

EXPLORATORY
DATA ANALYSIS

USING R

Chapman & Hall/CRC
Data Mining and Knowledge Series
Series Editor: Vipin Kumar

Computational Business Analytics
Subrata Das
Data Classification
Algorithms and Applications
Charu C. Aggarwal
Healthcare Data Analytics
Chandan K. Reddy and Charu C. Aggarwal
Accelerating Discovery
Mining Unstructured Information for Hypothesis Generation
Scott Spangler
Event Mining
Algorithms and Applications
Tao Li
Text Mining and Visualization
Case Studies Using Open-Source Tools
Markus Hofmann and Andrew Chisholm
Graph-Based Social Media Analysis
Ioannis Pitas
Data Mining
A Tutorial-Based Primer, Second Edition
Richard J. Roiger
Data Mining with R
Learning with Case Studies, Second Edition
Luís Torgo
Social Networks with Rich Edge Semantics
Quan Zheng and David Skillicorn
Large-Scale Machine Learning in the Earth Sciences
Ashok N. Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser
Data Science and Analytics with Python
Jesus Rogel-Salazar
Feature Engineering for Machine Learning and Data Analytics
Guozhu Dong and Huan Liu
Exploratory Data Analysis Using R
Ronald K. Pearson

For more information about this series please visit:
https://www.crcpress.com/Chapman--HallCRC-Data-Mining-and-Knowledge-Discovery-Series/book-series/CHDAMINODIS

https://www.crcpress.com/Chapman--HallCRC-Data-Mining-and-Knowledge-Discovery-Series/book-series/CHDAMINODIS

EXPLORATORY
DATA ANALYSIS

USING R

Ronald K. Pearson

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20180312

International Standard Book Number-13: 978-1-1384-8060-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface xi

Author xiii

1 Data, Exploratory Analysis, and R 1
1.1 Why do we analyze data? . 1
1.2 The view from 90,000 feet . 2

1.2.1 Data . 2
1.2.2 Exploratory analysis . 4
1.2.3 Computers, software, and R 7

1.3 A representative R session . 11
1.4 Organization of this book . 21
1.5 Exercises . 26

2 Graphics in R 29
2.1 Exploratory vs. explanatory graphics 29
2.2 Graphics systems in R . 32

2.2.1 Base graphics . 33
2.2.2 Grid graphics . 33
2.2.3 Lattice graphics . 34
2.2.4 The ggplot2 package . 36

2.3 The plot function . 37
2.3.1 The flexibility of the plot function 37
2.3.2 S3 classes and generic functions 40
2.3.3 Optional parameters for base graphics 42

2.4 Adding details to plots . 44
2.4.1 Adding points and lines to a scatterplot 44
2.4.2 Adding text to a plot . 48
2.4.3 Adding a legend to a plot 49
2.4.4 Customizing axes . 50

2.5 A few different plot types . 52
2.5.1 Pie charts and why they should be avoided 53
2.5.2 Barplot summaries . 54
2.5.3 The symbols function . 55

v

vi CONTENTS

2.6 Multiple plot arrays . 57
2.6.1 Setting up simple arrays with mfrow 58
2.6.2 Using the layout function 61

2.7 Color graphics . 64
2.7.1 A few general guidelines 64
2.7.2 Color options in R . 66
2.7.3 The tableplot function . 68

2.8 Exercises . 70

3 Exploratory Data Analysis: A First Look 79
3.1 Exploring a new dataset . 80

3.1.1 A general strategy . 81
3.1.2 Examining the basic data characteristics 82
3.1.3 Variable types in practice 84

3.2 Summarizing numerical data . 87
3.2.1 “Typical” values: the mean 88
3.2.2 “Spread”: the standard deviation 88
3.2.3 Limitations of simple summary statistics 90
3.2.4 The Gaussian assumption 92
3.2.5 Is the Gaussian assumption reasonable? 95

3.3 Anomalies in numerical data . 100
3.3.1 Outliers and their influence 100
3.3.2 Detecting univariate outliers 104
3.3.3 Inliers and their detection 116
3.3.4 Metadata errors . 118
3.3.5 Missing data, possibly disguised 120
3.3.6 QQ-plots revisited . 125

3.4 Visualizing relations between variables 130
3.4.1 Scatterplots between numerical variables 131
3.4.2 Boxplots: numerical vs. categorical variables 133
3.4.3 Mosaic plots: categorical scatterplots 135

3.5 Exercises . 137

4 Working with External Data 141
4.1 File management in R . 142
4.2 Manual data entry . 145

4.2.1 Entering the data by hand 145
4.2.2 Manual data entry is bad but sometimes expedient 147

4.3 Interacting with the Internet . 148
4.3.1 Previews of three Internet data examples 148
4.3.2 A very brief introduction to HTML 151

4.4 Working with CSV files . 152
4.4.1 Reading and writing CSV files 152
4.4.2 Spreadsheets and csv files are not the same thing 154
4.4.3 Two potential problems with CSV files 155

4.5 Working with other file types . 158

CONTENTS vii

4.5.1 Working with text files . 158

4.5.2 Saving and retrieving R objects 162

4.5.3 Graphics files . 163

4.6 Merging data from different sources 165

4.7 A brief introduction to databases 168

4.7.1 Relational databases, queries, and SQL 169

4.7.2 An introduction to the sqldf package 171

4.7.3 An overview of R’s database support 174

4.7.4 An introduction to the RSQLite package 175

4.8 Exercises . 178

5 Linear Regression Models 181

5.1 Modeling the whiteside data . 181

5.1.1 Describing lines in the plane 182

5.1.2 Fitting lines to points in the plane 185

5.1.3 Fitting the whiteside data 186

5.2 Overfitting and data splitting . 188

5.2.1 An overfitting example . 188

5.2.2 The training/validation/holdout split 192

5.2.3 Two useful model validation tools 196

5.3 Regression with multiple predictors 201

5.3.1 The Cars93 example . 202

5.3.2 The problem of collinearity 207

5.4 Using categorical predictors . 211

5.5 Interactions in linear regression models 214

5.6 Variable transformations in linear regression 217

5.7 Robust regression: a very brief introduction 221

5.8 Exercises . 224

6 Crafting Data Stories 229

6.1 Crafting good data stories . 229

6.1.1 The importance of clarity 230

6.1.2 The basic elements of an effective data story 231

6.2 Different audiences have different needs 232

6.2.1 The executive summary or abstract 233

6.2.2 Extended summaries . 234

6.2.3 Longer documents . 235

6.3 Three example data stories . 235

6.3.1 The Big Mac and Grande Latte economic indices 236

6.3.2 Small losses in the Australian vehicle insurance data . . . 240

6.3.3 Unexpected heterogeneity: the Boston housing data . . . 243

viii CONTENTS

7 Programming in R 247
7.1 Interactive use versus programming 247

7.1.1 A simple example: computing Fibonnacci numbers 248
7.1.2 Creating your own functions 252

7.2 Key elements of the R language 256
7.2.1 Functions and their arguments 256
7.2.2 The list data type . 260
7.2.3 Control structures . 262
7.2.4 Replacing loops with apply functions 268
7.2.5 Generic functions revisited 270

