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Preface

Over the past decade, there has been a rapid development in the vision-based
perception and control of robotic systems. Especially, multiple-view geometry
is utilized to extract low-dimensional geometric information from abundant and
high-dimensional image space, making it convenient to develop general solu-
tions for robot perception and control tasks. This book aims to describe possible
frameworks for setting up visual perception and control problems that need to be
solved in the context of robotic systems.

The visual perception of robots provides necessary feedback for control
systems, such as robot pose information, object motion information, and driv-
able road information. Since 3D information is lost and image noise exists in
the imaging process, the effective pose estimation and motion identification of
objects are still challenging. Besides, mobile robots are generally faced with
complex scenes making it difficult to robustly detect drivable road space for safe
operation. In this book, multiple-view geometry is exploited to describe the scene
structure and maps from image space to Euclidean space. Optimization and esti-
mation theories are applied to reconstruct the geometric information of the scene.
Then, it is convenient to identify the real-time states of the robot and objects and
to detect drivable road region based on geometric information.

The visual control of robots exploits visual information for task description
and controls the robots through appropriate control laws using visual feedback.
Since depth information is lost in the imaging process of monocular cameras,
there exist model uncertainties in the control process. Besides, the limited field
of view of the camera and the physical constraints (e.g., nonholonomic con-
straints) of the robots also have great influences on the stability and robustness
of the control process. In this book, multiple-view geometry is used for geomet-
ric modeling and scaled pose estimation. Then Lyapunov methods are applied to
design stabilizing control laws in the presence of model uncertainties and multi-
ple constraints.

xiii
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The book is divided into four parts.

� Part I consists of Chapter 1–3. This part is more tutorial than the others
and introduces the basic knowledge of the robotics and the multiple-view
geometry.

� In Part II, visual perception of robotics is presented. Specifically, Chap-
ter 4 gives an overview of the perception problems. Chapter 5 describes
a road construction approach based on iterative optimization and two-
view geometry. Considering the complex lighting conditions, an illumi-
nant invariant transform method is presented in Chapter 6 to eliminate
the effects of shadows and recover the textures in shadows. After that,
a nonlinear estimation strategy is proposed in Chapter 7 to identify the
velocity and range of a moving object with a static monocular camera.
To eliminate the motion constraint and prior geometric knowledge of the
moving object, a static-moving camera system is exploited in Chapter 8
to achieve the velocity and range identification tasks.

� Visual control of robotics is given in Part III. First, Chapter 9 introduces
the visual control problems of a robotic system. Then, for the general
fully actuated robots with six DOFs, the trajectory tracking control is
considered in Chapter 10 for both eye-in-hand and eye-to-hand configu-
rations. In the presence of the system uncertainties, a robust control law is
designed in Chapter 11 to asymptotic tracking of a moving object. Con-
sidering the field-of-view constraints, i.e., the target should remain visi-
ble in the camera view, a trajectory planning method based on navigation
function is proposed in Chapter 12 to generate a desired trajectory, mov-
ing the camera from the initial pose to a goal pose while ensuring all
the feature points remain visible. Besides, for the wheeled mobile robots,
adaptive control laws are presented in Chapter 13 to achieve the trajectory
tracking and pose regulation tasks, respectively. In Chapter 14, with the
existence of unknown camera installing position, a trifocal tensor based
controller is designed to address the trajectory tracking and regulation
problems. Moreover, to identify the depth information during the control
process, a unified controller with online depth estimation is developed in
Chapter 15.

� Appendices are provided in Part IV to describe further details of Parts II
and III.

