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Preface

A graphical model is a statistical model that is associated to a graph. The nodes of the
graph correspond to the random variables of interest, and the edges encode allowed condi-
tional dependencies among the variables. The factorization properties underlying graphical
models facilitate tractable computation with multivariate distributions, making the models
a valuable tool in a plethora of applications. Furthermore, directed graphical models admit
intuitive causal interpretations and have become a cornerstone for causal inference.

While there exist a number of excellent books on graphical models, the field has grown so
much that individual authors can hardly cover its entire scope. Moreover, the field is inter-
disciplinary by nature, with important contributions from a range of disciplines, including
statistics, computer science, electrical engineering, biology, mathematics and philosophy.
Through chapters by leading researchers from these different areas, this handbook provides
a broad and accessible overview of the state of the art.

The book contains a total of twenty-one chapters, grouped into five parts:

I. Conditional independencies and Markov properties

II. Computing with factorizing distributions

III. Statistical inference

IV. Causal inference

V. Applications

Part I reviews the foundations of graphical models. It discusses how graphs can encode
conditional independencies between random variables, or equivalently, a factorization of the
joint distribution of the variables. The main theme of Part II is how to perform efficient
computations based on the joint distribution of a given graphical model, in particular by
leveraging the associated factorization properties. In Part III, the focus of the book shifts to
problems of statistical inference, such as learning the graph and estimating the associated
parameters from available data. Part IV focuses on the causal interpretation of directed
acyclic graphs. The corresponding chapters review fundamental concepts of graphical ap-
proaches to causal inference, and also treat statistical aspects such as learning a directed
acyclic graph from data. Finally, Part V shows how graphical models are used in selected
applied problems in forensic science and biology.

Part I forms the basis of the book. The remaining Parts II through V can be read inde-
pendently, while cross-references between the chapters highlight connections. The topics of
the chapters range from explanations of basic concepts at a level that is suitable to newcom-
ers to descriptions of recent developments or original research. As such, the book targets a
wide audience, including graduate students in statistics, mathematics and computer science,
users of graphical models in applied research, as well as experts on graphical models. Most
of all, we hope that the book will spark further research in this exciting field.
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The aim of the chapter

In this chapter, the concept of conditional independence (CI) is recalled and an overview of
both former and recent results on the description of CI structures is given. The traditional
graphical models, namely those ascribed to undirected graphs (UGs) and directed acyclic
graphs (DAGs), can be interpreted as special cases of statistical models of a CI structure.
Therefore, an overview of Markov properties for these two basic types of graphs is also
given. Markov properties for more general graphs are discussed in Chapter 2.

1.1 Introduction: Historical Overview and an Example
In this section, some earlier results on CI are recalled and an example is given to informally
illustrate the concept of probabilistic CI.

1.1.1 Stochastic conditional independence

Loève [27] already defined the concept of CI in terms of σ-algebras in his book on proba-
bility theory in the 1950s. Phil Dawid [12] was probably the first statistician who explicitly
formulated certain basic formal properties of stochastic CI. He observed that several sta-
tistical concepts, e.g., the one of a sufficient statistic, can equivalently be defined in terms
of generalized CI and this observation allows one to derive many results in an elegant way
with the aid of those formal properties. These basic formal properties of stochastic CI were
later independently formulated in the context of philosophical logic by Spohn [50], who was
interested in the interpretation of the concept of CI and its relation to causality. The same
properties, this time formulated in terms of σ-algebras, were also explored by Mouchart and
Rolin [39]. The author of this chapter was told that the conditional independence symbol
⊥⊥ was proposed by Dawid and Mouchart in their discussion in the late 1970s.

The significance of the CI concept for probabilistic reasoning was later recognized by
Pearl and Paz [43], who observed that the above-mentioned basic formal properties of CI
are also valid for certain ternary separation relations induced by undirected graphs. This led
them to an idea of describing such formal ternary relations by graphs and introducing an
abstract concept of a semi-graphoid. The even more abstract concept of a separoid was later
suggested by Dawid [13]. Pearl and Paz [43] also raised a conjecture that semi-graphoids
coincide with probabilistic CI structures, which was refuted by myself in [52] using some
tools of information theory.

A lot of effort and time has been devoted to the problem of characterizing all possible
CI structures induced by four discrete random variables. The final solution to that problem
was achieved by Matúš [36, 33, 34]; the number of these structures is 18478 [66] and they
are decomposed into 1098 types.

1.1.2 Graphs and local computation method

The idea to use graphs whose nodes correspond to random variables in order to describe CI
structures had appeared in statistics earlier than Pearl and Paz suggested this approach in
the context of computer science. One can distinguish between two basic traditional trends,
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namely, using undirected and directed (acyclic) graphs. Note that statistical models de-
scribed by such graphs can be understood as the models of (special) CI structures.

Undirected graphs (UGs) appeared in the 1970s in statistical physics as tools to describe
relations among discrete random variables. Moussouris [40] introduced several Markov prop-
erties relative to an UG for distributions with positive density and showed their equivalence
with a factorization condition. Darroch, Lauritzen, and Speed [10] realized that UGs can
be used to describe statistical models arising in the theory of contingency tables, so they
introduced a special class of (undirected) graphical models and interpreted them in terms of
CI. At the same time, the use of UGs was considered in the area of multivariate statistical
analysis. Dempster [15] introduced covariance selection models for continuous real random
variables, which were interpreted in terms of CI by Wermuth [67].

In the 1980s, directed acyclic graphs (DAGs) found their applications in the decision-
making theory in connection with influence diagrams. Smith [49] used the above-mentioned
formal properties of CI to easily show the correctness of some operations with influence
diagrams. Pearl’s book [42] on probabilistic reasoning had a substantial impact on promotion
of graphical methods in artificial intelligence; in the book, he defined a directional separation
criterion (d-separation) for DAGs and pinpointed the role of CI.

The theoretical breakthrough leading to (graphical) probabilistic expert systems was
the local computation method. Lauritzen and Spiegelhalter [26] offered a methodology to
perform efficient computations of conditional probabilities for (discrete) measures which
are Markovian with respect to a DAG.

1.1.3 Conditional independence in other areas

Probability theory and statistics are not the only fields in which the concept of CI was intro-
duced and examined. An analogous concept of embedded multivalued dependency (EMVD)
was studied in the 1970s in the theory of relational databases. Sagiv and Walecka [44]
showed that there is no finite axiomatic characterization of EMVD structures. Shenoy [48]
observed that one can introduce the concept of CI within various calculi for dealing with
knowledge and uncertainty in artificial intelligence (AI), including Spohn’s theory of natural
(ordinal) conditional functions, Zadeh’s possibility theory and the Dempster-Shafer theory
of evidence.

This motivated several papers devoted to formal properties of CI within various uncer-
tainty calculi in AI. For example, Vejnarová [63] studied the properties of CI in the frame of
possibility theory and it was shown in [54] that there is no finite axiomatic characterization
of the CI structures arising in the context of natural conditional functions. Various con-
cepts of conditional irrelevance have also been introduced and their formal properties were
examined in the theory of imprecise probabilities; let us mention the concept of epistemic
irrelevance introduced by Cozman and Walley [9].

1.1.4 Geometric approach and methods of modern algebra

The observation that graphs cannot describe all possible discrete stochastic CI structures
led me to proposing a linear-algebraic method of their description in [57]. In this approach,
certain vectors whose components are integers and correspond to subsets of the set of
variables, called (structural) imsets, are used to describe the CI structures. The approach
allows one to apply geometric methods of combinatorial optimization to learning graphical
models and to approaching the CI implication problem. Hemmecke et al. [21] answered two
of the open problems related to the method of imsets and disproved a geometric conjecture
from [57] about the cone corresponding to the (structural) imsets.
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The application of methods of modern algebra and (polyhedral) geometry to problems
arising in mathematical statistics has recently led to establishing a new field of algebraic
statistics. Drton, Sturmfels and Sullivant [16] in their book on this topic devoted one chapter
to advanced algebraic tools for describing statistical models of CI structure. The topic of
probabilistic CI thus naturally became one of the topics of interest in that area.

1.1.5 A motivational example

This section contains a small story to explain the intuitive sense of CI. The section can be
skipped without affecting the flow of the chapter.

Imagine that organizers of a conference entitled Probabilistic Graphical Models, to be
held in September 2018 in Prague, have the task to organize a lunch for the participants in
a student cafeteria during a lunch break. Because of time limitations, they give the partic-
ipants a limited choice of drinks and dishes. Cruel organizers intentionally decide to ignore
human rights of vegetarians and teetotalers; thus, 3 items are to be served consecutively:

a ... a drink (exclusive choice is either BEER or white WINE),
c ... the main course (the choice is PORK or FISH),
b ... a dessert (the choice is SALAD or CAKE).

The participants are asked to decide about their main courses c after obtaining their drinks
a. This can substantially influence their decisions: a well-known fact is that white wine pairs
with fish while beer is the best fit with a traditional Czech dish which consists of roasted
pork, sauerkraut and dumplings. Thus, a typical participant already drinking wine chooses
fish, while only a minority of wine-drinkers take pork. Analogously, a typical beer-drinker
goes for pork and a minority of them take fish. An analogous decision problem for partici-
pants occurs when they finish their main courses. Since the pork with sauerkraut is fat, a
typical pork-eater decides to compensate that by choosing a light salad; on the other hand,
fish has low calories, which makes a majority of fish-eaters decide for a sweet cake. Assume
for simplicity that the proportion of non-typical participants in each group is 1

4 and that
drinking preferences are equal. This leads to the following scheme, allowing us to compute
the overall probabilities:

WINE

BEER

1
2

1
2

FISH

PORK

3
4

3
4

-

-

��
��
�*H

HHHHj1
4

1
4

CAKE

SALAD

-

-

��
��
�*H

HHHHj

3
4

3
4

1
4

1
4

a c b

It is clear from the description of the situation that (the decision about) the last event b
dominantly depends on (the previous decision about) the event c; in fact, it is independent of
what the results of the event a was. This description characterizes the situation when events
a and b are conditionally independent given the values of the event c, which is conventionally
denoted by a ⊥⊥ b | c.

This example also illustrates the intuitive difference between conditional and uncondi-
tional independence of events. One can observe higher correlation between beer and salad,
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d d d
a bc

(a)

d d d--
a bc

(b) d d d��
a bc

(c)
'
&

$
%

d d d-�
a bc

(d)

d d d�-
a bc

(e)

FIGURE 1.1: Examples of graphs for a description of a CI structure.

respectively between wine and cake:

(BEER,SALAD)
(BEER,PORK,SALAD) → 1

2 · 3
4 · 3

4 = 9
32

(BEER,FISH,SALAD) → 1
2 · 1

4 · 1
4 = 1

32

}
→ 10

32 ,

(BEER,CAKE)
(BEER,PORK,CAKE) → 1

2 · 3
4 · 1

4 = 3
32

(BEER,FISH,CAKE) → 1
2 · 1

4 · 3
4 = 3

32

}
→ 6

32 ,

(WINE,SALAD)
(WINE,PORK,SALAD) → 1

2 · 1
4 · 3

4 = 3
32

(WINE,FISH,SALAD) → 1
2 · 3

4 · 1
4 = 3

32

}
→ 6

32 ,

(WINE,CAKE)
(WINE,PORK,CAKE) → 1

2 · 1
4 · 1

4 = 1
32

(WINE,FISH,CAKE) → 1
2 · 3

4 · 3
4 = 9

32

}
→ 10

32 .

