where quasiparticles are 
well defined. Note that np gives the distribution in a unit volume cen
tered a t point r: the momentum p is accordingly quantized for 12 = 1.

As before, the total energy is a functional i?[np(r, t)] of the distribution 
function. If bnp is small, we may perform a Taylor expansion of this 
functional:

Let us assume our system is invariant under spatial translation. I t  
follows th a t c(p, r) does not depend on r, and is thus equal to cp. Fur
thermore /(p r, p V ) then depends only on the difference (r — r').

At this stage, we must take account of the nature of the interaction. 
In  this chapter we are only interested in short range forces, which are 
substantial only over distances of atomic size: this is the case for 3He. 
If the perturbation corresponds to a macroscopic variation in space and 
time, 6nv may be considered as constant over the range of the inter
action: in (1.74) we may replace S n^r')  by 5np/(r). The energy can 
then be written as

E X P A N S IO N  OF T H E  E N E R G Y

7ip(r, /) wp° -f* fiwp(r, £). (1.73)

p

+  rf3r d3r ' f (pr ,  p 'r')5np(r)Snp,(r') +  • • • . (1.74)

E  = E0 + j d3t  &E(r),

SE(r) -  2 ep8np(r) +  ^ ^ f PP'3np(r)8np.(r),

(1.75)

P PP'

where the interaction energy / pp, is defined by 

/pp' =  /  d3r 'f (p r ,  pV ). (1-76)
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The energy is thus a local function of the distribution 5nv: a t every point, 
we find the same relation as for an homogeneous system. The / pv> 
defined in (1.76) is the same as that of the preceding sections, calculated 
for SI = 1. (Let us emphasize again th a t this conclusion holds only for 
macroscopic perturbations.) I t  is physically clear th a t the local char
acter of the energy is a direct consequence of the short range of the 
interaction.

According to Eq. (1.75), the local excitation energy of a quasiparticle 
p is equal to

Note that this energy depends on p and r. The gradient Vpl gives the 
velocity of the quasiparticle, as usual. On the other hand, ( — VTl) is 
equivalent to a kind of “diffusion” force, which tends to push quasi
particles toward regions of minimum energy.

In order to describe the transport properties, Landau considered the 
quasiparticles as independent, described by a classical Hamiltonian 
ip(r). The problem is thus reduced to the development of the appropri
ate kinetic theory for a gas of quasiparticles. We shall discuss the 
physical meaning of this assumption in a moment: we first establish 
the transport equation.

We shall use a well-known procedure of kinetic theory: we consider a 
small volume element in phase space d3p dzr, and we calculate the flow 
of quasiparticles through each side of this element. By establishing the 
balance of the flow inward and outward, we obtain the equation

This well-known result governs the flow of quasiparticles in phase space, 
in the absence of collisions and external forces.

Equation (1.78) refers to the total distribution function for all quasi
particles. But we know that np is only defined in the vicinity of the 
Fermi surface. Furthermore, the concept of independent quasipar
ticles assumed by Landau cannot be true for all values of the momentum 
p: it is physically obvious that only excited quasiparticles in the immedi
ate vicinity of the Fermi surface can be considered as independent. 
We must therefore extract from (1.78) a transport equation describing 
the flow of only excited quasiparticles. This is easily done if we write

T R A N S P O R T  EQU ATIO N  FO R Q U A SIP A R T IC L ES

(1.77)

(7/ip _ A
”~ h Vr7lp * VpCp = 0.
ot

(1.78)
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ttp in the form (1.73). If we keep only terms of first order in 8npy and 
use (1.77), we obtain

+  *t*n,(rt) • vp -  VpV  • ^  / pp,Vr5n„(r<) = 0. (1.79)
P'

This linearized transport equation involves only values of p close to the 
Fermi surface, thanks to the factor Vpnp° = — vp5(€p — /*).

Let us analyze in some detail the physical meaning of Eq. (1.79). 
The first two terms (which provide the usual transport equation for a 
noninteracting system), describe a flow of totally independent excited 
quasiparticles. The last term, which arises from their interaction, may 
be interpreted as a flow of the ground state particles dragged by the 
inhomogeneities of the excitation distribution. We are thus led to the 
following picture: the elementary excitations, few in number, are com
pletely independent. In homogeneous systems, they do not interact 
with the “ground state” particles. However, if bnv is not homogeneous, 
the excited quasiparticles create a force field which acts on the ground 
state distribution, and distorts it; this effect is of first order in 6np, and 
thus quite important.

The neglect of the interaction between two excited quasiparticles is 
quite reasonable a t low temperatures, where their density is small, 
except for very low-frequency phenomena (see Section 1.9). On the 
other hand, reducing the interaction between the excited particles and 
the ground state particles to an average macroscopic force is a rather 
bold assumption. One might expect microscopic correlations to be of 
importance. According to Landau, they do not play any role: this 
assumption is indeed true, and may be proved within the framework of 
perturbation theory. One may think of this result as arising from the 
exclusion principle, which Tenders the ground state distribution essen
tially rigid.

The linearized transport equation may be written very simply in terms 
of the departure from local equilibrium 8np. On comparing the defini
tion (1.30) with (1.79), we may write the latter in the form

d&n^ Tt ' 0  +  V P • Vr6np(r, t) =  0. (1.80)Ot

This compact result may also be obtained directly from Eq. (1.78), by 
writing np in the form (1.28), i.e.,

np(r, t) = n°(ir) +  Snp(r, t). (1.81)
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The function n°(ip) gives a contribution to the gradient terms which may 
be written as

and which therefore vanishes. The only contribution to these gradients 
arises from 5np; if we keep only the first-order terms, we arrive at 
Eq. (1.80).

According to (1.80), the transport equation involves the time deriva
tive of BnPJ and the spatial derivative of 5np. This difference may be 
understood by noting that the gradient terms describe the diffusion of 
quasiparticles, which is certainly governed by the local energy. In this 
respect, the departure from equilibrium is measured by 5np, not by Bnp.

In its form (1.80), our transport equation misses two important 
effects: the influence of external forces and the collisions between excited 
quasiparticles. Let us first consider collisions, which represent the 
“dissipative,” irreversible part of the interaction between excited quasi
particles (the interaction energy / pp/ being, by contrast, a reactive, 
reversible effect of that interaction). The collisions are similar in nature 
to those between molecules in the usual kinetic theory of gases. Their 
importance is qualitatively measured by some collision frequency v.

At the low temperatures in which we are interested, collisions are 
inhibited by the exclusion principle, and are thus comparatively infre
quent: v is small. Collisions will therefore play a role only in very low- 
frequency phenomena (o> <  v) (viscosity, thermal conduction, etc.) 
where they limit the response to an external force. We shall discuss 
these problems in some detail in Section 1.8, where we shall see that one 
can take account of collisions by adding to the right-hand side of the 
transport equation a “collision integral” /(5np), which measures the 
rate of change of Bnp due to collisions. If we work at a frequency a>, 
much larger than the collision frequency v} we expect the collisions to 
play no role: we can then drop the collision integral.

Finally, let us apply a force &9 to the quasiparticle p : the distribution 
drifts in momentum space. This gives rise to an additional term on the 
left-hand side of Eq. (1.80), equal to

ffp ‘ Vpnp(r, t). (1.82)

Usually, the excitation Bn  ̂ of the system is proportional to the applied 
force in expression (1.82), we may then replace by the equilibrium 
distribution np°, since we are concerned only with first-order changes 
in n.

In  most problems, we know from first principles the force exerted on a 
bare particle. In order to deduce the force &p felt by a gwasiparticle, we