7.3 Good programming practices . 275
7.3.1 Modularity and the DRY principle 275
7.3.2 Comments . 275
7.3.3 Style guidelines . 276
7.3.4 Testing and debugging . 276

7.4 Five programming examples . 277
7.4.1 The function ValidationRsquared 277
7.4.2 The function TVHsplit 278
7.4.3 The function PredictedVsObservedPlot 278
7.4.4 The function BasicSummary 279
7.4.5 The function FindOutliers 281

7.5 R scripts . 284
7.6 Exercises . 285

8 Working with Text Data 289
8.1 The fundamentals of text data analysis 290

8.1.1 The basic steps in analyzing text data 290
8.1.2 An illustrative example 293

8.2 Basic character functions in R . 298
8.2.1 The nchar function . 298
8.2.2 The grep function . 301
8.2.3 Application to missing data and alternative spellings . . . 302
8.2.4 The sub and gsub functions 304
8.2.5 The strsplit function 306
8.2.6 Another application: ConvertAutoMpgRecords 307
8.2.7 The paste function . 309

8.3 A brief introduction to regular expressions 311
8.3.1 Regular expression basics 311
8.3.2 Some useful regular expression examples 313

8.4 An aside: ASCII vs. UNICODE 319
8.5 Quantitative text analysis . 320

8.5.1 Document-term and document-feature matrices 320
8.5.2 String distances and approximate matching 322

8.6 Three detailed examples . 330
8.6.1 Characterizing a book . 331
8.6.2 The cpus data frame . 336

CONTENTS ix

8.6.3 The unclaimed bank account data 344
8.7 Exercises . 353

9 Exploratory Data Analysis: A Second Look 357
9.1 An example: repeated measurements 358

9.1.1 Summary and practical implications 358
9.1.2 The gory details . 359

9.2 Confidence intervals and significance 364
9.2.1 Probability models versus data 364
9.2.2 Quantiles of a distribution 366
9.2.3 Confidence intervals . 368
9.2.4 Statistical significance and p-values 372

9.3 Characterizing a binary variable 375
9.3.1 The binomial distribution 375
9.3.2 Binomial confidence intervals 377
9.3.3 Odds ratios . 382

9.4 Characterizing count data . 386
9.4.1 The Poisson distribution and rare events 387
9.4.2 Alternative count distributions 389
9.4.3 Discrete distribution plots 390

9.5 Continuous distributions . 393
9.5.1 Limitations of the Gaussian distribution 394
9.5.2 Some alternatives to the Gaussian distribution 398
9.5.3 The qqPlot function revisited 404
9.5.4 The problems of ties and implosion 406

9.6 Associations between numerical variables 409
9.6.1 Product-moment correlations 409
9.6.2 Spearman’s rank correlation measure 413
9.6.3 The correlation trick . 415
9.6.4 Correlation matrices and correlation plots 418
9.6.5 Robust correlations . 421
9.6.6 Multivariate outliers . 423

9.7 Associations between categorical variables 427
9.7.1 Contingency tables . 427
9.7.2 The chi-squared measure and Cramér’s V 429
9.7.3 Goodman and Kruskal’s tau measure 433

9.8 Principal component analysis (PCA) 438
9.9 Working with date variables . 447
9.10 Exercises . 449

10 More General Predictive Models 459
10.1 A predictive modeling overview 459

10.1.1 The predictive modeling problem 460
10.1.2 The model-building process 461

10.2 Binary classification and logistic regression 462
10.2.1 Basic logistic regression formulation 462

x CONTENTS

10.2.2 Fitting logistic regression models 464
10.2.3 Evaluating binary classifier performance 467
10.2.4 A brief introduction to glms 474

10.3 Decision tree models . 478
10.3.1 Structure and fitting of decision trees 479
10.3.2 A classification tree example 485
10.3.3 A regression tree example 487

10.4 Combining trees with regression 491
10.5 Introduction to machine learning models 498

10.5.1 The instability of simple tree-based models 499
10.5.2 Random forest models . 500
10.5.3 Boosted tree models . 502

10.6 Three practical details . 506
10.6.1 Partial dependence plots 507
10.6.2 Variable importance measures 513
10.6.3 Thin levels and data partitioning 519

10.7 Exercises . 521

11 Keeping It All Together 525
11.1 Managing your R installation . 525

11.1.1 Installing R . 526
11.1.2 Updating packages . 526
11.1.3 Updating R . 527

11.2 Managing files effectively . 528
11.2.1 Organizing directories . 528
11.2.2 Use appropriate file extensions 531
11.2.3 Choose good file names 532

11.3 Document everything . 533
11.3.1 Data dictionaries . 533
11.3.2 Documenting code . 534
11.3.3 Documenting results . 535

11.4 Introduction to reproducible computing 536
11.4.1 The key ideas of reproducibility 536
11.4.2 Using R Markdown . 537

Bibliography 539

Index 544

Preface

Much has been written about the abundance of data now available from the
Internet and a great variety of other sources. In his aptly named 2007 book Glut
[81], Alex Wright argued that the total quantity of data then being produced was
approximately five exabytes per year (5× 1018 bytes), more than the estimated
total number of words spoken by human beings in our entire history. And that
assessment was from a decade ago: increasingly, we find ourselves “drowning in
a ocean of data,” raising questions like “What do we do with it all?” and “How
do we begin to make any sense of it?”

Fortunately, the open-source software movement has provided us with—at
least partial—solutions like the R programming language. While R is not the
only relevant software environment for analyzing data—Python is another option
with a growing base of support—R probably represents the most flexible data
analysis software platform that has ever been available. R is largely based on
S, a software system developed by John Chambers, who was awarded the 1998
Software System Award by the Association for Computing Machinery (ACM)
for its development; the award noted that S “has forever altered the way people
analyze, visualize, and manipulate data.”

The other side of this software coin is educational: given the availability and
sophistication of R, the situation is analogous to someone giving you an F-15
fighter aircraft, fully fueled with its engines running. If you know how to fly it,
this can be a great way to get from one place to another very quickly. But it is
not enough to just have the plane: you also need to know how to take off in it,
how to land it, and how to navigate from where you are to where you want to
go. Also, you need to have an idea of where you do want to go. With R, the
situation is analogous: the software can do a lot, but you need to know both
how to use it and what you want to do with it.

The purpose of this book is to address the most important of these questions.
Specifically, this book has three objectives:

1. To provide a basic introduction to exploratory data analysis (EDA);

2. To introduce the range of “interesting”—good, bad, and ugly—features
we can expect to find in data, and why it is important to find them;

3. To introduce the mechanics of using R to explore and explain data.

xi

xii PREFACE

This book grew out of materials I developed for the course “Data Mining Using
R” that I taught for the University of Connecticut Graduate School of Business.
The students in this course typically had little or no prior exposure to data
analysis, modeling, statistics, or programming. This was not universally true,
but it was typical, so it was necessary to make minimal background assumptions,
particularly with respect to programming. Further, it was also important to
keep the treatment relatively non-mathematical: data analysis is an inherently
mathematical subject, so it is not possible to avoid mathematics altogether,
but for this audience it was necessary to assume no more than the minimum
essential mathematical background.