Note that situations when a confounding variable c exists for correlated variables a and b
often occurs in connection with the so-called Simpson’s paradox.

Graphs can be used to depict such conditional in/dependence relations among (random)
variables; for example, the undirected graph in Figure 1.1(a) is traditionally used to depict
the above-described situation. Directed edges (= arrows) can then be used to give some
additional information or interpretation. Thus, the directed graph in Figure 1.1(b), which
brings the same CI information as that in Figure 1.1(a), can be used to show the time
direction. Nevertheless, the role of variables a and b is exchangeable in the sense that the
probability distribution remains the same if one swaps a and b. Indeed, one can consider
an absurd situation when the cruel organizers decide the next day to reverse the order of
courses in order to torture the participants with the thirst. The point is that the probability
distribution will be the same but the graph in Figure 1.1(c) then better reflects the additional
information about the time direction. The third option is that one decides to use arrows to
pinpoint the central role of the variable c, which leads to the graph shown in Figure 1.1(d).
All the directed graphs in the oval within Figure 1.1 give the same CI information (about
the underlying distribution); in this case we say they are independence orMarkov equivalent.

The directed graph in Figure 1.1(e) is, however, interpreted in another way. This graph
is traditionally used to describe the situation when variables a and b are unconditionally
independent but conditionally dependent given c; in notation, a ⊥⊥ b and a 6⊥⊥ b | c. Let us
give another silly example of when such a probability distribution can occur. Imagine that
a poor man has the last two coins to be spent this evening and he has to decide whether to
buy some food or a bottle of beer he likes a lot. Thus, he has to decide exclusively between
the hunger and the thirst; nevertheless, he slightly tends to avoid the hunger. Therefore, he
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decides to toss the coins and if two heads occur then he buys the beer, otherwise the food.
Then the result a of tossing the first coin will be independent of the result b of tossing the
second coin while the event c whether he buys food or beer depends on the joint configuration
of values of a and b. In this case, a and b are not conditionally independent given the values
of c. Some authors then say that variables a and b are marginally independent but not
conditionally independent given (the values of) variable c.

The latter example also allows us to explain the difference between two traditional
interpretations of graphical models. In this chapter we deal with the basic CI interpretation
when the graph in Figure 1.1(e) is understood solely as a record of CI information about the
distribution. Other authors have given an extended causal interpretation of graphs, where
arrows are used to encode expected causal relationships among variables. Thus, the graph
in Figure 1.1(e) can be understood as a pictorial representation of the fact that the variable
c causally/functionally depends on (combination of) variables a and b. Note, however, that
causal interpretation of graphs is based on very specific assumptions on data generation
mechanism. The causal interpretation is discussed in Part IV of this handbook.

1.2 Notation and Elementary Concepts
In this section, notation is introduced and elementary notions are recalled. Throughout the
chapter N is a finite non-empty index set whose elements correspond to random variables
(and to nodes of graphs in graphical context). The symbol P(N) := {A : A ⊆ N } will
denote the power set of N .

1.2.1 Discrete probability measures

This section mainly deals with the discrete case and does not require any special previous
knowledge from the reader.

Definition 1.2.1. A discrete probability measure over N is defined as follows:

(i) For each i ∈ N a non-empty finite set Xi is given, which is the individual sample space
for the variable i. This defines a joint sample space, which is the Cartesian product
XN :=

∏
i∈N Xi.

(ii) A probability measure P on XN is given; it is determined by its density, which is a
function p : XN → [0, 1] such that

∑
x∈XN p(x) = 1. Then P (A) =

∑
x∈A p(x) for any

A ⊆ XN .

A general probability measure over N is defined analogously, but instead of a finite set Xi, a
measurable space (Xi,Xi) is assumed for any i ∈ N . The joint sample space is endowed with
the product σ-algebra

⊗
i∈N Xi. Some measures on (XN ,

⊗
i∈N Xi) cannot be determined

by densities in the general case.

Given A ⊆ N , any list of elements [xi]i∈A such that xi ∈ Xi for i ∈ A will be called
a configuration for A. The set XA of configurations for A is then the sample space for A.
Given disjoint A,B ⊆ N , we will use concatenation AB as a shorthand for (disjoint) union
A ∪B. Given disjoint configurations a ∈ XA and b ∈ XB , the symbol [a, b] will denote their
join, i.e., the joint list. If the joint configuration is an argument of a function, say of a
density p : XAB → R, then the brackets will be omitted and we will write p(a, b) instead of
p([a, b]); similarly in the case of the join of three or more disjoint configurations.
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In the case of A ⊆ B and b ∈ XB , the symbol bA will denote the restriction of the
configuration b for A, that is, the restricted list. The mapping from XB to XA ascribing bA
to b ∈ XB is the corresponding marginal projection. In particular, the symbol b∅ will denote
the empty configuration, that is, the empty list of elements.

Given i ∈ N , the symbol i will often be used as an abbreviation for the singleton {i}.
In particular, if i ∈ A ⊆ N and a ∈ XA then the symbol ai will be a simplified notation
for the marginal configuration a{i}; of course, it is nothing but the i-th component of the
configuration a.

Given disjoint A,B ⊆ N and configuration sets A ⊆ XA, B ⊆ XB , we introduce A×B :=
{[a, b] : a ∈ A & b ∈ B}. Note that A×B is typically the Cartesian product but if A = ∅ and
A 6= ∅, that is, if A = {a∅} only contains the empty configuration, then one has A×B = B;
analogously in the case of B = ∅ 6= B.

Definition 1.2.2. Given A ⊆ N and a probability measure P over N , the marginal measure
for A is the measure PA over A defined by the relation

PA(A) := P ({x ∈ XN : xA ∈ A }) for A ⊆ XA (A ∈⊗i∈A Xi in general).

In the discrete case, the marginal density for A is the density of PA; it is given by the
formula

pA(a) = P ({x ∈ XN : xA = a }) =
∑

c∈XN\A

p(a, c) for a ∈ XA,

where p is the (joint) density of the probability measure P .

Note that a simple vanishing principle for marginal densities will be tacitly used in
§ 1.3.1: if x ∈ XN , C ⊆ B ⊆ N then pC(xC) = 0 implies pB(xB) = 0. The next elementary
concept in the discrete case is that of a conditional probability, where the conditioning
objects are (marginal) configurations.

Definition 1.2.3. Given disjoint sets A,C ⊆ N of variables and a discrete probability
measure P over N , the conditional probability on XA given C is a (partial) function of two
arguments denoted by PA|C(∗|∗), where the asterisks stand for the respective arguments.
Specifically,

PA|C(A|c) :=
PAC(A× {c})
PC({c}) ≡ PAC(A× {c})

pC(c)

where A ⊆ XA and c ∈ XC with pC(c) > 0.

The conditional density for A given C is also a (partial) function, in this case both arguments
are the respective marginal configurations:

pA|C(a|c) :=
pAC(a, c)

pC(c)
≡ PA|C({a}|c) for a ∈ XA, c ∈ XC with pC(c) > 0.

Observe that the marginal measure can be viewed as a special case of the conditional
probability where the conditioning configuration is empty, that is, C = ∅. Another obser-
vation is that, for any positive configuration, that is, c ∈ XC with pC(c) > 0, the function
A ⊆ XA 7→ PA|C(A|c) is a probability measure over A. It is clear that PA|C(∗|∗) only
depends on the marginal PAC .

In the computer science community, the conditional density is sometimes called a con-
ditional probability table. Let us emphasize that the ratio defining the conditional density is
not defined for conditioning on zero configurations c ∈ XC with pC(c) = 0, an important de-
tail which is, unfortunately, omitted or even ignored in some machine learning (text)books.
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Note that the assumption that the density is strictly positive, that is, p(x) > 0 for all
x ∈ XN , is too restrictive in the area of probabilistic expert systems because it does not
allow for modeling functional dependencies between random variables.

In the discrete case, one does not need to extend the conditional probability to zero
configurations in order to define the notion of CI; however, in the general case, one has to
consider different versions of conditional probability, which makes the general definition of
CI more technical (see § 1.3.2).

1.2.2 Continuous distributions

In this section, which can be skipped by beginners, we assume that the reader is familiar with
the standard notions of measure theory. The meaning of the term probability distribution
encountered in the literature depends on the field in which it is actually encountered. In
probability theory, it usually means a (general) probability measure, while in statistics its
meaning is typically restricted to measures given by densities, and in computer science it is
often identified with the concept of a density function.

In statistics, one typically works with real continuous distributions and these are defined
through densities. There is a quite wide class of probability measures for which the concept
of density (function) makes good sense.

Definition 1.2.4. A probability measure over N is marginally continuous if it is absolutely
continuous with respect to the product of its one-dimensional marginals, that is, if

(
⊗

i∈N
Pi)(A) = 0 implies P (A) = 0 for any A ∈⊗i∈N Xi,

in notation P � ⊗
i∈N Pi, where the symbol ⊗ is used to denote both the product of

(probability) measures and the product of σ-algebras.

An equivalent definition of a marginally continuous measure is that there exists a (dom-
inating) system of σ-finite measures µi on (Xi,Xi) for i ∈ N such that P �⊗

i∈N µ
i (see

[57, Lemma 2.3]). It is easy to verify that every discrete probability measure over N is
marginally continuous: the dominating system of measures is the system of counting mea-
sures, that is, µi(A) = |A| for any i ∈ N and A ⊆ Xi. Another standard example is a regular
Gaussian measure over N ; in this case, for any i ∈ N , Xi = R is the set of real numbers
endowed with the Borel σ-algebra and µi is the Lebesgue measure.

Having fixed individual sample spaces and a dominating system of σ-finite measures,
every marginally continuous measure P can be introduced through its joint density f ,
which is the Radon-Nikodym derivative of P with respect to µ :=

⊗
i∈N µ

i. For all A ⊆ N ,
we put XA :=

⊗
i∈A Xi and accept a convention that X∅ := {∅,X∅} is the only (trivial)

σ-algebra on X∅.
The marginal density for A ⊆ N is then defined as the Radon-Nikodym derivative

fA of the marginal PA with respect to µA :=
⊗

i∈A µ
i, where µ∅ is the only probability

measure on (X∅,X∅) by a convention. Recall that it is an XA-measurable function satisfying
PA(A) =

∫
x∈A fA(x) dµA(x) for any A ∈ XA. The marginal density fA can be understood

as a function on the joint sample space XN depending only on the marginal configuration
xA. The joint and marginal densities are determined uniquely in the sense of µ-everywhere.
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1.3 The Concept of Conditional Independence
In this section, several equivalent definitions of probabilistic CI in the discrete case are
presented; the general case is discussed in the end of the section.

1.3.1 Conditional independence in the discrete case

In this section, a number of equivalent definitions of probabilistic CI are given and illustrated
by two examples. Our attention will intentionally be restricted to the discrete case in order
to keep the text accessible to beginners.