The content in Parts II and III of this book (unless noted otherwise) has been
derived from the authors’ research work during the past several years in the
area of visual perception and control. This book is aimed at researchers who
are interested in the application of multiple-view geometry and Lyapunov-based
techniques to emerging problems in perception and control of robotics.
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Chapter 1

Robotics

Robotics is concerned with the study of those machines that can replace human
beings in the execution of a task, including physical activity, decision-making,
and human interaction. This book is devoted to the studies on the robots that
accomplish the physical tasks via locomotion. Generally, these types of robots
can be divided into robot manipulators and mobile robots. Robot manipulators
are also called fixed robots as they are generally mounted in industrial fields
and the motion of end effectors are actuated by the motion of joints. The end
effectors generally move in 3D space to perform manipulation tasks. Mobile
robots are featured with the free mobility in large workspace, including wheeled
mobile robots (WMRs), legged mobile robots, unmanned aerial vehicles, and
autonomous underwater vehicles. WMRs are widely used in both industrial and
daily life scenarios because they are appropriate for typical applications with
relatively low mechanical complexity and energy consumption [107].

The key feature of a physical robot is its locomotion via specific mechani-
cal structure. For control development, it should be modeled mathematically to
describe its motion characteristics. In the autonomous navigation and manipula-
tion tasks, the motion of robot bases and end effectors can be expressed math-
ematically by the notion of pose information. In this chapter, the general pose
representation of rigid bodies is introduced, and then the robot kinematics is
developed.

1.1 Pose Representation
A rigid body in physical space can be described by the position and orien-
tation, which are collectively named as the pose information. Then, the robot

3



4 � Multi-View Geometry Based Visual Perception and Control of Robotic Systems

locomotion can be described by the pose information, which serves as the out-
put of the robot model. The motion of a rigid body consists of translations and
rotations, resulting in the position and orientation descriptions with respect to the
reference coordinate system. As shown in Figure 1.1, two coordinate frames F
and F ′ exist in 3D Euclidean space. The motion from F to F ′ can be described
by a translation and a rotation. Then, the pose of frame F ′ with respect to frame
F can be described by the position and the orientation.

1.1.1 Position and Translation
In 3D Euclidean space, the position of the origin of coordinate frame F ′ rel-
ative to coordinate frame F can be denoted by the following: 3× 1 vector[
x y z

]T
. The components of this vector are the Cartesian coordinates of F ′

in the F frame, which are the projections of the vector x f onto the correspond-
ing axes. Besides the Cartesian coordinate system, the position of a rigid body
can also be expressed in spherical or cylindrical coordinates. Such representa-
tions are generally used for the analysis of specific mechanisms such as the
spherical and cylindrical robot joints as well as the omnidirectional cameras.
As shown in Figure 1.2, the spherical coordinate system can be viewed as the
three-dimensional version of the polar coordinate system, and the position of a
point is specified by three numbers: the radial distance r from the point to the
coordinate origin, its polar angle θ measured from a fixed zenith direction, and
the azimuth angle φ of its orthogonal projection on a reference plane that passes
through the origin and is orthogonal to the zenith. As shown in Figure 1.3, the
position of a point in the cylindrical coordinate system is specified by three num-
bers: the distance ρ from the point to the chosen reference axis (generally called
cylindrical or longitudinal axis), the direction angle φ from the axis relative to
a chosen reference direction, and the distance z from a chosen reference plane

z

p

P

x

F

y

y' 

F' 

p' 

x' 

z' 

(R
, x f

)

Figure 1.1: Pose representation.
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Figure 1.2: Spherical coordinate system.
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ρ

Figure 1.3: Cylindrical coordinate system.

perpendicular to the axis. The latter distance is given as a positive or negative
number depending on which side of the reference plane faces the point.

A translation is a displacement in which no point in the rigid body remains
in its initial position and all straight lines in the rigid body remain parallel to
their initial orientations. The translation of a body in 3D Euclidean space can be
represented by the following 3×1 vector:

x f =

x f x

x f y

x f z

 . (1.1)
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Conversely, the position of a body can be represented as a translation that takes
the body from a starting position (the origin of frame F) to the current position
(the origin of frame F ′). As a result, the representation of position can be used
to express translation and vice versa.

1.1.2 Orientation and Rotation
The orientation expresses the axis directions of frame F ′ with respect to frame
F . A rotation is a displacement that the origin of frame F ′ coincides with the
origin of frame F and not all the axes of F ′ parallel to those of F . As in the
case of position and translation, any representation of orientation can be used to
create a representation of rotation and vice versa. In the following descriptions in
this book, the positive direction of rotational angle is defined by the right-hand
rule, as indicated in Figure 1.4.