The intended audience for this book is students—both advanced undergrad-
uates and entry-level graduate students—along with working professionals who
want a detailed but introductory treatment of the three topics listed in the
book’s title: data, exploratory analysis, and R. Exercises are included at the
ends of most chapters, and an instructor’s solution manual giving complete
solutions to all of the exercises is available from the publisher.

Author

Ronald K. Pearson is a Senior Data Scientist with GeoVera Holdings, a
property insurance company in Fairfield, California, involved primarily in the
exploratory analysis of data, particularly text data. Previously, he held the po-
sition of Data Scientist with DataRobot in Boston, a software company whose
products support large-scale predictive modeling for a wide range of business
applications and are based on Python and R, where he was one of the authors
of the datarobot R package. He is also the developer of the GoodmanKruskal R
package and has held a variety of other industrial, business, and academic posi-
tions. These positions include both the DuPont Company and the Swiss Federal
Institute of Technology (ETH Zürich), where he was an active researcher in the
area of nonlinear dynamic modeling for industrial process control, the Tampere
University of Technology where he was a visiting professor involved in teaching
and research in nonlinear digital filters, and the Travelers Companies, where he
was involved in predictive modeling for insurance applications. He holds a PhD
in Electrical Engineering and Computer Science from the Massachusetts Insti-
tute of Technology and has published conference and journal papers on topics
ranging from nonlinear dynamic model structure selection to the problems of
disguised missing data in predictive modeling. Dr. Pearson has authored or
co-authored five previous books, including Exploring Data in Engineering, the
Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital
Filtering with Python, co-authored with Moncef Gabbouj (CRC Press, 2016).
He is also the developer of the DataCamp course on base R graphics.

xiii

http://taylorandfrancis.com

Chapter 1

Data, Exploratory Analysis,
and R

1.1 Why do we analyze data?

The basic subject of this book is data analysis, so it is useful to begin by
addressing the question of why we might want to do this. There are at least
three motivations for analyzing data:

1. to understand what has happened or what is happening;

2. to predict what is likely to happen, either in the future or in other cir-
cumstances we haven’t seen yet;

3. to guide us in making decisions.

The primary focus of this book is on exploratory data analysis, discussed further
in the next section and throughout the rest of this book, and this approach is
most useful in addressing problems of the first type: understanding our data.
That said, the predictions required in the second type of problem listed above
are typically based on mathematical models like those discussed in Chapters 5
and 10, which are optimized to give reliable predictions for data we have avail-
able, in the hope and expectation that they will also give reliable predictions for
cases we haven’t yet considered. In building these models, it is important to use
representative, reliable data, and the exploratory analysis techniques described
in this book can be extremely useful in making certain this is the case. Similarly,
in the third class of problems listed above—making decisions—it is important
that we base them on an accurate understanding of the situation and/or ac-
curate predictions of what is likely to happen next. Again, the techniques of
exploratory data analysis described here can be extremely useful in verifying
and/or improving the accuracy of our data and our predictions.

1

2 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

1.2 The view from 90,000 feet

This book is intended as an introduction to the three title subjects—data, its ex-
ploratory analysis, and the R programming language—and the following sections
give high-level overviews of each, emphasizing key details and interrelationships.

1.2.1 Data

Loosely speaking, the term “data” refers to a collection of details, recorded to
characterize a source like one of the following:

• an entity, e.g.: family history from a patient in a medical study; manufac-
turing lot information for a material sample in a physical testing applica-
tion; or competing company characteristics in a marketing analysis;

• an event, e.g.: demographic characteristics of those who voted for different
political candidates in a particular election;

• a process, e.g.: operating data from an industrial manufacturing process.

This book will generally use the term “data” to refer to a rectangular array
of observed values, where each row refers to a different observation of entity,
event, or process characteristics (e.g., distinct patients in a medical study), and
each column represents a different characteristic (e.g., diastolic blood pressure)
recorded—or at least potentially recorded—for each row. In R’s terminology,
this description defines a data frame, one of R’s key data types.

The mtcars data frame is one of many built-in data examples in R. This data
frame has 32 rows, each one corresponding to a different car. Each of these cars
is characterized by 11 variables, which constitute the columns of the data frame.
These variables include the car’s mileage (in miles per gallon, mpg), the number
of gears in its transmission, the transmission type (manual or automatic), the
number of cylinders, the horsepower, and various other characteristics. The
original source of this data was a comparison of 32 cars from model years 1973
and 1974 published in Motor Trend Magazine. The first six records of this data
frame may be examined using the head command in R:

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

An important feature of data frames in R is that both rows and columns have
names associated with them. In favorable cases, these names are informative,
as they are here: the row names identify the particular cars being characterized,
and the column names identify the characteristics recorded for each car.

1.2. THE VIEW FROM 90,000 FEET 3

A more complete description of this dataset is available through R’s built-in
help facility. Typing “help(mtcars)” at the R command prompt will bring up
a help page that gives the original source of the data, cites a paper from the
statistical literature that analyzes this dataset [39], and briefly describes the
variables included. This information constitutes metadata for the mtcars data
frame: metadata is “data about data,” and it can vary widely in terms of its
completeness, consistency, and general accuracy. Since metadata often provides
much of our preliminary insight into the contents of a dataset, it is extremely
important, and any limitations of this metadata—incompleteness, inconsistency,
and/or inaccuracy—can cause serious problems in our subsequent analysis. For
these reasons, discussions of metadata will recur frequently throughout this
book. The key point here is that, potentially valuable as metadata is, we cannot
afford to accept it uncritically: we should always cross-check the metadata with
the actual data values, with our intuition and prior understanding of the subject
matter, and with other sources of information that may be available.

As a specific illustration of this last point, a popular benchmark dataset for
evaluating binary classification algorithms (i.e., computational procedures that
attempt to predict a binary outcome from other variables) is the Pima Indi-
ans diabetes dataset, available from the UCI Machine Learning Repository, an
important Internet data source discussed further in Chapter 4. In this partic-
ular case, the dataset characterizes female adult members of the Pima Indians
tribe, giving a number of different medical status and history characteristics
(e.g., diastolic blood pressure, age, and number of times pregnant), along with
a binary diagnosis indicator with the value 1 if the patient had been diagnosed
with diabetes and 0 if they had not. Several versions of this dataset are avail-
able: the one considered here was the UCI website on May 10, 2014, and it has
768 rows and 9 columns. In contrast, the data frame Pima.tr included in R’s
MASS package is a subset of this original, with 200 rows and 8 columns. The
metadata available for this dataset from the UCI Machine Learning Repository
now indicates that this dataset exhibits missing values, but there is also a note
that prior to February 28, 2011 the metadata indicated that there were no miss-
ing values. In fact, the missing values in this dataset are not coded explicitly
as missing with a special code (e.g., R’s “NA” code), but are instead coded as
zero. As a result, a number of studies characterizing binary classifiers have been
published using this dataset as a benchmark where the authors were not aware
that data values were missing, in some cases, quite a large fraction of the total
observations. As a specific example, the serum insulin measurement included in
the dataset is 48.7% missing.