The following symmetric definition of CI was chosen as the basic one because it is analo-
gous to the definition of stochastic independence, which is characterized by the requirement
that the joint distribution is the product of marginal ones.

Definition 1.3.1. Let A,B,C ⊆ N be pairwise disjoint sets of variables and P a discrete
probability measure over N . We say that A and B are conditionally independent given C
with respect to P and write A ⊥⊥ B |C [P ] if

∀A ⊆ XA ∀B ⊆ XB ∀ c ∈ XC such that pC(c) > 0

PAB|C(A× B|c) = PA|C(A|c) · PB|C(B|c). (1.1)

It follows from the definition that the validity of A ⊥⊥ B |C [P ] only depends on the
marginal measure PABC . Clearly, a modified formulation of (1.1) is that, for each posi-
tive configuration c ∈ XC , the conditional probability PAB|C(∗|c) is the product of some
measures over A and B. The condition (1.1) has a natural interpretation of conditional
irrelevance: once the value c ∈ XC for C is known, the variables in A and B do not influ-
ence each other, i.e., the occurrence of a value b ∈ XB does not influence the probability
of occurrence of a ∈ XA, and vice versa. Also, (1.1) can be extended to a general case, as
explained in § 1.3.2. On the other hand, (1.1) is not suitable for verification.

Fortunately, there are elegant equivalent conditions given in terms of densities. Specifi-
cally, given pairwise disjoint A,B,C ⊆ N and a discrete probability measure P over N , the
CI statement A ⊥⊥ B |C [P ] has the following equivalent formulation in terms of marginal
densities:

∀x ∈ XABC pC(xC) · pABC(x) = pAC(xAC) · pBC(xBC) , (1.2)

which easily implies a seemingly weaker condition

∀x ∈ XABC with pABC(x) > 0 pABC(x) =
pAC(xAC) · pBC(xBC)

pC(xC)
. (1.3)

Using the vanishing principle, the reader can easily see that (1.1)⇒(1.2)⇒(1.3); the impli-
cation (1.3)⇒(1.1) follows from the next fact.

Observation 1.3.1. There exists a probability measure P̄ on XABC such that

P̄AC = PAC , P̄BC = PBC , and A ⊥⊥ B |C [P̄ ].

The measure P̄ is uniquely determined and satisfies PABC � P̄ .

Proof. We define the value p̄(x) of the density of P̄ by the formula on the right-hand side of
(1.3) for x ∈ XABC with pC(xC) > 0 and p̄(x) = 0 in the case of pC(xC) = 0. The remaining
statements are left to the reader as an exercise.
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Observation 1.3.1 even holds for any pair of discrete probability measures Q on XAC
and R on XBC satisfying QC = RC in place of PAC and PBC . The measure P̄ can then be
called the conditional product of Q and R; this result implies that, for any such consonant
pair of measures Q and R, a distribution P over ABC exists having them as marginals,
namely P̄ .

To verify (1.3)⇒(1.1), we use the construction from the proof of Observation 1.3.1 and
apply (1.3) to see that p̄(x) = pABC(x) in the case of pABC(x) > 0. Then we realize that
the values of both p̄ and pABC sum up to 1 to extend the equality p̄(x) = pABC(x) to the
case of pABC(x) = 0.

Another CI characterization in terms of marginal densities appeared in [40]; it can be
interpreted as a cross-exchange condition for configurations:

∀ a, ā ∈ XA, ∀ b, b̄ ∈ XB , ∀ c ∈ XC one has

pABC(a, b, c) · pABC(ā, b̄, c) = pABC(a, b̄, c) · pABC(ā, b, c) . (1.4)

To verify (1.2)⇒(1.4), we distinguish between the cases of pC(c) = 0, when (1.4) is evident,
and pC(c) > 0. In the latter case, derive (1.4) whose sides are both multiplied by pC(c)·pC(c)
from equalities (1.2) applied to x = [a, b, c], x = [ā, b̄, c], x = [ā, b, c], and x = [a, b̄, c]. The
implication (1.4)⇒(1.2) can be shown by summing over ā and b̄ in (1.4). The condition
(1.4) is particularly easy to verify in the binary case, when |Xi| = 2 for all i ∈ N .
Example 1.3.2. To illustrate the application of the above equivalent definitions of (discrete
probabilistic) CI, let us take N = {a, b, c}, Xi = {0, 1} and introduce a binary probability
measure P on XN by its density p as follows:

p(0, 0, 0) = p(0, 1, 1) = p(1, 0, 1) = p(1, 1, 0) =
1

8
+ ε ,

p(0, 0, 1) = p(0, 1, 0) = p(1, 0, 0) = p(1, 1, 1) =
1

8
− ε ,

for some 0 ≤ ε ≤ 1
8 . We have pab(0, 0) = pab(0, 1) = pab(1, 0) = pab(1, 1) = 1

4 . No matter
what the parameter ε is, the cross-exchange condition (1.4) holds:

pab(0, 0) · pab(1, 1) =
1

4
· 1

4
=

1

16
=

1

4
· 1

4
= pab(0, 1) · pab(1, 0) ,

which means a ⊥⊥ b | ∅ [P ] or, in a brief record, a ⊥⊥ b [P ]. One can also test that using the
condition (1.2): since one has pa(0) = pa(1) = 1

2 and pb(0) = pb(1) = 1
2 , using the fact that

p∅(x∅) = 1 for any x ∈ Xab we have

p∅(x∅) · pab(xab) = 1 · 1

4
=

1

4
=

1

2
· 1

2
= pa(xa) · pb(xb) ,

again showing a ⊥⊥ b | ∅ [P ]. On the other hand, for all 0 < ε ≤ 1
8 , the cross-exchange

condition (1.4) does not hold with c = 0:

p(0, 0, 0) · p(1, 1, 0) = (
1

8
+ ε)2 6= (

1

8
− ε)2 = p(0, 1, 0) · p(1, 0, 0) ,

which means a 6⊥⊥ b | c [P ]. The density p is strictly positive except ε = 1
8 , which is one of

the classic examples of interesting zero-admitting densities. Recall a traditional tale from
probabilistic reasoning on how such a distribution can occur. Imagine that variables a and
b describe the result of a simultaneous (independent) toss of two fair coins, with outcomes
0 and 1, and a witness rings a bell whenever different outcomes occur. The variable c has
the value 1 if the bell rings, otherwise it has the value 0.
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Factorization and other equivalent definitions

An elegant characterization of a CI statement is in terms of factorization:

∃ f : XAC → R, ∃ g : XBC → R such that

∀x ∈ XABC pABC(x) = f(xAC) · g(xBC) , (1.5)

where the functions f and g are called potentials. To show (1.2)⇒(1.5), put f = pAC and
g(z) = pBC(z)

pC(zC) in the case of pC(zC) > 0 and g(z) = 0 otherwise. To show (1.5)⇒(1.2)
introduce marginal potentials fC(c) =

∑
a∈XA f(a, c), gC(c) =

∑
b∈XB g(b, c) for c ∈ XC

and observe by summing in (1.5) that pAC = f · gC , pBC = fC · g and pC = fC · gC . Then
substitute these equalities and (1.5) to both sides of (1.2). In comparison with the condition
(1.3), the factorization condition (1.5) does not require the potentials to be expressed in
terms of marginal densities, which makes (1.5) more suitable for verification.

The concept of CI is often introduced in terms of conditional densities. An elegant
symmetric definition of CI in these terms is the following one:

∀x ∈ XABC such that pC(xC) > 0, one has

pAB|C(xAB |xC) = pA|C(xA|xC) · pB|C(xB |xC) . (1.6)

To see it is equivalent to the previous conditions observe that (1.2)⇒(1.6)⇒(1.3). Neverthe-
less, the most popular definition in the terms of conditional densities is the next asymmetric
one, which basically says that the conditional distribution PA|BC does not depend on the
variables in B:

∀x ∈ XABC with pBC(xBC) > 0 pA|BC(xA|xBC) = pA|C(xA|xC) . (1.7)

One can easily show that (1.2)⇒(1.7)⇒(1.3). The interpretation of the condition (1.7),
which is common in the theory of Markov processes, is that the future A depends on the past
B only through the present C. Of course, there are lots of modifications of this condition,
for example that pA|BC(∗|∗) only depends on AC, but these modifications are omitted in
this chapter.

Example 1.3.3. To illustrate the application of the factorization property, take another
example of a discrete distribution with zero-admitting density. Put again N = {a, b, c},
Xi = {0, 1} and introduce a probability measure P on XN by its density p as follows:

p(0, 0, 0) = p(1, 1, 1) =
1

2
, p(x) = 0 for remaining configurations x ∈ XN .

To verify that a ⊥⊥ b | c [P ] holds using the condition (1.5), introduce functions f : Xac → R
and g : Xbc → R as follows:

f(0, 0) = f(1, 1) =
1

2
, f(0, 1) = f(1, 0) = 0 ,

g(0, 0) = g(1, 1) = 1, g(0, 1) = g(1, 0) = 0 .

For x ∈ XN , one has f(xac) ·g(xbc) 6= 0 iff either x = (0, 0, 0) or x = (1, 1, 1) and the value is
1
2 then. Thus, (1.5) holds and, by symmetry argument, we observe that i ⊥⊥ j | k [P ] is true
for any choice of distinct i, j, k ∈ N . On the other hand, one has pab(0, 0) = pab(1, 1) = 1

2 and
pab(0, 1) = pab(1, 0) = 0, which allows one to observe, using the cross-exchange condition
(1.4), that a 6⊥⊥ b | ∅ [P ]; hence, by symmetry, i 6⊥⊥ j | ∅ [P ] for any distinct i, j ∈ N .
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1.3.2 More general CI concepts

This section, to be skipped by beginners, assumes that the reader is familiar with deeper
notions of measure theory. Its aim is to explain how probabilistic CI is defined in terms of
σ-algebras and how this abstract definition is reduced to the cases of general and marginally
continuous probability measures.

A crucial concept is that of conditional probability, where the conditioning object is a
σ-algebra. Let P be a probability measure on a measurable space (X,X ), C ⊆ X a σ-algebra
and Ã ∈ X an event. A version of conditional probability of Ã given C (= conditioned by C)
is any C-measurable function h : X→ [0, 1], denoted by P [Ã|C], such that

∀ C̃ ∈ C P (Ã ∩ C̃) =

∫

C̃
h(x) dP (x) ≡

∫

C̃
P [Ã|C](x) dP (x) . (1.8)

It follows from the Radon-Nikodym theorem that such a function h exists and is unique in
the sense of P C-everywhere equality, where P C denotes the restriction of P to the mea-
surable space (X, C). One can introduce the concept of CI for σ-algebras as follows: given
σ-algebras A,B, C ⊆ X , we say that A and B are conditionally independent given C and
write A ⊥⊥ B | C if

∀ Ã ∈ A ∀ B̃ ∈ B
P [Ã ∩ B̃|C](x) = P [Ã|C](x) · P [B̃|C](x) for P C-a.e x ∈ X . (1.9)

Note that the validity of (1.9) does not depend on the choice of particular versions of
conditional probabilities; its equivalent formulation is the condition

∀ Ã ∈ A there exists C-measurable version of P [Ã|B ∨ C] ,

where B ∨ C is the σ-algebra generated by B ∪ C; see [57, LemmaA.6]. This condition can
be interpreted as an analogue of the discrete condition (1.7).