Rotation matrix
The orientation of frame F ′ with respect to frame F can be denoted by express-
ing the basis vectors (~x′,~y′,~z′) (the axis directions ofF ′) in terms of the basis vec-
tors (~x,~y,~z) (the axis directions of F ′). The rotation matrix R is used to express
the rotation from F to F ′. The components of R are the dot products of the basis
vectors of the two coordinate frames:

R =

~x ·~x′ ~y ·~x′ ~z ·~x′
~x ·~y′ ~y ·~y′ ~z ·~y′
~x ·~z′ ~y ·~z′ ~z ·~z′

 . (1.2)

Since the basis vectors are unit vectors, the dot product of any two unit vectors
is actually the cosine of the angle between them, the components are commonly
referred to as direction cosines.

The rotation matrix R contains nine elements but only three Degrees of Free-
dom (DOF) to express the rotation and orientation in the 3D Euclidean space.

Figure 1.4: The right-hand rule for rotation.
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Therefore, six auxiliary relationships exist among the elements of the matrix.
Because the basis vectors of coordinate frame F are mutually orthonormal, as
are the basis vectors of coordinate frame F ′, the columns of R formed from the
dot products of these vectors are also mutually orthonormal. The rotation matrix
is an orthogonal matrix and has the property that its inverse is simply its trans-
pose. This property provides the six auxiliary relationships. Three require the
column vectors to have unit length, and three require the column vectors to be
orthogonal. Besides, the orthogonality of the rotation matrix can be seen from the
expression in (1.2) by considering the frames in reverse order. The orientation of
coordinate frame F ′ relative to coordinate frame F is the rotation matrix whose
rows are clearly the columns of the matrix R.

Using the above definition, an elementary rotation of frame F ′ about the z
axis through an angle θ is

Rz(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 , (1.3)

and the same rotation about the y axis is

Ry(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 , (1.4)

and the same rotation about the x axis is

Rx(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 . (1.5)

Three angle representations
As mentioned above, the minimum representation of a rotation in 3D Euclidean
space is of three numbers. As a result, a common representation for the orienta-
tion of coordinate frame F ′ with respect to coordinate frame F can be denoted
as a vector of three angles. Then, the overall rotation can be decomposed into
a sequence of rotations by the three angles about specific axes. For example,
the rotation matrix R can be expressed by the multiplication of the three matri-
ces R = R1R2R3 with the rotational order R1,R2,R3. Two commonly used angle
representations are the Euler angles and the fixed angles, as described as follows:

� Euler angles: The Euler angles have three components; each represents
a rotation about the axes of a moving coordinate frame (i.e., frame F ′).
As a result, the rotation matrix depends on the order of rotations. In this
book, the indication of Euler angles (α,β ,γ) expresses the rotation order
Z−Y −X . Assuming the frames F and F ′ are initially coincident, the
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3D rotation can be decomposed into three steps: rotate angle α about the
z axis of frame F ′, rotate angle β about the y axis of frame F ′, and then
rotate angle γ about the z axis of frame F ′. The rotational matrix can be
expressed by the Euler angles as follows:

R=

cosα cosβ cosα sinβ sinγ− sinα cosγ cosα sinβ cosγ + sinα sinγ

sinα cosβ sinα sinβ sinγ + cosα cosγ sinα sinβ cosγ− cosα sinγ

−sinβ cosβ sinγ cosβ cosγ


(1.6)

Based on the above expression, the Euler angles can be decomposed by
the rotation matrix as follows:

β = atan2
(
−r31,

√
r2

11 + r2
21

)
α = atan2

(
r21

cosβ
,

r11

cosβ

)
γ = atan2

(
r32

cosβ
,

r33

cosβ

)
.