Finally, it is important to recognize the essential role our assumptions about
data can play in its subsequent analysis. As a simple and amusing example,
consider the following “data analysis” question: how many planets are there or-
biting the Sun? Until about 2006, the generally accepted answer was nine, with
Pluto the outermost member of this set. Pluto was subsequently re-classified
as a “dwarf planet,” in part because a larger, more distant body was found in
the Kuiper Belt and enough astronomers did not want to classify this object as
the “tenth planet” that Pluto was demoted to dwarf planet status. In his book,

4 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

Is Pluto a Planet? [72], astronomer David Weintraub argues that Pluto should
remain a planet, based on the following defining criteria for planethood:

1. the object must be too small to generate, or to have ever generated, energy
through nuclear fusion;

2. the object must be big enough to be spherical;

3. the object must have a primary orbit around a star.

The first of these conditions excludes dwarf stars from being classed as planets,
and the third excludes moons from being declared planets (since they orbit
planets, not stars). Weintraub notes, however, that under this definition, there
are at least 24 planets orbiting the Sun: the eight now generally regarded as
planets, Pluto, and 15 of the largest objects from the asteroid belt between Mars
and Jupiter and from the Kuiper Belt beyond Pluto. This example illustrates
that definitions are both extremely important and not to be taken for granted:
everyone knows what a planet is, don’t they? In the broader context of data
analysis, the key point is that unrecognized disagreements in the definition of
a variable are possible between those who measure and record it, and those
who subsequently use it in analysis; these discrepancies can lie at the heart of
unexpected findings that turn out to be erroneous. For example, if we wish to
combine two medical datasets, characterizing different groups of patients with
“the same” disease, it is important that the same diagnostic criteria be used to
declare patients “diseased” or “not diseased.” For a more detailed discussion
of the role of definitions in data analysis, refer to Sec. 2.4 of Exploring Data in
Engineering, the Sciences, and Medicine [58]. (Although the book is generally
quite mathematical, this is not true of the discussions of data characteristics
presented in Chapter 2, which may be useful to readers of this book.)

1.2.2 Exploratory analysis

Roughly speaking, exploratory data analysis (EDA) may be defined as the art
of looking at one or more datasets in an effort to understand the underlying
structure of the data contained there. A useful description of how we might go
about this is offered by Diaconis [21]:

We look at numbers or graphs and try to find patterns. We pursue
leads suggested by background information, imagination, patterns
perceived, and experience with other data analyses.

Note that this quote suggests—although it does not strictly imply—that the
data we are exploring consists of numbers. Indeed, even if our dataset contains
nonnumerical data, our analysis of it is likely to be based largely on numerical
characteristics computed from these nonnumerical values. As a specific exam-
ple, categorical variables appearing in a dataset like “city,” “political party
affiliation,” or “manufacturer” are typically tabulated, converted from discrete
named values into counts or relative frequencies. These derived representations

1.2. THE VIEW FROM 90,000 FEET 5

can be particularly useful in exploring data when the number of levels—i.e., the
number of distinct values the original variable can exhibit—is relatively small.
In such cases, many useful exploratory tools have been developed that allow us
to examine the character of these nonnumeric variables and their relationship
with other variables, whether categorical or numeric. Simple graphical exam-
ples include boxplots for looking at the distribution of numerical values across
the different levels of a categorical variable, or mosaic plots for looking at the
relationship between categorical variables; both of these plots and other, closely
related ones are discussed further in Chapters 2 and 3.

Categorical variables with many levels pose more challenging problems, and
these come in at least two varieties. One is represented by variables like U.S.
postal zipcode, which identifies geographic locations at a much finer-grained
level than state does and exhibits about 40,000 distinct levels. A detailed dis-
cussion of dealing with this type of categorical variable is beyond the scope
of this book, although one possible approach is described briefly at the end of
Chapter 10. The second type of many-level categorical variable arises in settings
where the inherent structure of the variable can be exploited to develop special-
ized analysis techniques. Text data is a case in point: the number of distinct
words in a document or a collection of documents can be enormous, but special
techniques for analyzing text data have been developed. Chapter 8 introduces
some of the methods available in R for analyzing text data.

The mention of “graphs” in the Diaconis quote is particularly important
since humans are much better at seeing patterns in graphs than in large collec-
tions of numbers. This is one of the reasons R supports so many different graph-
ical display methods (e.g., scatterplots, barplots, boxplots, quantile-quantile
plots, histograms, mosaic plots, and many, many more), and one of the reasons
this book places so much emphasis on them. That said, two points are important
here. First, graphical techniques that are useful to the data analyst in finding
important structure in a dataset are not necessarily useful in explaining those
findings to others. For example, large arrays of two-variable scatterplots may be
a useful screening tool for finding related variables or anomalous data subsets,
but these are extremely poor ways of presenting results to others because they
essentially require the viewer to repeat the analysis for themselves. Instead, re-
sults should be presented to others using displays that highlight and emphasize
the analyst’s findings to make sure that the intended message is received. This
distinction between exploratory and explanatory displays is discussed further in
Chapter 2 on graphics in R and in Chapter 6 on crafting data stories (i.e., ex-
plaining your findings), but most of the emphasis in this book is on exploratory
graphical tools to help us obtain these results.

The second point to note here is that the utility of any graphical display
can depend strongly on exactly what is plotted, as illustrated in Fig. 1.1. This
issue has two components: the mechanics of how a subset of data is displayed,
and the choice of what goes into that data subset. While both of these aspects
are important, the second is far more important than the first. Specifically, it is
important to note that the form in which data arrives may not be the most useful
for analysis. To illustrate, Fig. 1.1 shows two sets of plots, both constructed

6 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

library(MASS)

library(car)

par(mfrow=c(2,2))

truehist(mammals$brain)

truehist(log(mammals$brain))

qqPlot(mammals$brain)

title("Normal QQ-plot")

qqPlot(log(mammals$brain))

title("Normal QQ-plot")

0 1000 3000 5000

0e
+

00
4e

−
04

8e
−

04

mammals$brain

−2 0 2 4 6 8 10

0.
00

0.
04

0.
08

0.
12

log(mammals$brain)

−2 −1 0 1 2

0
10

00
30

00
50

00

norm quantiles

m
am

m
al

s$
br

ai
n

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●

●

●

●

Normal QQ−plot

−2 −1 0 1 2

−
2

0
2

4
6

8

norm quantiles

lo
g(

m
am

m
al

s$
br

ai
n)