Let us now describe how the CI definition (1.9) works in the case of a (general) prob-
ability measure P over N mentioned in Definition 1.2.1. In this case, we put (X,X ) :=
(XN ,

⊗
i∈N Xi), P := P . Recall from § 1.2.2 that, for A ⊆ N , XA ≡

⊗
i∈A Xi denotes the

product σ-algebra on XA, with X∅ ≡ {∅,X∅}. It can be ascribed the respective coordinate
σ-algebra A := {A× XN\A : A ∈ XA} of subsets of X = XN ; one then has A ⊆ X .

Given disjoint A,C ⊆ N , let C denote the coordinate σ-algebra for XC . Any event
A ∈ XA can be ascribed its cylindrical extension Ã := A×XN\A; the conditional probability
x ∈ XN 7→ P [Ã|C](x) then depends on xC and can be identified with an XC-measurable
function on XC , to be denoted by c ∈ XC 7→ PA|C(A|c). Thus, (1.8) allows one to introduce
the concept of conditional probability on XA given C as a function PA|C : XA × XC → [0, 1]
of two arguments such that, for any A ∈ XA, the function c ∈ XC 7→ PA|C(A|c) is XC-
measurable and satisfies

PAC(A× C) =

∫

C
PA|C(A|c) dPC(c) for any C ∈ XC .

Observe that this is a natural generalization of the concept from Definition 1.2.3. Given
pairwise disjoint A,B,C ⊆ N , the conditionA ⊥⊥ B | C from (1.9) turns into the requirement

∀A ∈ XA ∀B ∈ XB
PAB|C(A× B|c) = PA|C(A|c) · PB|C(B|c) for PC-a.e. c ∈ XC

which directly generalizes (1.1) and can be considered as a definition of the CI statement
A ⊥⊥ B |C [P ] in the case of a (general) measure P over N .
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In the case of a marginally continuous measure P over N (see § 1.2.2) one can introduce
CI in terms of marginal densities. Specifically, it was shown in [57, Lemma2.4] that, provided
a dominating system of measures µi on (Xi,Xi), i ∈ N , is fixed, one has A ⊥⊥ B |C [P ] for
pairwise disjoint A,B,C ⊆ N iff

fC(xC) · fABC(xABC) = fAC(xAC) · fBC(xBC) for µ-a.e. x ∈ XN ,

where fD, D ⊆ N , denotes the marginal density for D. This condition generalizes (1.2) and
one can also generalize the other equivalent conditions from § 1.3.1 in terms of densities.
For example, (1.5) takes the form: there exist XAC-measurable h : XAC → R and XBC-
measurable g : XBC → R such that

fABC(x) = h(xAC) · g(xBC) for µ-a.e. x ∈ XN .

1.4 Basic Properties of Conditional Independence
In this section, we introduce (probabilistic) CI structures and recall their basic formal
properties. We also relate formal CI models to classic statistical models.

1.4.1 Conditional independence structure

A disjoint triplet over N is an ordered triplet A,B,C ⊆ N of pairwise disjoint subsets of N .
Notation 〈A,B|C〉 will be used to indicate the intended interpretation of such a triplet as a
formal statement that the variables in A are independent of/dependent on the variables in
B conditionally the variables in C. The system of all disjoint triplets over N will be denoted
by T (N).

A formal independence model over N is a subsetM of T (N), whose elements are inter-
preted as independence statements. We write A ⊥⊥ B |C [M] to indicate that 〈A,B|C〉 ∈ M
is interpreted as an independence statement and A 6⊥⊥ B |C if 〈A,B|C〉 is interpreted as a
dependence statement.

The conditional independence structure induced by a probability measure P over N is
a formal independence model (over N) composed of those triplets which represent valid CI
statements with respect to P :

MP := { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [P ] } .

Not every formal independence model is a CI structure. The next proposition presents basic
formal properties of CI structures.

Observation 1.4.1. Let P be a probability measure over N . Then one has for (pairwise
disjoint) A,B,C,D ⊆ N :

(i) ∅ ⊥⊥ B |C [P ],

(ii) A ⊥⊥ B |C [P ] ⇔ B ⊥⊥ A |C [P ],

(iii) A ⊥⊥ BD |C [P ] ⇔ {A ⊥⊥ D |C [P ] & A ⊥⊥ B |DC [P ] }.

Moreover, if P has a strictly positive density then

(iv) {A ⊥⊥ B |DC [P ] & A ⊥⊥ D |BC [P ] } ⇒ A ⊥⊥ BD |C [P ] .
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Recall that a discrete measure P on XN has a (strictly) positive density if p(x) > 0 for
all x ∈ XN . In the general case (see § 1.2.2) a measure P over N has a positive density if
it is marginally continuous and a dominating system µi, i ∈ N , of σ-finite measures exists
such that µ ≡⊗i∈N µ

i � P .
The proof of Observation 1.4.1 given below is intentionally restricted to the discrete case

so that beginners can understand it fully. A reader familiar with calculus of densities can
modify the proof to cover the marginally continuous case (see § 1.2.2), provided that he/she
is familiar with peculiarities of the almost-everywhere equality of densities. Nevertheless, in
a general case of CI in terms of σ-algebras (see § 1.3.2), deeper measure-theoretical consid-
erations are needed to derive the result; see [57, §A.7].

Proof. We assume the discrete case throughout the proof. To verify (i), we use (1.1) and
realize that in the case of A = ∅ one has either A = ∅ = A× B or {A 6= ∅ & A× B = B }.
The condition (ii) is evident. To verify (iii), we combine (1.2) and (1.3). For the implication
A ⊥⊥ BD |C ⇒ A ⊥⊥ D |C, we use (1.2): the summation over B-configurations in pC ·
pABDC = pAC ·pBDC gives pC ·pADC = pAC ·pDC . As concerns A ⊥⊥ BD |C ⇒ A ⊥⊥ B |DC,
we multiply the above-derived equalities (the latter with swapped sides) to get

pC · pABDC · pAC · pDC = pAC · pBDC · pC · pADC .

Because canceling is possible here for positive ABDC-configurations, one gets

∀ pABDC > 0 pABDC · pDC = pADC · pBDC ,

which is, by (1.3), A ⊥⊥ B |DC. The proof of the converse, that is, the implication
{A ⊥⊥ D |C & A ⊥⊥ B |DC } ⇒ A ⊥⊥ BD |C, is analogous.

To verify {A ⊥⊥ B |DC & A ⊥⊥ D |BC } ⇒ A ⊥⊥ BD |C in (iv), we use (1.3) for both
CI statements and get by canceling (because of pBDC > 0):

pADC · pBDC
pDC

= pABDC =
pABC · pBDC

pBC
⇒ pADC

pDC
=
pABC
pBC

.

Choose and fix a configuration b ∈ XB and write

∀ [a, d, c] ∈ XADC pA|DC(a|d, c) =
pADC(a, d, c)

pDC(d, c)
=
pABC(a, b, c)

pBC(b, c)
,

which means that pA|DC does not depend on d ∈ XD. By condition (1.7), it follows that
A ⊥⊥ D |C [P ]. By (iii), this together with A ⊥⊥ B |DC [P ] implies A ⊥⊥ BD |C [P ].

Note that the property in Observation 1.4.1(iv), called intersection, need not be valid
for a discrete distribution P which is not strictly positive. Indeed, Example 1.3.3 shows that
one can have i ⊥⊥ j | k [P ] for all distinct i, j, k ∈ N , while i 6⊥⊥ j | ∅ [P ]; the latter implies
i 6⊥⊥ {j, k} | ∅ [P ]. Chapter 3 of this handbook analyzes the validity of the intersection
property in more details.

Side-remark about relational databases

Formal independence models satisfying the conditions (i)-(iii) from Observation 1.4.1 occur
also outside of statistics. There is one area in computer science where a concept analogous
to the concept of probabilistic CI has been studied. It is the theory of relational databases,
which is approximately 15 years older than probabilistic reasoning. The problem there is
how to efficiently organize data in large data banks [7]. Researchers in this area became
interested in special concepts of functional and multi-valued dependencies (in databases),
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which allowed them to reduce the memory demands, and tried to axiomatize them [3].
Moreover, there is a concept of embedded multivalued dependency (EMVD) [44], which is
completely analogous to probabilistic CI and exhibits similar formal properties.

In this theory, the elements of N are called attributes, and each attribute i ∈ N is
ascribed a finite (individual) sample space Xi of possible values. A relational database over
N is simply a set of configurations over N .

One can introduce natural operations with relational databases, some of which were
already mentioned in § 1.2.1. Given A ⊆ B ⊆ N and a relational database D ⊆ XB over B,
the projection of D onto A is a relational database over A defined by DA := {bA : b ∈ D}.
The second important operation is that of a combination, which is an analogue of the
operation of conditional product for discrete probability measures from Observation 1.3.1.
Specifically, given a disjoint triplet 〈A,B|C〉 over N and databases D1 ⊆ XAC , D2 ⊆ XBC
its combination is a relational database over ABC defined as follows:

D1 ./ D2 := { [a, b, c] ∈ XABC : [a, c] ∈ D1 & [b, c] ∈ D2 } .

There is an analogy of the CI concept: given 〈A,B|C〉 ∈ T (N) and a database D over N ,
we say that an embedded multivalued dependency (EMVD) statement A ⊥⊥ B |C [D] holds
if DABC = DAC ./ DBC , in words, if the projection of D onto ABC is the combination of
its projections onto AC and BC.

We leave it to the reader to verify that the formal independence model induced by D
satisfies the conditions (i)-(iii) from Observation 1.4.1.

1.4.2 Statistical model of a CI structure

The aim of this section is to explain that formal independence models can be interpreted
as common statistical models. Recall that by a (mathematical) statistical model is meant a
class of probability measures M on a prescribed sample space, which is a measurable space
(X,X ). In multivariate statistical analysis, one usually has a joint sample space (XN ,XN )
in the place of (X,X ).

Typically, a statistical model M is a parameterized class of measures and all of them are
absolutely continuous with respect to some given σ-finite measure µ on (X,X ), which is a
product measure µ =

⊗
i∈N µ

i in the case of (XN ,XN ). Each probability measure in M is
then determined by its density with respect to µ and, quite often, they are assumed to be
mutually absolutely continuous. The parameters usually belong to a convex subset Θ ⊆ Rn
for some n ≥ 1.

Assume that a distribution framework is specified, that is, a collection Ψ of probability
measures on the sample space is determined from which the probability measures in M
should be chosen. For example, in the discrete case, Ψ could be the class of all measures
with positive density, while in the continuous case with Xi = R for i ∈ N , one can have
the class of regular Gaussian distributions on RN in the place of Ψ. Then, every formal
independence modelM⊆ T (N) over N can be ascribed a class of probability measures

M = {P ∈ Ψ : A ⊥⊥ B |C [P ] whenever 〈A,B|C〉 ∈ M} ,

which can be called the statistical model of CI structure given byM.
This concept generalizes the classic concept of a graphical model [68, 24]. Indeed, the

reader can learn in § 1.7.1 that every UG G over N induces the class MG of Markovian
measures over N through a formal independence model MG induced by G. In general,
statistical models of CI structures are very complicated; however, graphical models provide
a subclass of nice models.
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1.5 Semi-graphoids, Graphoids, and Separoids
The notions discussed in this section have been inspired by the research on stochastic CI,
but they rather belong to the area of discrete mathematics. Pearl and Paz [43] introduced
the following concept in 1987.