(1.7)

� Fixed angles: Except for the Euler angles, a vector of three angles can
also denote the rotational relationship, with each angle representing a
rotation about an axis of a fixed frame. As shown in Figure 1.1, F is
the fixed frame and F ′ is the moving frame. Take these two frames to
be initially coincident, ψ is the yaw rotation about the x axis of F , θ

is the pitch rotation about the y axis of F , and φ is the roll rotation
about the z axis of F . Actually, a set of X−Y −Z fixed angles is equiva-
lent to the same set of Z−Y −X Euler angles (α = φ , β = θ , and γ = ψ).

The representations using three angles are intuitive but suffer from singular-
ity. The singularity occurs when the rotational axis of the second term in the
sequence becomes parallel to the rotational axis of the first or the third term. In
that case, there are only two effective rotational axes instead of the original three
axes, i.e., one DOF is lost. This issue occurs when β =±π

2 for Euler angles and
θ =±π

2 for fixed angles.

Angle-vector representation
Different from the three angle representations that decompose the overall rotation
into three sequential rotations along specific axes, the angle-vector representation
expresses the rotation by a rotational angle θ about a rotational vector ν . The
rotation matrix is expressed by the angle-vector representation by the Rodrigues’
rotation formula as follows:

R = I3×3 + sinθ [ν ]×+(1− cosθ)(νν
T − I3×3), (1.8)
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where [ν ]× is the skew-symmetric matrix defined as

[ν ]× =

 0 −νz νy

νz 0 −νx

−νy νx 0

 . (1.9)

The rotation angle and vector are encoded in the eigenvalues and eigenvectors
of the rotation matrix R. The orthonormal rotation matrix R has one real eigen-
value λ = 1 and two complex eigenvalues λ = cosθ ± isinθ . According to the
definition,

Rv = λv, (1.10)

where v is the eigenvector corresponding to the eigenvalue λ . For the case of
λ = 1,

Rv = v, (1.11)

which implies that the vector is not changed by the rotation. Actually, the rota-
tional axis is the only vector in 3D space satisfying this feature. As a result, the
eigenvector corresponding to the eigenvalue λ = 1 is the rotational vector ν .

Unit quaternion representation
The quaternions are actually the extension of complex numbers and were first
described by W. R. Hamilton. The concept of quaternions is widely applied to
robotics and mechanics in 3D space. A quaternion ε is written as a scalar ε0 plus
a vector εv as follows:

ε = ε0 + εv

= ε0 + ε1 · i+ ε2 · j+ ε3 · k,
(1.12)

where ε0,ε1,ε2, and ε3 are scalars, and i, j, and k are operators satisfying the
following rules:

ii = j j = kk =−1
i j = k, jk = i, ki = j
ji =−k, k j =−i, ik =− j.

(1.13)

The unit quaternion has the property that ε2
0 + ε2

1 + ε2
2 + ε2

3 = 1. The unit quater-
nion can be used to express a rotation of angle θ about the unit rotational vector
ν as follows:

ε0 = cos
θ

2
,εv = sin

θ

2
·ν . (1.14)

1.1.3 Homogeneous Pose Transformation
The preceding sections have addressed representations of position and orienta-
tion separately. The motion in 3D Euclidean space can be decomposed into a
translation and a rotation. As shown in Figure 1.1, due to the effect of motion,
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there exists a transformation between the coordinates of point P with respect to
frames F and F ′. Denote the coordinate of P with respect to frame F and F ′ as
p and p′, respectively; the transformation from p′ to p is defined as follows:

p = R · p′+ x f , (1.15)

where R and x f are the rotation and translation from frame F to frame F ′
expressed in F . To be compact, define the homogeneous coordinates of point
P with respect to frames F and F ′ as p̄ and p̄′, respectively, as follows:

p̄ =
[
x y z 1

]T
, p̄′ =

[
x′ y′ z′ 1

]T
. (1.16)

Then, the homogeneous transformation can be rewritten as the following:

p̄ =

[
R x f

01×3 1

]
p̄′ = T p̄′, (1.17)

where T is the 4×4 homogeneous transformation.

1.2 Motion Representation
In the previous section, the pose representation of rigid bodies in 3D Euclidean
space is introduced. This section extends the concepts to the moving objects
whose pose is varying, which is a basic description for robots. For robots, the
tasks are generally accomplished by following specific paths or trajectories, or
by regulating to specific target poses. In this section, the general concepts of path
and trajectory are introduced for task description; then, the pose kinematics are
described for motion analysis and further control development of robots.

