

CARTOON PHYSICS

A GRAPHIC NOVEL GUIDE TO SOLVING PHYSICS PROBLEMS

BY SCOTT CALVIN AND KIRIN EMLET FURST Additional artwork by Elena Hartley

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742
and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
© 2022 Taylor \& Francis Group, LLC

CRC Press is an imprint of Taylor \& Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 9781032210414 (hbk)
ISBN: 9781138598782 (pbk)
ISBN: 9780429486128 (ebk)

DOI: 10.1201/9780429486128
Publisher's note: This book has been prepared from camera-ready copy provided by the authors.

TABLE OF CONTENTS

CHAPTER 1: KINEMATICS 1
CHAPTER 2: TRIGONOMETRY, VECTORS, AND PROJECTILES 11
INTERLUDE: IS IT RIGHT? 18
CHAPTER 3: DYNAMICS 21
CHAPTER 4: CIRCULAR MOTION 31
CHAPTER 5: ENERGY 38
CHAPTER 6: MOMENTUM 49
INTERLUDE: WHICH TECHNIQUE? 55
CHAPTER 7: ROTATIONAL PHYSICS 59
CHAPTER 8: FLUIDS 78
CHAPTER 9: SIMPLE HARMONIC MOTION 86
CHAPTER 10: WAVES AND SOUND 91
CHAPTER 11: GASSES AND THERMODYNAMICS 102
INTERLUDE: SHOULD WE TELL THEM? 114
CHAPTER 12: ELECTRIC FIELDS 117
CHAPTER 13: ELECTRIC POTENTIAL 127
CHAPTER 14: CIRCUITS 138
CHAPTER 15: MAGNETISM 164
CHAPTER 16: INDUCTION 180
CHAPTER 17: ELECTROMAGNETIC WAVES 189
CHAPTER 18: GEOMETRIC OPTICS 194
CHAPTER 19: PHYSICAL OPTICS 208
CHAPTER 20: SPECIAL RELATIVITY 219
CHAPTER 21: QUANTUM PHYSICS 233
FINAL EXAM 246
FREQUENTLY ASKED QUESTIONS (CONTAINS NO SPOILERS!) 260
TASK TAGS (INDEX) 266
KITSUNE'S UNITS CRIB SHEET 268
SIMPLICIO'S FORMULA SHEET 269

I'LL FIND HOW LONG IT
TAKES TO HIT THE GROUND FROM THE HIGHEST POINT (23.3 M). I WANT TO SAY THE FINAL VELOCITY IS ZERO, BUT ONCE IT STARTS TO HIT THE GROUND IT'S NOT FALLING ANYMORE. I'D BETTER LEAVE

SO † IS 2.18 S . ADDING THAT TO THE ORIGINAL O. 82 S GIVES A TOTAL OF 3.00 S . C

I WILL
SOLVE USING THE
OTHER METHOD, GOING FROM JUST AFTER TERRANCE THROWS IT TO JUST BEFORE IT HITS THE GROUND, WITHOUT USING THE CALCULATION OF THE

THE FIRST EQUATION THIS TIME. THE SECOND IS A QUADRATIC EQUATION, SO I NEED THE QUADRATIC

Rearranging:

$4.9 t^{2}-8.0(t)-20.0=0$.
Applying the quadratic formula: $t=(8.0 \pm 21.4) / 9.8=\underbrace{3}_{3.05}\}$ or -1.4 s .

Now let's use our two kinematics equations with the x-component. The acceleration is downward, so it's zero in the x-direction.
$v_{x}=6.9+(0) t=6.9$
$\Delta x=6.9(t)+1 / 2(0) t^{2}=6.9 \dagger$
 $v_{x}, \Delta x, v_{y}, A N D \dagger_{.}$

BUT WE KNOW V_{x}. THE FIRST EQUATION TELLS

THEN WE ONLY have three equations. EITHER WAY, WE'RE READY EITHER WAY, WE'RE
TO SOLVE.

The question asks several different things regarding y. For now, let's choose the final point to be just before it hits the plain, so that $\Delta y=-20.0 m$.
$v_{y}=4.0+(-9.8) \dagger$
$\Delta y=-20.0=4.0(\dagger)+1 / 2(-9.8) \dagger^{2}$

The sum of the angles in a triangle is 180°

WORDS OF WISDOM

Use cosine to find the component adjacent to the angle and sine to find the component opposite to it