Definition 1.5.1. A disjoint semi-graphoid over N is a formal independence model M
over N satisfying the following conditions/axioms:
∅ ⊥⊥ B |C [M] triviality,
A ⊥⊥ B |C [M] ⇒ B ⊥⊥ A |C [M] symmetry,
A ⊥⊥ BD |C [M] ⇒ A ⊥⊥ B |DC [M] weak union,
A ⊥⊥ BD |C [M] ⇒ A ⊥⊥ D |C [M] decomposition,
A ⊥⊥ D |C [M] & A ⊥⊥ B |DC [M] ⇒ A ⊥⊥ BD |C [M] contraction.
A disjoint semi-graphoidM will be called a graphoid (over N) if it satisfies
A ⊥⊥ B |DC [M] & A ⊥⊥ D |BC [M] ⇒ A ⊥⊥ BD |C [M] intersection.
GivenM⊆ T (N), its semi-graphoid closure is the smallest semi-graphoid overN containing
M. The graphoid closure ofM can be introduced analogously.

Semi/graphoid closures are well defined because set intersection of semi/graphoids over
N is a semi/graphoid over N . The CI implications in Definition 1.5.1 are nothing else but
detailed conditions from Observation 1.4.1, which basically says that every probabilistic CI
structure is a disjoint semi-graphoid, and even a graphoid if the distribution has a positive
density.

There are areas different from probability theory in which semi-graphoids have occurred.
We have seen in the side-remark from § 1.4.1 that every relational database can be ascribed
a disjoint semi-graphoid. The undirected separation criterion from § 1.7.1 allows one to
ascribe a graphoid to every UG over N and the same holds for the directional separation
criterion from § 1.8.1. Let us give three more examples; their verification is left to the reader.

A class of subsets: take T ⊆ P(N) ≡ {A : A ⊆ N} and define

A ⊥⊥ B |C [T ] := ∀ T ∈ T T ⊆ ABC ⇒ [T ⊆ AC or T ⊆ BC ].

A natural conditional function: given a finite joint sample space XN ,
this is a function κ : XN → Z such that min {κ(x) : x ∈ XN} = 0.
Introduce a marginal (function) for any A ⊆ N by the formula:
κA(y) := min {κ(y, z) : z ∈ XN\A } for any y ∈ XA. Define

A ⊥⊥ B |C [κ] := ∀x ∈ XN
κC(xC) + κABC(xABC) = κAC(xAC) + κBC(xBC) .

Note that this is a concept taken over from [51].

A supermodular function: this is a set function m : P(N)→ R such that
m(D ∪ E) +m(D ∩ E) ≥ m(D) +m(E) for all D,E ⊆ N . Define

A ⊥⊥ B |C [m] := m(C) +m(ABC) = m(AC) +m(BC) .

Note that semi-graphoids defined in this way coincide with structural semi-graphoids
mentioned in § 1.10.1.
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Some authors do not regard the restriction to disjoint triplets over N as necessary and
consider a general semi-graphoid over N , which is a set of ordered triplets A ⊥⊥ B |C of
(not necessarily disjoint) subsets of N , which satisfies the following three conditions:

• B ⊆ C ⇒ A ⊥⊥ B |C,

• A ⊥⊥ B |C ⇔ B ⊥⊥ A |C,

• A ⊥⊥ B ∪D |C ⇔ {A ⊥⊥ D |C & A ⊥⊥ B |D ∪ C }.

A general semi-graphoid is induced by a discrete probability measure P over N through
the condition (1.2) where non-disjoint triplets are allowed. Then A ⊥⊥ A |C [P ] means that
∀ pAC > 0 one has pAC = pC , which corresponds to functional dependency of A on C; note
that an axiomatic characterization of probabilistic functional dependency structures was
given by Matúš [30]. Thus, general semi-graphoids are broader than disjoint semi-graphoids
because they involve functional dependency relation modeling.

Dawid took an even more general point of view and introduced an abstract concept of
a separoid; below we describe a simplification of his definition [13].

Definition 1.5.2. Let S be a joint semi-lattice, that is, a partially ordered set in which
every two elements a, b have a supremum (= a join), denoted by a ∨ b. A set of ordered
triplets a ⊥⊥ b | c of elements of S will be called a separoid if

• b ∨ c = c ⇒ a ⊥⊥ b | c,

• a ⊥⊥ b | c ⇔ b ⊥⊥ a | c,

• a ⊥⊥ b ∨ d | c ⇔ { a ⊥⊥ d | c & a ⊥⊥ b | d ∨ c }.

Of course, every general semi-graphoid over N is a separoid on the lattice (P(N),⊆).
Another prominent example requires for the reader to be familiar with measure theory: given
a probability measure P on a measurable space (X,X ), let S be the set of all σ-algebras
contained in X , ordered by inclusion. Then the ternary relation A ⊥⊥ B | C introduced in
§ 1.3.2 is a separoid.

1.5.1 Elementary and dominant triplets

To represent a (disjoint) semi-graphoid over N in the memory of a computer, one does not
need all |T (N)| = 4|N | bits.

Definition 1.5.3. A disjoint triplet 〈A,B|C〉 over N will be called trivial if either A = ∅
or B = ∅; it will be called elementary if |A| = 1 = |B|. The system of elementary triplets
over N will be denoted by Tε(N).

Clearly, the trivial triplets can always be excluded from considerations because they are
contained in any semi-graphoid. On the other hand, the elementary triplets are substantial
because of the following fact.

Observation 1.5.1. Let M be a disjoint semi-graphoid over N . Then, for every disjoint
triplet 〈A,B|C〉 ∈ T (N), one has A ⊥⊥ B |C [M] iff

∀ i ∈ A ∀ j ∈ B ∀K with C ⊆ K ⊆ ABC \ {i, j} i ⊥⊥ j |K [M] . (1.10)

In particular, for two disjoint semi-graphoids M1 and M2 over N , one has M1 ⊆ M2 iff
M1∩Tε(N) ⊆M2∩Tε(N), which implies that any semi-graphoidM is uniquely determined
by its elementary traceM∩ Tε(N).
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Proof. The necessity of (1.10) can be easily derived using the decomposition and weak union
properties combined with the symmetry property. For the converse implication, suppose
that 〈A,B|C〉 is not trivial and use induction on |AB|; the instance |AB| = 2 is evident.
Supposing |AB| > 2 either A or B is not a singleton. Owing to the symmetry property, one
can – without the loss of generality – consider |B| ≥ 2, choose b ∈ B and put B′ = B \ {b}.
By the induction assumption, (1.10) implies both A ⊥⊥ B′ |C [M] and A ⊥⊥ b |B′C [M].
Thus, the contraction property gives A ⊥⊥ B |C [M].

One can also easily show that N ⊆ Tε(N) is a trace of a semi-graphoid iff the symmetry
condition

i ⊥⊥ j |K [N ] ⇔ j ⊥⊥ i |K [N ]

and the exchange property

i ⊥⊥ j | kL [N ] & i ⊥⊥ k |L [N ] ⇔ i ⊥⊥ k | jL [N ] & i ⊥⊥ j |L [N ]

hold. Thus, the semi-graphoid closure can be described in terms of elementary triplets.
Since |Tε(N)| = |N | · (|N | − 1) · 2|N |−2 it is enough to have

(|N |
2

)
· 2|N |−2 bits to represent a

semi-graphoid over N .
Matúš [35] was interested in the intricacy of the semi-graphoid inference between el-

ementary CI statements and showed that the length of the derivation sequence can be
exponential in |N |. Nonetheless, there is an alternative way to represent semi-graphoids in
the memory of a computer.

Definition 1.5.4. We say that 〈A,B|C〉 ∈ T (N) dominates 〈A′, B′|C ′〉 ∈ T (N) if A′ ⊆ A,
B′ ⊆ B and C ⊆ C ′ ⊆ ABC. The triplets in a semi-graphoid which are maximal with
respect to this partial order on T (N) are called dominant.

If one restricts oneself to non-trivial triplets then elementary triplets in a (fixed) semi-
graphoidM are minimal with respect to the dominance ordering; thus, the dominant and
elementary triplets are somehow opposite to each other. An alternative way to represent
a semi-graphoid in the memory of a computer is by a list of its non-trivial (symmetrized)
dominant triplets.

One can also implement the semi-graphoid and graphoid closures in these terms, as
shown by Baioletti, Busanello and Vantaggi [2]. Dominant triplets were also employed as
an useful tool in [55] to show that the semi-graphoid closure of two disjoint triplets over N
is always a probabilistic CI structure. This fact can be interpreted as a result on relative
completeness of semi-graphoid implications for probabilistic CI inference if the input list
has at most 2 items (see § 1.11). Semi/graphoids over a fixed set N can also be classified
according to their semi/graphoid complexity, by which we mean the minimal cardinality of
a semi/graphoid generator [56].

For readers familiar with (advanced) polyhedral geometry, we mention two interesting
equivalent geometric definitions/interpretations of the concept of a semi-graphoid, which
were offered by Morton and his co-authors [37, 38]. Both equivalent geometric definitions
come from the semi-graphoid description in terms of elementary triplets.

The first equivalent definition is related to a special polytope, called a permutohedron,
which was previously introduced by Shouté in 1911 [46]. The idea is that all permutations
over a set N = {1, 2, . . . , n} ≡ [n] are interpreted as vectors in RN and their convex
hull is taken. There is a certain standard way to label one-dimensional faces (= geometric
edges) of this polytope by elementary triplets over N . Thus, N ⊆ Tε(N) is identified with
a set of geometric edges of the permutohedron. The two above-mentioned conditions on
N characterizing a semi-graphoid then have an elegant geometric interpretation. Every
two-dimensional face of the permutohedron is either a square or a regular hexagon. The
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FIGURE 1.2: Illustration of the square and hexagon axioms.

symmetry condition can be interpreted as a square axiom requiring that if a geometric edge
of a square belongs to N then so does the opposite edge. The exchange property corresponds
to a hexagon axiom, which says that if a pair of touching edges of a hexagon belongs to N
then the same holds for the pair of edges opposite to them in the hexagon; see Figure 1.2.

The second equivalent definition is in terms of (complete) polyhedral fans, which are
certain collections of polyhedral cones covering RN . There is a prominent polyhedral fan
induced by a special equivalence of vectors in RN , where u, v ∈ RN are equivalent if for
all i, j ∈ N one has ui ≤ uj ⇔ vi ≤ vj . That fan is called the Sn-fan (for n = |N |) by
Morton [38] or braid arrangement by other authors. Semi-graphoids are then in a one-to-one
correspondence with polyhedral fans which coarsen the prominent Sn-fan.