1.2.1 Path and Trajectory
In robotics, a path is a spatial concept in space that leads from an initial pose to a
final pose. A trajectory is a path with specified time constraints, i.e., it describes
the poses at each specified time instants.

Parameterization
Due to the nature of trajectory, it is straightforward to parameterize the trajectory
with time. Then, a trajectory can be denoted as X(t), where t is the time and X
is the vector representing pose information. For the parameterization of the path,
there should be a parameter that varies smoothly and differs everywhere along
the path. A commonly used parameter is the arc length accumulating from the
start pose. Then, a path can be expressed as X(s), where s denotes the arc length.

The pose information X includes position and orientation information. For
robots moving in 3D Euclidean space, the pose information includes three DOF
position and three DOF orientation. For mobile robots moving on planes, the
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pose information includes two DOF position and one DOF orientation. For exam-
ple, a common definition of six DOF pose vector is

X =
[
x y z ψ θ φ

]T
, (1.18)

where the coordinates x,y,z denote the position and the angles ψ (yaw angle), θ

(pitch angle), φ (roll angle) represent the orientation.
Due to the existence of kinematic constraints, the physically feasible trajec-

tories are only a subset of the entire space. For a robot end effector that moves
freely with six DOF, the elements in the pose vector vary independently from
each other. While for a differential driving wheeled mobile robot, the variation
of position is determined by the current orientation; thus, not all trajectories are
feasible for this type of robots.

Curve fitting
For the application of control development, the desired path and trajectory gen-
erally need to be continuous, i.e., the position, velocity, and acceleration are
required to be continuous.

For the case of pose regulation, the initial and final poses are given as X0
and X∗. The polynomial function is an obvious candidate for curve fitting to
parameterize paths or trajectories. For the general case that the position, velocity,
and acceleration are given as initial and final conditions, fifth order polynomial
function is the minimal structure to satisfy the conditions. For a robot without
kinematic constraints (moves freely with six DOF), the elements in the pose
vector X can be designed separately. For example, take one dimension x; the
initial conditions x0, ẋ0, ẍ0 at t0 and the final conditions x∗, ẋ∗, ẍ∗ at t∗ are given;
then, the trajectory can be fitted by the function x(t) = c5t5 +c4t4 +c3t3 +c2t2 +
c1t + c0, and the coefficients are determined by solving the least square solution
of the following equation:

t5
0 t4

0 t3
0 t2

0 t0 1
5t4

0 4t3
0 3t2

0 2t0 1 0
10t2

0 12t2
0 6t0 2 0 0

t∗5 t∗4 t∗3 t∗2 t∗ 1
5t∗4 4t∗3 3t∗2 2t∗ 1 0
10t∗2 12t∗2 6t∗ 2 0 0


·



c5

c4

c3

c2

c1

c0


=



x0

ẋ0

ẍ0

x∗

ẋ∗

ẍ∗


(1.19)

For the robots with kinematic constraints, the constraints among the elements in
the pose information should be considered in the curve fitting. For example, take
the differential driving wheeled mobile robot; it has two position DOFs (x,y)
and one orientation DOF θ . It has the feature that the direction of instantaneous
velocity coincides with the orientation, i.e., θ = atan2(ẏ, ẋ). As a result, only
the trajectories of x and y need to be designed, and the trajectory of θ can be
calculated accordingly.
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For the case of path following or trajectory tracking, a set of points are gen-
erally given to represent the desired path or trajectory. For control development,
a sufficient smooth curve representation is required, i.e., the first and second
derivatives exist and are bounded. High order polynomial functions can be used
for curve fitting by solving the least square solution of conditions formed by
the points. However, the numerical stability decreases with higher order and the
fitting accuracy decreases with lower order. Besides, the Runge’s phenomenon
exists which is a problem of oscillation at the edges of an interval that occurs
when using polynomial interpolation with polynomials of high degree over a set
of equispaced interpolation points. It shows that going to higher order does not
always improve accuracy of curve fitting. Considering the flexibility and accu-
racy of curve fitting, the spline curves can be used for representation. A spline is
a special function defined piecewise by polynomials. It uses low order polynomi-
als in each interval and ensures the continuity between the intervals. Considering
the fundamental case of one-dimensional fitting, a set of points {xi}i∈[1,N] at time
instants {ti}i∈[1,N] are given. There are various forms of spline functions that can
be used for curve fitting. Without generality, the following two cubic spline func-
tions are used:

� One type of spline function directly uses the values at each data points
for interpolation, and the resulting spline curve passes the data points.
The spline curve is composed of a series of piecewise cubic polynomials
{ fi}i∈[1,N−1] with fi : [ti, ti+1]→ R defined as the following:

fi(t) = ai(t− ti)3 +bi(t− ti)2 + ci(t− ti)+ xi. (1.20)

To ensure the smoothness, the following boundary conditions are
required:

fi(ti+1) = xi+1

ḟi−1(ti) = ḟi(ti)

f̈i−1(ti) = f̈i(ti).

(1.21)

Then, the curve parameters in each interval can be solved by the above
boundary conditions.

� Another type of spline function interpolates the function values based
on the values at control points {φ j} j∈[−1,M−2], which are defined uni-
formly in the region of time horizon. The distribution of control points is
generally sparser than the raw data points (M < N) to be smoother and
more computationally efficient. The interval between neighboring control
points is κ = t∗−t0

M−3 . The approximation function is defined in terms of the
control points as follows:

f (t) =
3∑

k=0

Bk(s)φ j+l, (1.22)
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where j = b t−t0
κ
c− 2 and s = t−t0

κ
−b t−t0

κ
c. The terms {Bk(s)}k∈{0,1,2,3}

denote the spline basis functions defined as follows:

B0(s) =
(1− s)3

6

B1(s) =
(3s3−6s2 +4)

6

B2(s) =
−3s3 +3s2 +3s+1

6

B3(s) =
s3

6
.

(1.23)

1.2.2 Pose Kinematics
For the development of autonomous navigation and manipulation for robots,
the task generally described in terms of pose information as introduced above.
The control objective is to regulate the robot motion to perform the tasks. In
this section, the general six DOF robot is considered which has linear veloci-
ties v = [vx,vy,vz]

T and angular velocities ω = [ωx,ωy,ωz]
T in the frame F with

respect to frame F ′. Similarly, denote the linear and angular velocities of frame
F ′ with respect toF as v′ = [v′x,v

′
y,v
′
z]

T and angular velocities ω ′ = [ω ′x,ω
′
y,ω
′
z ]

T .
The positive directions of the linear velocities are the same as the directions of
corresponding axes, and the positive directions of the angular velocities are deter-
mined by the right-hand rule.

Rotational motion
The direction of the angular velocity vector ω defines the instantaneous axis
of rotation, that is, the axis about which the coordinate frame is rotating at a
particular instant of time. In general, this axis changes with time. The magnitude
of the vector is the rate of rotation about the axis; in this respect, it is similar
to the angle-axis representation for rotation introduced above. From mechanics,
there is a well-known expression for the derivative of a time-varying rotation
matrix

Ṙ(t) = [Rω]× ·R(t). (1.24)

Since R is redundant to describe the rotation, it is not appropriate for control
development. As mentioned above, the angle-vector representation is widely
used in robot applications, which is denoted as Θ(t) = u(t)θ(t). The rotation
matrix can be expressed in terms of the angle-vector representation as follows:

R = I3 + sinθ [u]×+2sin2 θ

2
[u]2× (1.25)
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Taking the derivative of (1.25) and using (1.24), the following expression is
obtained:

[Rω] = sinθ [u̇]×+[u]×θ̇ +(1− cosθ)[[u]×u̇]×, (1.26)

where the following properties are utilized:

[u]×ζ =−[ζ ]×u (1.27)

[u]2× = uuT − I3 (1.28)

[u]×uuT = 0 (1.29)

[u]×[u̇]×[u]× = 0 (1.30)

[[u]×u̇]× = [u]×[u̇]×− [u̇]×[u]×. (1.31)

Taking the derivative of Θ(t), the following expression is obtained:

Θ̇ = u̇θ +uθ̇ . (1.32)

Multiplying both sides in (1.32) by (I3 + [u]2×), the following expression is
obtained:

(I3 +[u]2×)Θ̇ = uθ̇ , (1.33)

where the following properties are utilized;

[u]2× = uuT − I3

uT u = 1

uT u̇ = 0.