●

● ● ●●

●●●
●
●●●●

●●●
●●●

●●●
●
●●●●●●

●●●
●●●

●●
●●●

●●
●●●

●●●●●●

●
●●●●●

●●

●

●
●

Normal QQ−plot

Figure 1.1: Two pairs of characterizations of the brain weight data from the
mammals data frame: histograms and normal QQ-plots constructed from the
raw data (left-hand plots), and from log-transformed data (right-hand plots).

from the brain element of the mammals dataset from the MASS package that
lists body weights and brain weights for 62 different animals. This data frame
is discussed further in Chapter 3, along with the characterizations presented

1.2. THE VIEW FROM 90,000 FEET 7

here, which are histograms (top two plots) and normal QQ-plots (bottom two
plots). In both cases, these plots are attempting to tell us something about
the distribution of data values, and the point of this example is that the extent
to which these plots are informative depends strongly on how we prepare the
data from which they are constructed. Here, the left-hand pair of plots were
generated from the raw data values and they are much less informative than the
right-hand pair of plots, which were generated from log-transformed data. In
particular, these plots suggest that the log-transformed data exhibits a roughly
Gaussian distribution, further suggesting that working with the log of brain
weight may be more useful than working with the raw data values. This example
is revisited and discussed in much more detail in Chapter 3, but the point here
is that exactly what we plot—e.g., raw data values vs. log-transformed data
values—sometimes matters a lot more than how we plot it.

Since it is one of the main themes of this book, a much more extensive in-
troduction to exploratory data analysis is given in Chapter 3. Three key points
to note here are, first, that exploratory data analysis makes extensive use of
graphical tools, for the reasons outlined above. Consequently, the wide and
growing variety of graphical methods available in R makes it a particularly suit-
able environment for exploratory analysis. Second, exploratory analysis often
involves characterizing many different variables and/or data sources, and com-
paring these characterizations. This motivates the widespread use of simple and
well-known summary statistics like means, medians, and standard deviations,
along with other, less well-known characterizations like the MAD scale estimate
introduced in Chapter 3. Finally, third, an extremely important aspect of ex-
ploratory data analysis is the search for “unusual” or “anomalous” features in
a dataset. The notion of an outlier is introduced briefly in Sec. 1.3, but a more
detailed discussion of this and other data anomalies is deferred until Chapter 3,
where techniques for detecting these anomalies are also discussed.

1.2.3 Computers, software, and R

To use R—or any other data analysis environment—involves three basic tasks:

1. Make the data you want to analyze available to the analysis software;

2. Perform the analysis;

3. Make the results of the analysis available to those who need them.

In this chapter, all of the data examples come from built-in data frames in R,
which are extremely convenient for teaching or learning R, but in real data anal-
ysis applications, making the data available for analysis can require significant
effort. Chapter 4 focuses on this problem, but to understand its nature and
significance, it is necessary to understand something about how computer sys-
tems are organized, and this is the subject of the next section. Related issues
arise when we attempt to make analysis results available for others, and these
issues are also covered in Chapter 4. Most of the book is devoted to various as-
pects of step (2) above—performing the analysis—and the second section below

8 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

briefly addresses the question of “why use R and not something else?” Finally,
since this is a book about using R to analyze data, some key details about the
structure of the R language are presented in the third section below.

General structure of a computing environment

In his book, Introduction to Data Technologies [56, pp. 211–214], Paul Murrell
describes the general structure of a computing environment in terms of the
following six components:

1. the CPU or central processing unit is the basic hardware that does all of
the computing;

2. the RAM or random access memory is the internal memory where the
CPU stores and retrieves results;

3. the keyboard is the standard interface that allows the user to submit re-
quests to the computer system;

4. the screen is the graphical display terminal that allows the user to see the
results generated by the computer system;

5. the mass storage, typically a “hard disk,” is the external memory where
data and results can be stored permanently;

6. the network is an external connection to the outside world, including the
Internet but also possibly an intranet of other computers, along with pe-
ripheral devices like printers.

Three important distinctions between internal storage (i.e., RAM) and external
storage (i.e., mass storage) are, first, that RAM is typically several orders of
magnitude faster to access than mass storage; second, that RAM is volatile—
i.e., the contents are lost when the power is turned off—while mass storage
is not; and, third, that mass storage can accommodate much larger volumes
of data than RAM can. (As a specific example, the computer being used to
prepare this book has 4GB of installed RAM and just over 100 times as much
disk storage.) A practical consequence is that both the data we want to analyze
and any results we want to save need to end up in mass storage so they are not
lost when the computer power is turned off. Chapter 4 is devoted to a detailed
discussion of some of the ways we can move data into and out of mass storage.

These differences between RAM and mass storage are particularly relevant
to R since most R functions require all data—both the raw data and the internal
storage required to keep any temporary, intermediate results—to fit in RAM.
This makes the computations faster, but it limits the size of the datasets you can
work with in most cases to something less than the total installed RAM on your
computer. In some applications, this restriction represents a serious limitation
on R’s applicability. This limitation is recognized within the R community and
continuing efforts are being made to improve the situation.

1.2. THE VIEW FROM 90,000 FEET 9

Closely associated with the CPU is the operating system, which is the soft-
ware that runs the computer system, making useful activity possible. That
is, the operating system coordinates the different components, establishing and
managing file systems that allow datasets to be stored, located, modified, or
deleted; providing user access to programs like R; providing the support infras-
tructure required so these programs can interact with network resources, etc.
In addition to the general computing infrastructure provided by the operating
system, to analyze data it is necessary to have programs like R and possibly
others (e.g., database programs). Further, these programs must be compatible
with the operating system: on popular desktops and enterprise servers, this is
usually not a problem, although it can become a problem for older operating
systems. For example, Section 2.2 of the R FAQ document available from the
R “Help” tab notes that “support for Mac OS Classic ended with R 1.7.1.”

With the growth of the Internet as a data source, it is becoming increasingly
important to be able to retrieve and process data from it. Unfortunately, this
involves a number of issues that are well beyond the scope of this book (e.g.,
parsing HTML to extract data stored in web pages). A brief introduction to
the key ideas with some simple examples is given in Chapter 4, but for those
needing a more thorough treatment, Murrell’s book is highly recommended [56].

Data analysis software

A key element of the data analysis chain (acquire → analyze → explain) de-
scribed earlier is the choice of data analysis software. Since there are a number
of possibilities here, why R? One reason is that R is a free, open-source lan-
guage, available for most popular operating systems. In contrast, commercially
supported packages must be purchased, in some cases for a lot of money.

Another reason to use R in preference to other data analysis platforms is the
enormous range of analysis methods supported by R’s growing universe of add-
on packages. These packages support analysis methods from many branches
of statistics (e.g., traditional statistical methods like ANOVA, ordinary least
squares regression, and t-tests, Bayesian methods, and robust statistical pro-
cedures), machine learning (e.g., random forests, neural networks, and boosted
trees), and other applications like text analysis. This availability of methods is
important because it greatly expands the range of data exploration and analysis
approaches that can be considered. For example, if you wanted to use the mul-
tivariate outlier detection method described in Chapter 9 based on the MCD
covariance estimator in another framework—e.g., Microsoft Excel—you would
have to first build these analysis tools yourself, and then test them thoroughly
to make sure they are really doing what you want. All of this takes time and
effort just to be able to get to the point of actually analyzing your data.