1.6 Elementary Graphical Concepts
In this section we introduce basic graphical concepts to be used in the following three
sections. Recall from § 1.2 that N is a generic symbol for a finite non-empty index set
whose elements correspond to random variables and occur as nodes of graphs in a graphical
context.

By a graph over N we will understand a graph which has N as the set of nodes. Graphs
considered in this chapter have no multiple edges; and there are two possible types of their
edges.

Undirected edges are unordered pairs of distinct nodes, that is, two-element subsets of
N . We will write i−− j to denote an undirected edge between nodes i and j from N ; a
pictorial representation is analogous. An undirected graph (UG) is a graph whose edges are
all undirected; if i−− j in an undirected graph G then we say that i and j are neighbors in
G. The symbol neG(i) := {j ∈ N : i−− j in G} will denote the set of all neighbors of i ∈ N
in G. A set of nodes A ⊆ N is complete in an UG G if i−− j in G is true for all distinct
i, j ∈ A. Maximal complete sets in G with respect to the set-inclusion ordering are called
cliques of G. An UG G over N is complete if N is complete in G.

Directed edges, also called arrows, are ordered pairs of distinct nodes. We will write
i→ j to denote an arrow from node i to node j in N ; similarly in figures. A directed graph
is a graph whose edges are all arrows. If i→ j in a directed graph G then we say that i is a
parent of j in G or, dually, that j is a child of i. The symbol paG(j) := {i ∈ N : i→ j in G}
will denote the set of all parents of j ∈ N in G.

Given a graph G over N (either directed or undirected) and a non-empty set of nodes
T ⊆ N , the induced subgraph of G for T , denoted by GT , is a graph over T with just those
edges in G which run between nodes of T .

A walk in a graph G over N (either directed or undirected) is a sequence of nodes
i1, . . . , ik, k ≥ 1, such that each consecutive pair of nodes in the sequence is adjacent by an
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FIGURE 1.3: Two examples of undirected graphs.

edge in the graph G. The end-nodes of the walk are i1 and ik; if k ≥ 3 then the remaining
nodes i`, 1 < ` < k, are internal nodes. The number of edges in the walk, that is, k − 1,
is called the length of the walk. A walk in G is called a path if i1, . . . , ik are distinct; it is
called a cycle if k ≥ 4, i1 = ik and i1, . . . , ik−1 are distinct. In the case of a directed graph
G, a path or a cycle is called directed if i` → i`+1 for ` = 1, . . . , k − 1.

A directed graph G is called acyclic if it contains no directed cycle. Directed graphs
that are acyclic are conventionally called directed acyclic graphs (DAGs). A well-known
equivalent characterization of a DAG is that it is such a directed graph G which admits an
enumeration of nodes i1, . . . , i|N | which is consonant with the direction of arrows: that is,
if i` → ik in G then ` < k.

An important concept is that of a chordal (undirected) graph. It is an UG G such that
each cycle in G of the length at least 4 has a chord, that is, an edge between nodes in the
cycle which is not an edge forming the cycle. A well-known equivalent definition of a chordal
graph G is that the cliques of G can be ordered into a sequence C1, . . . , Cm,m ≥ 1, satisfying
the running intersection property : ∀ k ≥ 2 exists ` < k such that Ck ∩ (

⋃
r<k Cr) ⊆ C`.

1.7 Markov Properties for Undirected Graphs
This section contains some theoretical results concerning undirected graphical models, called
Markov networks in the context of probabilistic reasoning [42].

1.7.1 Global Markov property for an UG

Given an undirected graph G over N and a disjoint triplet 〈A,B|C〉 ∈ T (N), we say that A
and B are separated by C in G and write A ⊥⊥ B |C [G] if every walk in G from a node in A
to a node in B contains a node in C. Of course, this is equivalent to an identical condition
with paths in place of walks. Another formulation is that after the removal of the set of
nodes in C (including the edges leading to those nodes) there is no path between A and B;
that is, no connected component of the induced graph GN\C meets both A and B.

To illustrate the concept of (undirected graphical) separation, consider the graphs G and
H in Figure 1.3. Clearly A = {a} and B = {e} are not separated by C = {c} in G because
of the path a−− b−− d−− e, which avoids C = {c}. But they are separated by C = {c, d},
which means that a ⊥⊥ e | cd [G]. One can also easily observe that a ⊥⊥ e | cd [H].

Every undirected graph G over N induces a formal independence model over N by means
of the undirected separation criterion

MG = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [G] } ,
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which appears to be a (disjoint) graphoid. A probability measure P over N withMG ⊆MP

is then called Markovian with respect to G; in an alternative terminology, P satisfies the
global Markov property relative to G:

(G) if A and B are separated by C in G then A ⊥⊥ B |C [P ].

The (statistical) undirected graphical model MG then consists of Markovian distributions
with respect to G. As explained in § 1.4.2, the class MG can be interpreted as the statistical
model of the CI structure given byMG.

A probability measure P over N is called perfectly Markovian with respect to G if
MG = MP . The existence of a discrete perfectly Markovian measure with respect to any
given UG G was shown by Geiger and Pearl in [19, Theorem11]. In particular,MG is indeed
a probabilistic CI structure for any UG G and the statistical model MG is non-empty (in
the case of non-degenerate sample spaces Xi, i ∈ N). Another related result says that formal
independence models induced by UGs can be described in an axiomatic way, that is, they
are characterized in terms of finitely many implications [43].

1.7.2 Local and pairwise Markov properties for an UG

Verification whether a probability measure over N is Markovian with respect to an UG
over N can be difficult because of the number of CI statements to be tested, which may be
very high. Nevertheless, in the case of a measure with a (strictly) positive density certain
reasonable sufficient conditions exist.

We say that a probability measure P over N satisfies the local/pairwise Markov property
relative to G if

(L) for all i ∈ N i ⊥⊥ N \ (i ∪ neG(i)) | neG(i) [P ],

(P) for all distinct i, j ∈ N with ¬(i−− j in G) i ⊥⊥ j |N \ {i, j} [P ].

It is easy to verify, using Observation 1.4.1(iii), that (G)⇒(L)⇒(P); however, examples are
available in which (P)6⇒(L)6⇒(G) for discrete distributions [24].
Observation 1.7.1. Assume that a probability measure P over N has a strictly positive
density. Then one has (G)⇔(L)⇔(P) for P .

Proof. The key fact is the property specified in Observation 1.4.1(iv), which implies that
the CI structure induced by G is a graphoid. Thus, it is enough to show that the graphoid
closure of the set of triplets of the form 〈i, j|N \{i, j}〉 for non-edges i, j ∈ N , ¬(i−− j in G),
contains the whole formal independence modelMG. This observation is left to the reader
as an exercise.

Of course, it is clear from the presented proof that P need not necessarily have a strictly
positive density; it is sufficient for the CI structure induced by P to be a graphoid. There are
weaker conditions [45] which ensure the validity of that assertion. To illustrate the above-
mentioned concepts, let us again consider the UGs in Figure 1.3. The reader can easily
check that the following lists of independencies are the respective requirements.

(L) for G:
a ⊥⊥ de | bc
b ⊥⊥ ce | ad
c ⊥⊥ b | ade
d ⊥⊥ a | bce
e ⊥⊥ ab | cd

(P) for G:
a ⊥⊥ d | bce
a ⊥⊥ e | bcd
b ⊥⊥ c | ade
b ⊥⊥ e | acd

(L) for H:
a ⊥⊥ cde | b
b ⊥⊥ de | ac
c ⊥⊥ ae | bd
d ⊥⊥ ab | ce
e ⊥⊥ abc | d

(P) for H:
a ⊥⊥ c | bde
a ⊥⊥ d | bce
a ⊥⊥ e | bcd
b ⊥⊥ d | ace
b ⊥⊥ e | acd
c ⊥⊥ e | abd
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Thus, by Observation 1.7.1, to check whether a probability measure P with a strictly positive
density satisfies the global Markov property relative to G, it is enough to verify that four
CI statements (P) for G are valid with respect to P . Analogously, as concerns H, five CI
statements in (L) for H are enough to verify the global Markov property relative to H.

Note that the undirected separation criterion from § 1.7.1 was a result of a certain
development in the theory of Markov fields, which stemmed from statistical physics. The
authors, who had developed this theory in the 1970s, restricted their attention to strictly
positive discrete probability distributions. Several types of Markov conditions were proposed
in [40]: the original pairwise Markov property was strengthened to the local and global
versions. The reader can ask whether one can possibly even strengthen the global Markov
property. Note that it follows from the result on the existence of a perfectly Markovian
positive discrete measure [19] that the global Markov property cannot be strengthened.
Moreover, it also occurs to be the strongest possible Markov property within the framework
of regular Gaussian measures.

1.7.3 Factorization property for an UG

There is another sufficient condition for the global Markov property, which does not de-
mand for the distribution to have a positive density. Specifically, we say that a marginally
continuous measure P over N is factorized according to an UG G over N if a dominating
system of σ-finite measures µi, i ∈ N , exists such that, for the respective joint density f ,
one has

(F) there exists potentials ψC : XC → [0,∞), C ∈ CG, with

f(x) =
∏

C∈CG
ψC(xC) for µ-a.e. x ∈ XN ,

where CG denotes the collection of cliques of G.
Note that one always has (F)⇒(G); this observation can be derived from repeated appli-

cation of the fact that the factorization condition (1.5) is an equivalent definition of CI; see
[25, Proposition 1]. On the other hand, examples of discrete measures showing (G)6⇒(F) ex-
ist [31]. Nevertheless, the conditions are quite often equivalent. The following result, whose
proof is omitted, is known as the Hammersley-Clifford theorem, see [24, Theorem3.9]. It is
a very useful observation as discussed in Chapter 3 of this handbook.

Observation 1.7.2. Assume that a probability measure P over N has a strictly positive
density. Then one has (F)⇔(G) for P .

1.8 Markov Properties for Directed Graphs
This section deals with directed acyclic graphical models, called Bayesian networks in the
context of probabilistic reasoning [42].

1.8.1 Directional separation criteria

In the directed case, several separation criteria are available to decide whether a disjoint
triplet is represented in a graph; however, these apparently different criteria are equivalent
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FIGURE 1.4: A simple example of a DAG.

with each other. They are described in this subsection, throughout which we assume that
G is a directed graph over N ; indeed, to introduce the criteria it is not substantial whether
G is acyclic or not.

Straightforward criterion in terms of walks

Let us start with a straightforward separation criterion for walks, which is the simplest one.
Let ρ : i1, . . . , ik, k ≥ 1, be a walk in G. We say that a node i` in ρ occurs as a collider in
ρ if it is an internal node in ρ and i`−1 → i` ← i`+1 in G. Other occurrences of nodes in
ρ, including its end-nodes, are called non-colliders. We say that ρ is interrupted by a set of
nodes C ⊆ N if

either a node exists which occurs as a non-collider in ρ and belongs to C,

or a node exists which occurs as a collider in ρ and is outside of C.

A walk in G which is not interrupted by a set C ⊆ N will be called free for C, or just briefly
C-free. Thus, ρ : i1, . . . , ik, k ≥ 1, is C-free provided one has, for all i`, 1 ≤ ` ≤ k:
• if i` is a non-collider node occurrence in ρ then i` 6∈ C,
• if i` is a collider node occurrence in ρ then i` ∈ C.