(1.34)

Multiplying both sides in (1.32) by −[u]2×, the following expression is obtained:

−[u]2×Θ̇ = u̇θ , (1.35)

where the following properties are utilized:

uT u = 1

uT u̇ = 0.
(1.36)

From the expression in (1.26) and expressions in (1.32), (1.33), (1.35), the fol-
lowing expression can be obtained

Θ̇ = LwRω (1.37)

where the Jacobian-like matrix Lw ∈ R3×3 is defined as

Lw = I3−
θ

2
[u]×+

(
1− sinc(θ)

sinc2( θ

2 )

)
[u]2× (1.38)

with sinc(θ) = sinθ/θ .



Robotics � 15

Translational motion
Denote the rotational and translational matrices from F ′ to F expressed in F ′
as R′ and x′f , respectively. The translational vector x f expressed in F can be
expressed as the following:

x f =−R′T x′f . (1.39)

Taking the time derivative of (1.39), it can be obtained that

ẋ f =−Ṙ′T x′f −R′T ẋ′f (1.40)

Similar to (1.24), the above expression can be rewritten as the following:

ẋ f =−[R′T ω
′]× ·R′T x′f −R′T v′. (1.41)

Using the fact that ω = R′T ω ′ and v = R′T v′:

ẋ f =−[ω]× ·R′T x′f v. (1.42)

Then, the time derivative of translational vector x f can be expressed as the fol-
lowing:

ẋ f =−[ω]× · x f − v (1.43)

1.3 Wheeled Mobile Robot Kinematics
In real applications, wheeled mobile robots are widely used for intelligent trans-
portation and manipulation. They are actuated by wheels and generally move on
the ground. As a result, the mobile robots have three DOFs, i.e., two position
DOFs and one orientation DOF.

1.3.1 Wheel Kinematic Constraints
The first step to a kinematic model of the robot is to express constraints on the
motions of individual wheels. The motions of individual wheels would be com-
bined to compute the motion of the robot as a whole. As shown in Figure 1.5,
there are four basic wheel types with varying kinematic properties in applica-
tions, i.e., fixed wheel, steered wheel, castor wheel, and Swedish wheel.

In the following developments, it is assumed that the plane of the wheel
always remains vertical and that there is one single point of contact between
the wheel and the ground plane. Besides, there is no sliding at this single point
of contact. That is, the wheel undergoes motion only under conditions of pure
rolling and rotation about the vertical axis through the contact point. Under these
assumptions, we present two constraints for every wheel type. The rolling con-
straint enforces the concept of rolling contact that the wheel must roll when
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Figure 1.5: Standard basic wheels. (a) Fixed wheel, (b) Steered wheel, (c) Castor
wheel, and (d) Swedish wheel.

motion takes place in the appropriate direction. The sliding constraint enforces
the concept of no lateral slippage that the wheel must not slide orthogonal to the
wheel plane.