Finally, a third reason to adopt R is its growing popularity, undoubtedly
fueled by the reasons just described, but which is also likely to promote the
continued growth of new capabilities. A survey of programming language pop-
ularity by the Institute of Electrical and Electronics Engineers (IEEE) has been
taken for the last several years, and a summary of the results as of July 18,

10 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

2017, was available from the website:

http://spectrum.ieee.org/computing/software/

the-2017-top-ten-programming-languages

The top six programming languages on this list were, in descending order:
Python, C, Java, C++, C#, and R. Note that the top five of these are general-
purpose languages, all suitable for at least two of the four programming environ-
ments considered in the survey: web, mobile, desktop/enterprise, and embed-
ded. In contrast, R is a specialized data analysis language that is only suitable
for the desktop/enterprise environment. The next data analysis language in this
list was the commercial package MATLAB R©, ranked 15th.

The structure of R

The R programming language basically consists of three components:

• a set of base R packages, a required collection of programs that support
language infrastructure and basic statistics and data analysis functions;

• a set of recommended packages, automatically included in almost all R
installations (the MASS package used in this chapter belongs to this set);

• a very large and growing set of optional add-on packages, available through
the Comprehensive R Archive Network (CRAN).

Most R installations have all of the base and recommended packages, with at
least a few selected add-on packages. The advantage of this language structure
is that it allows extensive customization: as of February 3, 2018, there were
12,086 packages available from CRAN, and new ones are added every day. These
packages provide support for everything from rough and fuzzy set theory to the
analysis of twitter tweets, so it is an extremely rare organization that actually
needs everything CRAN has to offer. Allowing users to install only what they
need avoids massive waste of computer resources.

Installing packages from CRAN is easy: the R graphical user interface (GUI)
has a tab labeled “Packages.” Clicking on this tab brings up a menu, and
selecting “Install packages” from this menu brings up one or two other menus.
If you have not used the “Install packages” option previously in your current
R session, a menu appears asking you to select a CRAN mirror; these sites are
locations throughout the world with servers that support CRAN downloads, so
you should select one near you. Once you have done this, a second menu appears
that lists all of the R packages available for download. Simply scroll down this
list until you find the package you want, select it, and click the “OK” button
at the bottom of the menu. This will cause the package you have selected to
be downloaded from the CRAN mirror and installed on your machine, along
with all other packages that are required to make your selected package work.
For example, the car package used to generate Fig. 1.1 requires a number of
other packages, including the quantile regression packge quantreg, which is
automatically downloaded and installed when you install the car package.

http://spectrum.ieee.org/computing/software/the-2017-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2017-top-ten-programming-languages

1.3. A REPRESENTATIVE R SESSION 11

It is important to note that installing an R package makes it available for you
to use, but this does not “load” the package into your current R session. To do
this, you must use the library() function, which works in two different ways.
First, if you enter this function without any parameters—i.e., type “library()” at
the R prompt—it brings up a new window that lists all of the packages that have
been installed on your machine. To use any of these packages, it is necessary
to use the library() command again, this time specifying the name of the
package you want to use as a parameter. This is shown in the code appearing
at the top of Fig. 1.1, where the MASS and car packages are loaded:

library(MASS)

library(car)

The first of these commands loads the MASS package, which contains the mammals
data frame and the truehist function to generate histograms, and the second
loads the car package, which contains the qqPlot function used to generate the
normal QQ-plots shown in Fig. 1.1.

1.3 A representative R session

To give a clear view of the essential material covered in this book, the following
paragraphs describe a simple but representative R analysis session, providing
a few specific illustrations of what R can do. The general task is a typical
preliminary data exploration: we are given an unfamiliar dataset and we begin
by attempting to understand what is in it. In this particular case, the dataset
is a built-in data example from R—one of many such examples included in
the language—but the preliminary questions explored here are analogous to
those we would ask in characterizing a dataset obtained from the Internet,
from a data warehouse of customer data in a business application, or from a
computerized data collection system in a scientific experiment or an industrial
process monitoring application. Useful preliminary questions include:

1. How many records does this dataset contain?

2. How many fields (i.e., variables) are included in each record?

3. What kinds of variables are these? (e.g., real numbers, integers, categorical
variables like “city” or “type,” or something else?)

4. Are these variables always observed? (i.e., is missing data an issue? If so,
how are missing values represented?)

5. Are the variables included in the dataset the ones we were expecting?

6. Are the values of these variables consistent with what we expect?

7. Do the variables in the dataset seem to exhibit the kinds of relationships
we expect? (Indeed, what relationships do we expect, and why?)

12 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

The example presented here does not address all of these questions, but it does
consider some of them and it shows how the R programming environment can
be useful in both answering and refining these questions.

Assuming R has been installed on your machine (if not, see the discussion of
installing R in Chapter 11), you begin an interactive session by clicking on the
R icon. This brings up a window where you enter commands at the “>” prompt
to tell R what you want to do. There is a toolbar at the top of this display with
a number of tabs, including “Help” which provides links to a number of useful
documents that will be discussed further in later parts of this book. Also, when
you want to end your R session, type the command “q()” at the “>” prompt:
this is the “quit” command, which terminates your R session. Note that the
parentheses after “q” are important here: this tells R that you are calling a
function that, in general, does something to the argument or arguments you
pass it. In this case, the command takes no arguments, but failing to include
the parentheses will cause R to search for an object (e.g., a vector or data frame)
named “q” and, if it fails to find this, display an error message. Also, note that
when you end your R session, you will be asked whether you want to save your
workspace image: if you answer “yes,” R will save a copy of all of the commands
you used in your interactive session in the file .Rhistory in the current working
directory, making this command history—but not the R objects created from
these commands—available for your next R session.

Also, in contrast to some other languages—SAS R© is a specific example—it
is important to recognize that R is case-sensitive: commands and variables in
lower-case, upper-case, or mixed-case are not the same in R. Thus, while a SAS
procedure like PROC FREQ may be equivalently invoked as proc freq or Proc

Freq, the R commands qqplot and qqPlot are not the same: qqplot is a func-
tion in the stats package that generates quantile-quantile plots comparing two
empirical distributions, while qqPlot is a function in the car package that gen-
erates quantile-quantile plots comparing a data distribution with a theoretical
reference distribution. While the tasks performed by these two functions are
closely related, the details of what they generate are different, as are the details
of their syntax. As a more immediate illustration of R’s case-sensitivity, recall
that the function q() “quits” your R session; in contrast, unless you define it
yourself or load an optional package that defines it, the function Q() does not
exist, and invoking it will generate an error message, something like this:

Q()

Error in Q(): could not find function "Q"

The specific dataset considered in the following example is the whiteside data
frame from the MASS package, one of the recommended packages included with
almost all R installations, as noted in Sec. 1.2.3. Typing “??whiteside” at the
“>” prompt performs a fuzzy search through the documentation for all packages
available to your R session, bringing up a page with all approximate matches
on the term. Clicking on the link labeled MASS::whiteside takes us to a doc-
umentation page with the following description:

1.3. A REPRESENTATIVE R SESSION 13

Mr Derek Whiteside of the UK Building Research Station recorded
the weekly gas consumption and average external temperature at his
own house in south-east England for two heating seasons, one of 26
weeks before, and one of 30 weeks after cavity-wall insulation was
installed. The object of the exercise was to assess the effect of the
insulation on gas consumption.