Given 〈A,B|C〉 ∈ T (N), we say that A and B are directionally separated by C in G if every
walk in G from a node in A to a node in B is interrupted by C and write A ⊥⊥ B |C [G]
then.

Thus, the interrupting condition for non-colliders is the same as in the undirected case
(see § 1.7.1), while the condition for colliders is completely converse. It also follows from the
definition that if a walk has a node with occurrences of both a collider and a non-collider
then it must be interrupted by any C ⊆ N .

Note that, when testing A ⊥⊥ B |C [G], one has to consider all walks from A to B, not
just paths. For example, the only path from i to j in the graph in Figure 1.4 is i → l ← j
and this path is interrupted by the set C = {k}. Nevertheless, a walk i → l → k ← l ← j
exists in the graph which is C-free.

A natural question arises whether the walk-based criterion is decidable. Below we de-
scribe a propagation algorithm which, for given disjoint sets of nodes A and C, finds the set
Ā of nodes to which a C-free walk exists from a node in A. Thus, if B is disjoint with Ā∪C,
then directional separation A ⊥⊥ B |C [G] holds, otherwise it does not. The algorithm can
be viewed as a kind of modification of the Bayes-ball algorithm [47] by Shachter.
Input: Directed graph G over N ; A,C ⊆ N disjoint sets of nodes.
Auxiliary sets of nodes: U, V,W ⊆ N .
Put U := A, V := ∅, W := ∅.
Apply exhaustively the following three propagation rules:
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FIGURE 1.5: Illustration of the propagation algorithm for directed graphs.

(i) w ∈ U ∪W , w ← u, u 6∈ C ⇒ u ∈ U ,

(ii) u ∈ U ∪ V , u→ v, v 6∈ C ⇒ v ∈ V ,

(iii) u ∈ U ∪ V , u→ w, w ∈ C ⇒ w ∈W .

Output: Put Ā := U ∪ V when the algorithm terminates.

We leave to the reader to verify that the output of the algorithm is indeed the set Ā.
This follows from the interpretation of the auxiliary sets of nodes:

• U is the set of nodes u in N such that either u ∈ A or there exists a C-free walk from
A to u which ends by an arrow pointing out of u,

• V is the set of nodes v in N such that there exists a C-free walk from A to v which
ends by an arrow pointing into v,

• W is the set of nodes w in C such that there exists a C-free walk from A to some
u ∈ paG(w).

An example of application of the algorithm is in Figure 1.5: here we start with A = {b}
and C = {d} and by consecutive application of (iii), (i) and (ii) get U = {a, b, c}, V = {e, f}
and W = {d}. Thus, Ā = U ∪ V = {a, b, c, e, f}.

D-separation criterion

Another option to solve the verification problem is to modify the criterion so that only
paths are considered. This leads to a traditional directional criterion, often abbreviated as
d-separation criterion, which was promoted by Pearl and his coauthors [42]. To formulate
this criterion, one needs an additional graphical concept: if there exists a directed path in
G from node i ∈ N to node j ∈ N then we say that i is an ancestor of j in G, or, dually,
that j is a descendant of i in G. Note that any node is its own descendant.

Given a path ρ : i1, . . . , ik, k ≥ 1, in G and C ⊆ N we say that ρ is active for C, briefly
C-active if, for all i`, 1 ≤ ` ≤ k:

• if i` is a non-collider in ρ then i` 6∈ C,

• if i` is a collider in ρ then i` has a descendant in C.
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FIGURE 1.6: Illustration of the d-separation criterion for directed graphs.

A path which is not active with respect to C is blocked by C. Finally, 〈A,B|C〉 ∈ T (N) is
represented in G according to the d-separation criterion, if every path in G from A to B is
blocked by C.

Note that, in the case of a path, any node occurs at most once in ρ and must be either
a collider or a non-collider. The concept of a C-active path only slightly differs from that
of a C-free walk: there is a weaker requirement in the case of collider nodes. To illustrate
the application of d-separation criterion, consider the graph in Figure 1.6. If we test 〈b, e|c〉
then we can observe that any path from b to e either goes through a non-collider c ∈ C
and is blocked there or it goes through a collider f and is blocked there (because f is not
an ancestor of c). In order to see that 〈b, e|f〉 is not represented, let us consider the path
b→ d← c← a→ e, which is C-active because the only collider d is an ancestor of f ∈ C.

Moralization criterion

Themoralization criterion, promoted by Lauritzen and his co-authors [24, 8], is not straight-
forward in the sense that the graph is modified during the test. This criterion is based on
transformation of the directed graph into a certain UG and then using the undirected sep-
aration criterion. It has three steps:

1. one removes some nodes and gets an induced subgraph of the original graph, which is
relevant for the tested triplet,

2. this induced subgraph is transformed to a certain UG over the same set of nodes,
which is – for certain reasons – called the moral graph,

3. finally the undirected separation criterion from § 1.7.1 is applied to the tested triplet
and the moral graph.

Because of the first step, the moral graphs assigned to different tested triplets may be dif-
ferent. To formulate the criterion, one also needs additional graphical concepts. Specifically,
an immorality in G is an induced subgraph of G of the form i → k ← j. The moral graph
of a directed graph G over N is an UG Gmor over the same set of nodes N such that i−− j
in Gmor if

either [i, j] is an edge in the original graph G,

or there exists an immorality in G of the form i→ k ← j.
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FIGURE 1.7: Illustration of the moralization criterion.

We say that a triplet 〈A,B|C〉 ∈ T (N) is represented in G according to the moralization
criterion if A and B are separated by C in the undirected graph H = (GanG(ABC))

mor,
where the symbol anG(ABC) denotes the set of ancestors of nodes in ABC (see the text
about d-separation).

To illustrate the application of the moralization criterion, consider the graph in Fig-
ure 1.6. To test 〈b, e|ad〉, we first transform the graph into the induced subgraph for the
set of ancestors of nodes in {a, b, d, e} in Figure 1.7(a) and then to the moral graph in
Figure 1.7(b). We observe that every path from b to e in the moral graph goes through a.
Thus, 〈b, e|ad〉 is represented in the graph according to the moralization criterion. Testing
〈b, e|d〉 leads to the same moral graph in Figure 1.7(b); but, this time, a path b−− c−− a−− e
exists which avoids the set C = {d}. This implies that 〈b, e|d〉 is not represented.

The third option

There is another criterion based on transformation of the graph, in which some edges are
removed instead of added. This criterion was suggested by Massey [29] and also indepen-
dently by Darwiche in his book [11]. To test a triplet 〈A,B|C〉 ∈ T (N) the following steps
are made:

1. the induced subgraph for the ancestors of nodes inABC is constructed (this is identical
with the first step of the moralization criterion),

2. the subgraph is pruned by the removal of arrows outgoing from C,

3. if there is no path between A and B in the resulting directed graph then the triplet
is represented according to this criterion.

To illustrate the criterion, let us again consider the graph in Figure 1.6 and test 〈b, e|d〉.
The first step leads to the graph in Figure 1.7(a), and no arrow is removed from that graph
in the second step. Since there is a path between b and e in it, the triplet is not represented.
On the other hand, when 〈b, e|ad〉 is tested, the graph in Figure 1.7(a) is pruned in the
second step by the removal of arrows a → c and a → e. Thus, e is an isolated node in the
resulting graph and the triplet is represented according to this special criterion.

Equivalence of directional criteria

The equivalence of d-separation and moralization criteria (in the case of a DAG) was shown
in [24, Proposition 3.25]. The equivalence of the last criterion with d-separation was proved
in [11, Theorem4.1].

Nonetheless, all the criteria are mutually equivalent even in the case of a general directed
graph. Thus, the following fact is left to the reader as an exercise. A hint is that one shows,
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for any of the three criteria, a directed graph G over N and 〈A,B|C〉 ∈ T (N), that the
triplet is not represented in G according to the respective criterion iff there exists a C-free
walk between A and B, that is, A 6⊥⊥ B |C [G].

Observation 1.8.1. Let G be a directed graph over N , and let 〈A,B|C〉 ∈ T (N). Then
A ⊥⊥ B |C [G] iff 〈A,B|C〉 ∈ T (N) is represented in G according to any of the three
above-mentioned path-based criteria.

1.8.2 Global Markov property for a DAG

Every directed acyclic graph G over N induces a formal independence model over N through
the directional separation criterion

MG = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [G] } ,

which is a disjoint graphoid. A probability measure P over N with MG ⊆ MP is called
Markovian with respect to G and we also say that P satisfies the directed global Markov
property relative to G:

(DG) if A and B are directionally separated by C in G then A ⊥⊥ B |C [P ].

The statistical directed graphical model MG consists of all Markovian measures with respect
to G. The class MG can be interpreted as the statistical model of the CI structure given by
MG (see § 1.4.2).

A probability measure P over N is called perfectly Markovian with respect to a DAG G
if MG = MP . The existence of a perfectly Markovian measure with respect to any given
DAG was shown by Geiger and Pearl [18].

Note that formal independence models induced by DAGs cannot be described completely
in an axiomatic way. The reason is that these models are not closed under marginalization
operation; see [57, Remark 3.5].

1.8.3 Local Markov property for a DAG

In the directed case, several variations of both local and pairwise Markov properties exist.
One can distinguish between ordered versions, when an enumeration of nodes consonant
with the direction of arrows is given, and the Markov property is relative to it on the
one hand, and unordered versions on the other hand; see [8, § 5.3]. In this section, a basic
unordered version of the local Markov property is presented.

An auxiliary graphical concept is needed to formulate this property. Recall from § 1.8.1
that a node j is a descendant of a node i in G if a directed path exists in G from i to j;
denote the set of all descendants of node i ∈ N in G by dsG(i). Note that i ∈ dsG(i).

A probability measure P over N satisfies a directed local Markov property relative to a
DAG G over G if

(DL) for all i ∈ N i ⊥⊥ N \ (dsG(i) ∪ paG(i)) | paG(i) [P ].

Observation 1.8.2. For any probability measure P over N , (DG)⇔(DL).

Proof. Given any enumeration i1, . . . , i|N | of nodes which is consonant with the direction of
arrows G, it was shown in [64] thatMG is the semi-graphoid closure of the list of triplets of
the form 〈i`, {i1, . . . , i`−1} \ paG(i`) | paG(i`)〉, ` = 2, . . . , |N |. Hence,MG can be shown to
be the semi-graphoid closure of the set of triplets of the form 〈i,N \(dsG∪paG(i)) | paG(i)〉;
use Observation 1.4.1.
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FIGURE 1.8: Illustration of the concept of a legally reversible arrow.

1.8.4 Factorization property for a DAG

Recursive factorization is a necessary and sufficient condition for a marginally continuous
measure to be Markovian with respect to a directed acyclic graph. In the case of a discrete
measure P over N it has the form

(DF) p(x) =
∏

i∈N
pi| paG(i)(xi|xpaG(i)) for every x ∈ XN ,

where a convention is accepted that pA|C(a|c) = 0 whenever pC(c) = 0 for a ∈ XA, c ∈ XC ,
A,C ⊆ N disjoint.