As shown in Figure 1.5, the position of the wheel is expressed in polar coor-
dinates by distance l and angle α . The angle of the wheel plane relative to the
chassis is denoted by β , which is fixed since the fixed standard wheel is not steer-
able. The wheel, which has radius r, can spin over time with angular velocity
ω(t). The fixed wheel has no vertical axis of rotation for steering. Its angle to the
chassis is thus fixed, and it is limited to motion back and forth along the wheel
plane and rotation around its contact point with the ground plane. The steered
wheel differs from the fixed standard wheel only in that there is an additional
DOF; the wheel may rotate around a vertical axis passing through the center of
the wheel and the ground contact point. Castor wheels are able to steer around a
vertical axis. However, unlike the steered standard wheel, the vertical axis of rota-
tion in a castor wheel does not pass through the ground contact point. Swedish
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wheels have no vertical axis of rotation, yet are able to move omnidirectionally
like the castor wheel. This is possible by adding a DOF to the fixed standard
wheel. Swedish wheels consist of a fixed standard wheel with rollers attached to
the wheel perimeter with axes that are antiparallel to the main axis of the fixed
wheel component. The rolling and sliding constraints are shown in Tables 1.1
and 1.2, respectively. It should be noted that β is free for the castor wheel and
ωsw is free for the Swedish wheel; thus, the sliding constraints of the castor and
the Swedish wheels do not affect the motion direction of the robots.

1.3.2 Mobile Robot Kinematic Modeling
For a mobile robot with several wheels, its kinematic constraints can be com-
puted by combining all of the kinematic constraints of each wheel. From the
above, the castor and Swedish wheels have no impact on the kinematic con-
straints of the robot. Therefore, only fixed wheels and steerable standard wheels
have impact on robot kinematics, and therefore require consideration when com-
puting the robot’s kinematic constraints.

Suppose that the robot has a total of N standard wheels, comprising N f

fixed wheels and Ns steerable wheels. Denote B f and Bs(t) as the fixed steering
angles of fixed wheels and the varying steering angles of the steerable wheels,
respectively. Denote Wf and Ws(t) as the angular velocities of fixed and steer-
able wheels, respectively. The rolling constraint of the robot can be obtained by
combining the effects of wheels as follows:

J1(Bs)R(θ)Ẋ = J2W, (1.44)

Table 1.1 Wheel Kinematics: Rolling Constraints
Wheel Type Rolling Constraint

Fixed wheel
[sin(α +β ) −cos(α +β ) −l cosβ ]R(θ)Ẋ = rωSteered wheel

Castor wheel

Swedish wheel [sin(α +β + γ) −cos(α +β + γ)]
[−l cos(β + γ)]R(θ)Ẋ = r cosγ ·ω

Table 1.2 Wheel Kinematics: Sliding Constraints
Wheel Type Sliding Constraint

Fixed wheel [cos(α +β ) sin(α +β ) l sinβ ]R(θ)Ẋ = 0
Steered wheel

Castor wheel [cos(α +β ) sin(α +β ) d + l sinβ ]R(θ)Ẋ =−dβ̇

Swedish wheel [cos(α +β + γ) sin(α +β + γ) l sin(β + γ)]
R(θ)Ẋ = rω sinγ + rswωsw
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where W = [Wf ,Ws]
T is the angular velocities of all wheels. J2 is a constant

diagonal N×N matrix whose entries are the corresponding radius of the wheels.
J1 defines the projections for the wheels to their motions along their individual
wheel planes:

J1(Bs) =

[
J1 f

J1s(Bs)

]
. (1.45)

Here, J1 f ∈ RN f×3 and J1s ∈ RN f×3 are Jacobian-like matrices with each row
consisting of the three terms in the equation in Table 1.1.

The sliding constraints can be also obtained as follows:

C1(Bs)R(θ)Ẋ = 0, (1.46)

where C1(Bs)=
[
C1 f C1s(Bs)

]T
. The matrices C1 f ∈RN f×3 and C1s(Bs)∈RNs×3

are composed of rows consisting of the three terms in the equation in Table 1.2.

1.3.3 Typical Nonholonomic Mobile Robot
The above subsection provides a general tool for kinematic modeling of mobile
robots. In the following, the typical differential driving mobile robot is consid-
ered as shown in Figure 1.6.

As shown in Figure 1.6, the differential driving mobile robot consists of two
independent driving fixed wheels and one castor wheel. The origin of the robot
coordinate is located at P. Then, the kinematic model of the robot can be obtained
by combining the rolling and sliding constraints as follows:[

J1(Bs)
C1(Bs)

]
R(θ)Ẋ =

[
J2W

0

]
. (1.47)

z

z(t)
x(t)

P

θ(t)

Figure 1.6: Differential driving mobile robot.