To analyze this dataset, it is necessary to first make it available by loading the
MASS package with the library() function as described above:

library(MASS)

An R data frame is a rectangular array of N records—each represented as a
row—with M fields per record, each representing a value of a particular variable
for that record. This structure may be seen by applying the head function to
the whiteside data frame, which displays its first few records:

head(whiteside)

Insul Temp Gas

1 Before -0.8 7.2

2 Before -0.7 6.9

3 Before 0.4 6.4

4 Before 2.5 6.0

5 Before 2.9 5.8

6 Before 3.2 5.8

More specifically, the first line lists the field names, while the next six lines show
the values recorded in these fields for the first six records of the dataset. Re-
call from the discussion above that the whiteside data frame characterizes the
weekly average heating gas consumption and the weekly average outside temper-
ature for two successive winters, the first before Whiteside installed insulation
in his house, and the second after. Thus, each record in this data frame rep-
resents one weekly observation, listing whether it was made before or after the
insulation was installed (the Insul variable), the average outside temperature,
and the average heating gas consumption.

A more detailed view of this data frame is provided by the str function,
which returns structural characterizations of essentially any R object. Applied
to the whiteside data frame, it returns the following information:

str(whiteside)

'data.frame': 56 obs. of 3 variables:

$ Insul: Factor w/ 2 levels "Before","After": 1 1 1 1 1 1 1 1 1 1 ...

$ Temp : num -0.8 -0.7 0.4 2.5 2.9 3.2 3.6 3.9 4.2 4.3 ...

$ Gas : num 7.2 6.9 6.4 6 5.8 5.8 5.6 4.7 5.8 5.2 ...

Here, the first line tells us that whiteside is a data frame, with 56 observations
(rows or records) and 3 variables. The second line tells us that the first variable,
Insul, is a factor variable with two levels: “Before” and “After.” (Factors are

14 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

an important R data type used to represent categorical data, introduced briefly
in the next paragraph.) The third and fourth lines tell us that Temp and Gas are
numeric variables. Further, all lines except the first provide summaries of the
first few (here, 10) values observed for each variable. For the numeric variables,
these values are the same as those shown with the head command presented
above, while for factors, str displays a numerical index indicating which of the
possible levels of the variable is represented in each of the first 10 records.

Because factor variables are both very useful and somewhat more complex in
their representation than numeric variables, it is worth a brief digression here to
say a bit more about them. Essentially, factor variables in R are special vectors
used to represent categorical variables, encoding them with two components: a
level, corresponding to the value we see (e.g., “Before” and “After” for the factor
Insul in the whiteside data frame), and an index that maps each element of
the vector into the appropriate level:

x <- whiteside$Insul

str(x)

Factor w/ 2 levels "Before","After": 1 1 1 1 1 1 1 1 1 1 ...

x[2]

[1] Before

Levels: Before After

Here, the str characterization tells us how many levels the factor has and what
the names of those levels are (i.e., two levels, named “Before” and “After”),
but the values str displays are the indices instead of the levels (i.e., the first
10 records list the the first value, which is “Before”). R also supports charac-
ter vectors and these could be used to represent categorical variables, but an
important difference is that the levels defined for a factor variable represent its
only possible values: attempting to introduce a new value into a factor variable
fails, generating a missing value instead, with a warning. For example, if we
attempted to change the second element of this factor variable from “Before”
to “Unknown,” we would get a warning about an invalid factor level and that
the attempted assignment resulted in this element having the missing value NA.
In contrast, if we convert x in this example to a character vector, the new value
assignment attempted above now works:

x <- as.character(whiteside$Insul)

str(x)

chr [1:56] "Before" "Before" "Before" "Before" "Before" "Before" ...

x[2]

[1] "Before"

x[2] <- "Unknown"

str(x)

chr [1:56] "Before" "Unknown" "Before" "Before" "Before" "Before" ...

1.3. A REPRESENTATIVE R SESSION 15

In addition to str and head, the summary function can also provide much useful
information about data frames and other R objects. In fact, summary is an
example of a generic function in R, that can do different things depending on
the attributes of the object we apply it to. Generic functions are discussed
further in Chapters 2 and 7, but when the generic summary function is applied
to a data frame like whiteside, it returns a relatively simple characterization
of the values each variable can assume:

summary(whiteside)

Insul Temp Gas

Before:26 Min. :-0.800 Min. :1.300

After :30 1st Qu.: 3.050 1st Qu.:3.500

Median : 4.900 Median :3.950

Mean : 4.875 Mean :4.071

3rd Qu.: 7.125 3rd Qu.:4.625

Max. :10.200 Max. :7.200

This result may be viewed as a table with one column for each variable in
the whiteside data frame—Insul, Temp, and Gas—with a column format that
depends on the type of variable being characterized. For the two-level factor
Insul, the summary result gives the number of times each possible level oc-
curs: 26 records list the value “Before,” while 30 list the value “After.” For
the numeric variables, the result consists of two components: one is the mean
value—i.e., the average of the variable over all records in the dataset—while the
other is Tukey’s five-number summary, consisting of these five numbers:

1. the sample minimum, defined as the smallest value of x in the dataset;

2. the lower quartile, defined as the value xL for which 25% of the data
satisfies x ≤ xL and the other 75% of the data satisfies x > xL;

3. the sample median, defined as the “middle value” in the dataset, the value
that 50% of the data values do not exceed and 50% do exceed;

4. the upper quartile, defined as the value xU for which 75% of the data
satisfies x ≤ xU and the other 25% of the data satisfies x > xU ;

5. the sample maximum, defined as the largest value of x in the dataset.

This characterization has the advantage that it can be defined for any sequence
of numbers and its complexity does not depend on how many numbers are in
the sequence. In contrast, the complete table of counts for an L-level categorical
variable consists of L numbers: for variables like Insul in the whiteside data
frame, L = 2, so this characterization is simple. For a variable like “State”
with 50 distinct levels (i.e., one for each state in the U.S.), this table has 50
entries. For this reason, the characterization returned by the summary function
for categorical variables consists of the complete table if L ≤ 6, but if L > 6, it
lists only the five most frequently occurring levels, lumping all remaining levels
into a single “other” category.

16 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

●

Before After

2
3

4
5

6
7

Figure 1.2: Side-by-side boxplot comparison of the “Before” and “After” subsets
of the Gas values from the whiteside data frame.