The definition in the case of a marginally continuous measure is analogous, but one has
to correctly introduce the conditional densities and the equation in (DF) is meant in the µ-
a.e. sense, where µ is a dominating joint product measure. One can show that (DF)⇔(DG)
then; see [25, Theorem1].

Since the statistical model MG for a DAG G coincides with the class of recursively
factorizable distributions, there is a natural parameterization of this class in the discrete
case; the elementary parameters are interpreted as (the values of) conditional probabilities
[57, Lemma8.1].

1.8.5 Markov equivalence for DAGs

We say that two DAGs G and H over N are Markov equivalent if they define the same
statistical model, that is, MG = MH (see § 1.8.2); note that this concept depends on the
considered distribution framework Ψ (see § 1.4.2).

Analogously, two DAGs G and H over N are independence equivalent if they induce the
same formal independence model: MG = MH ; this notion, however, does not depend on
the considered distribution framework. Clearly, independence equivalence implies Markov
equivalence and the converse is also true provided that the distribution framework Ψ is
non-degenerate [57, § 6.1]. For example, in the discrete case, non-degeneracy means that,
for any i ∈ N , the individual sample space Xi has at least two elements. Thus, these two
concepts of equivalence for DAGs typically coincide.

There could be different DAGs which are independence equivalent and a natural task
is to characterize them graphically. A classic characterization of this kind was mentioned
by Verma and Pearl [65]. One crucial concept here is that of underlying undirected graph
of a DAG G, called alternatively a skeleton by some authors [1]: it is an UG over N in
which an edge between a and b exists if either a → b in G or a ← b in G. The second
substantial concept is that of immorality: recall from § 1.8.1 that it is an induced subgraph
of G of the form i→ k ← j. The classic graphical characterization says that two DAGs are
independence equivalent iff they have the same skeleton and immoralities.

Nevertheless, there is also an indirect transformational characterization of equivalent
DAGs proposed by Chickering [6], which often appears to be useful. It reveals an elementary
graphical operation preserving independence equivalence of graphs. More specifically, given
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a DAG G over N , we say that an arrow a → b in G is legally reversible if the graph
H obtained from G by replacing a → b by a ← b in H (and keeping remaining arrows
untouched) is also acyclic, and, moreover, independence equivalent to G. We say then that
H is obtained from G by legal arrow reversal. The following fact is true.
Observation 1.8.3. Given a DAG G over N with an arrow a→ b, it is legally reversible iff
paG(b) = paG(a) ∪ {a}.

The proof can be found in [6, Lemma1]. Note, however, that Chickering’s terminology
is different: he talks about a covered edge if the condition from Observation 1.8.3 holds. To
illustrate the concept of a legally reversible arrow consider the DAGs in Figure 1.8. Both
arrows in the graph G1 are legally reversible because the parent set for c is empty and the
other two nodes have c as the only parent node. If one modifies the graph by adding an
arrow d → b (and the node d) then one gets the graph G2 in which the arrow c → b will
not be legally reversible. This can again be changed by adding a further arrow d→ c: then
the arrow c→ b will become legally reversible (in G3).

The next observation, shown in [23, Lemma4.2], gathers both graphical characteriza-
tions. Condition (B) is the classic direct characterization, while condition (C) is a transfor-
mational characterization.
Observation 1.8.4. The following three conditions are equivalent for any two given DAGs
G and H over N :

(A) G and H are independence equivalent (that is,MG =MH),

(B) G and H have the same skeleton and immoralities,

(C) there exists a sequence G = G1, . . . , Gm = H, m ≥ 1, of graphs over N , such that
Gi+1 is obtained from Gi by a legal arrow reversal for all i = 1, . . . ,m − 1. (The
graphs must be DAGs then.)

1.9 Remarks on Chordal Graphs
The class of chordal undirected graphs (see § 1.6 for the definition) plays a central role in
graphical models. These graphs have widely been studied in graph-theoretical literature and
a plenty of equivalent definitions/characterizations have been introduced; see, for example,
[24, § 2.1].

A common alternative name is a decomposable graph, which is related to an equiv-
alent definition of a chordal graph in terms of decompositions. Specifically, a non-trivial
decomposition of an UG G over N is defined by a pair of sets S, T ⊆ N such that

• S ∪ T = N , S \ T 6= ∅ 6= T \ S,

• S ∩ T is a complete set in G (see § 1.6),

• S \ T ⊥⊥ T \ S |S ∩ T [G] (see § 1.7.1).

Then G is decomposed into its induced subgraphs GS and GT . An UG G is chordal iff it
is decomposable, which means that it is either complete or can be non-trivially decomposed
into decomposable graphs (over smaller sets of nodes); see [24, Proposition 2.5].

The statistical models ascribed to decomposable graphs exhibit elegant properties. For
example, an explicit closed form expression for the maximum likelihood estimate exists; see
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[24, § 4.4.2]. There is an analogous formula for the joint density of (any globally) Markovian
measure with respect to a chordal UG in terms of the marginal densities for its cliques; see
[57, § 3.4.1].

Another related equivalent definition is the existence of a junction tree of its cliques; see
[8, Theorem4.6]. Junction trees then form a mathematical basis for miscellaneous effective
computational methods which originate from the local computation method [26]. Some of
the chapters in Part II of the handbook discuss the computation methods.

An interesting fact illustrating the mathematical beauty of these graphs is as follows:
a formal independence modelM is induced by a chordal graph (by undirected separation)
iff it is a model induced by a certain UG (by undirected separation) and by a certain DAG
(by directional separation). There is a finite axiomatization of such formal independence
models found by de Campos [14].

1.10 Imsets and Geometric Views
In this section we mention the method of structural imsets, which offers a geometric point
of view on the (description of) CI structures.

1.10.1 The concept of a structural imset

Although graphs offer an elegant and intuitive interpretation of some CI structures, they
are not able to describe all possible probabilistic CI structures. This motivates a proposal
for a non-graphical method of their description by means of vectors, whose components are
integers indexed by subsets of N ; such vectors are called imsets.

A starting point is the concept of an elementary imset from [57, § 4.2.1], which is a vector
in RP(N) encoding the elementary CI statement i ⊥⊥ j |K corresponding to 〈i, j|K〉 ∈ Tε(N)
(see § 1.5.1). Specifically, we put

u〈i,j|K〉 := δijK + δK − δiK − δjK ,

where δA ∈ RP(N) denotes the zero-one vector identifier of a set A ⊆ N .
One can consider the cone S(N) in RP(N) of non-negative linear combinations of ele-

mentary imsets over N . Structural imsets, used to describe CI structures, can equivalently
be introduced as vectors in S(N) ∩ ZP(N) [22]. There was an open problem whether every
structural imset is also a combinatorial imset, that is, a combination of elementary imsets
with non-negative integer coefficients. This is indeed true if |N | ≤ 4 but Hemmecke et al.
[21] gave an example of a structural imset over N with |N | = 5 which is not a combinatorial
imset.

The next step is to ascribe a formal independence model over N to any structural imset
u over N . There is a certain linear-algebraic criterion to decide, for each 〈A,B|C〉 ∈ T (N),
whether A ⊥⊥ B |C [u] holds; this criterion is omitted in this chapter and can be found
in [57, § 4.4.1]. The criterion can be viewed as an analogue of separation criteria used in
graphical description of CI structures. The formal independence models

Mu = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [u] } for u ∈ S(N) ∩ ZP(N)

appear to be semi-graphoids, called structural semi-graphoids. Every such semi-graphoid
is, in fact, induced by a combinatorial imset, which means that one can limit oneself to
combinatorial imsets. Following the analogy with graphical models, one can introduce, for
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any structural imset u, the corresponding statistical model Mu ofMarkovian distributions P
with respect to u satisfyingMu ⊆MP . Moreover, it was shown [57, Theorem4.1] that, for
marginally continuous measure P over N the Markov property with respect to a structural
imset u is equivalent to a certain factorization property, which generalizes the recursive
factorization for DAGs mentioned in § 1.8.4.

The crucial result concerning structural imsets is that, for any probability measure P
over N with finite multiinformation, that is, with finite relative entropy of P with respect to⊗

i∈N Pi, the CI structure induced by P is a structural semi-graphoid [57, Theorem5.2]. In
other words, any such distribution is perfectly Markovian with respect to some combinatorial
imset u, which means that Mu = MP . Note that all discrete measures and all regular
Gaussian measures over N have finite multiinformation values.

Structural semi-graphoids also coincide with semi-graphoids ascribed to supermodular
functions mentioned in § 1.5. A remark, which may interest a reader familiar with ad-
vanced polyhedral geometry, is that one can extend the observation according to which
semi-graphoids correspond to polyhedral fans coarsening the Sn-fan (see § 1.5.1). Morton
[37] also mentioned that a semi-graphoid is structural iff the corresponding polyhedral fan
is a normal fan of a polytope.

1.10.2 Imsets for statistical learning

Imsets can also be applied in the context of learning Bayesian network (BN) structure.
There is a certain standard translation of a DAG G over N into a combinatorial imset uG,
called the standard imset (for G), which has the property that the usual criteria for learning
BN structure become affine functions (= sums of linear functions with constants) of the
standard imset [61]. Thus, the learning task can be transformed into a linear programming
problem; a mathematical task is then to characterize the domain in the form of finitely
many linear inequalities.

It is sometimes advantageous in combinatorial optimization to work with zero-one vec-
tors. Therefore, standard imsets were transformed by an affine invertible self-transformation
of ZP(N) into characteristic imsets, which are zero-one vectors with an elegant graphical
interpretation [20], and these vectors were applied to learning the BN structure by tools of
integer linear programming [60]. This approach seems to be particularly suitable for learn-
ing decomposable models [59], in which case there is hope that the corresponding polytope
will be completely characterized by linear inequalities.

1.11 CI Inference
This section is concerned with the following task: given an input list L of CI statements over
N , characterize its probabilistic CI closure, which is the smallest CI structure containing L.
A traditional aim is to obtain the CI closure by applying interpretable formal CI implica-
tions, analogous to the semi-graphoid inference rules from Definition 1.5.1. Although there
is no finite set of inference rules characterizing probabilistic CI inference [53], one can find
such an axiomatic characterization in some special instances. The semi-graphoid implica-
tions are sufficient in the case of |L| = 2 [55] or if L consists of special CI statements, such
as the marginal CI statements A ⊥⊥ B | ∅ [17, 32] or saturated CI statements A ⊥⊥ B |C
with ABC = N [28, 19].

Matúš [34] characterized the CI closure for discrete measures for |N | = 4; in this case
24 formal properties are enough [58]. Several methods to derive implications among CI
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statements can be used. The method of structural imsets [57, § 6.2] provides a sufficient
condition for probabilistic CI implication; the respective linear-algebraic criterion can be
tested using a computer [5]. The most efficient methods for computer testing of that linear-
algebraic condition seem to be linear programming ones [4, 41]. On the other hand, there
are linear-algebraic tools to derive CI implications based on different principles [62]. On
top of that, advanced methods of modern algebra can be used to derive CI implications;
Chapter 3 of this handbook gives more details on this topic.
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