An extremely useful graphical representation of Tukey’s five-number sum-
mary is the boxplot, particularly useful in showing how the distribution of a
numerical variable depends on subsets defined by the different levels of a factor.
Fig. 1.2 shows a side-by-side boxplot summary of the Gas variable for subsets
of the whiteside data frame defined by the Insul variable. This summary was
generated by the following R command, which uses the R formula interface (i.e.,
Gas ~ Insul) to request boxplots of the ranges of variation of the Gas variable
for each distinct level of the Insul factor:

boxplot(Gas ~ Insul, data = whiteside)

The left-hand plot—above the x-axis label “Before”—illustrates the boxplot
in its simplest form: the short horizontal lines at the bottom and top of the
plot correspond to the sample minimum and maximum, respectively; the wider,
heavier line in the middle of the plot represents the median; and the lines at
the top and bottom of the “box” in the plot correspond to the upper and lower
quartiles. The “After” boxplot also illustrates a common variation on the “ba-
sic” boxplot based strictly on Tukey’s five-number summary. Specifically, at
the bottom of this boxplot—below the “sample minimum” horizontal line—is a
single open circle, representing an outlier, a data value that appears inconsistent
with the majority of the data (here, “unusually small”). In this boxplot, the

1.3. A REPRESENTATIVE R SESSION 17

Insul

0 2 4 6 8 10

●● ● ●●●●●●● ● ●●●●● ●●●●●●● ● ● ●

● ●●●●● ●●● ● ●●●●●●●●●●●● ● ●●● ● ●● ●

1.
0

1.
4

1.
8

●●●●●●●● ●●●●●●●●●● ●●●● ●●●●

●●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●

0
2

4
6

8
10

●●

●

●
●●
●●
●●

●
●●●●●
●●
●●●●
●
●
●

●

●

●●
●●●
●●●
●
●●●●
●●
●●●●●
●

●

●●
●
●
●●

●

Temp

●●

●

●
●●

●● ●●

●
●●●●●

●●
●●●●

●
●

●

●

●

●●
●●●
●●●

●
●●●●●

●●● ● ●●●

●

●●●
●
●●

●

1.0 1.2 1.4 1.6 1.8 2.0

●
●

●
●
●●
●

●

●

●
●●

●●
●●

●
●
●
●●
●

●
●

●

●

●
●●

●
●●●●

●
●

●
●
●
●●
●
●●
●
●
●●

●
●
●
●●
●

●
●

●
●

●
●

●●
●

●

●

●
● ●

●●
●●

●
●

●
●●
●

●
●

●

●

●
●●

●
●● ●●

●
●

●
●
●
●●

●
●●
●
●
●●

●
●
●

● ● ●

●
●

2 3 4 5 6 7

2
3

4
5

6
7

Gas

Figure 1.3: The 3× 3 plot array generated by plot(whiteside).

bottom horizontal line does not represent the sample minimum, but the “small-
est non-outlying value” where the determination of what values are “outlying”
versus “non-outlying” is made using a simple rule discussed in Chapter 3.

Fig. 1.3 shows the results of applying the plot function to the whiteside

data frame. Like summary, the plot function is also generic, producing a result
that depends on the nature of the object to which it is applied. Applied to a
data frame, plot generates a matrix of scatterplots, showing how each variable
relates to the others. More specifically, the diagonal elements of this plot array
identify the variable that defines the x-axis in all of the other plots in that
column of the array and the y-axis in all of the other plots in that row of the
array. Here, the two scatterplots involving Temp and Gas are simply plots of
the numerical values of one variable against the other. The four plots involving
the factor variable Insul have a very different appearance, however: in these
plots, the two levels of this variable (“Before” and “After”) are represented by
their numerical codes, 1 and 2. Using these numerical codes provides a basis for
including factor variables in a scatterplot array like the one shown here, although
the result is often of limited utility. Here, one point worth noting is that the
plots involving Insul and Gas do show that the Gas values are generally smaller
when Insul has its second value. In fact, this level corresponds to “After” and
this difference reflects the important detail that less heating gas was consumed
after insulation was installed in the house than before.

18 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

● ●

●

●
●

●
●

●
● ●

●

● ● ●
● ●

● ●
● ● ● ●

●

●

●

●

●

●
●

● ● ●

●
● ●

●

● ● ●
● ●

● ●
● ● ● ●

●

●

● ●
●

●

● ●

●

0 10 20 30 40 50

0
2

4
6

8
10

Index

w
hi

te
si

de
$T

em
p

Figure 1.4: The result of plot(whiteside$Temp).

In Fig. 1.4, applying plot to the Temp variable from the whiteside data
frame shows how Temp varies with its record number in the data frame. Here,
these values appear in two groups—one of 26 points, followed by another of
30 points—but within each group, they appear in ascending order. From the
data description presented earlier, we might expect these values to represent
average weekly winter temperatures recorded in successive weeks during the
two heating seasons characterized in the dataset. Instead, these observations
have been ordered from coldest to warmest within each heating season. While
such unexpected structure often makes no difference, it sometimes does; the key
point here is that plotting the data can reveal it.

Fig. 1.5 shows the result of applying the plot function to the factor variable
Insul, which gives us a barplot, showing how many times each possible value
for this categorical variable appears in the data frame. In marked contrast to
this plot, note that Fig. 1.3 used the numerical level representation for Insul:
“Before” corresponds to the first level of the variable—represented as 1 in the
plot—while “After” corresponds to the second level of the variable, represented
as 2 in the plot. This was necessary so that the plot function could present
scatterplots of the “value” of each variable against the corresponding “value”
of every other variable. Again, these plots emphasize that plot is a generic
function, whose result depends on the type of R object plotted.

1.3. A REPRESENTATIVE R SESSION 19

Before After

0
5

10
15

20
25

30

Figure 1.5: The result of plot(whiteside$Insul).

The rest of this section considers some refinements of the scatterplot between
weekly average heating gas consumption and average outside temperature ap-
pearing in the three-by-three plot array in Fig. 1.3. The intent is to give a
“preview of coming attractions,” illustrating some of the ideas and techniques
that will be discussed in detail in subsequent chapters.

The first of these extensions is Fig. 1.6, which plots Gas versus Temp with
different symbols for the two heating seasons (i.e., “Before” and “After”). The
following R code generates this plot, using open triangles for the “Before” data
and solid circles for the “After” data:

plot(whiteside$Temp, whiteside$Gas, pch=c(6,16)[whiteside$Insul])

The approach used here to make the plotting symbol depend on the Insul value
for each point is described in Chapter 2, which gives a detailed discussion of
generating and refining graphical displays in R. Here, the key point is that using
different plotting symbols for the “Before” and “After” points in this example
highlights the fact that the relationship between heating gas consumption and
outside temperature is substantially different for these two collections of points,
as we would expect from the original description of the dataset. Another im-
portant point is that generating this plot with different symbols for the two sets
of data points is not difficult.

20 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

●
● ●

●
●● ● ●

●

●

●

●
●

●●
●
● ●

●

●

● ●

●
●
●

● ● ●

●
●

0 2 4 6 8 10

2
3

4
5

6
7

whiteside$Temp

w
hi

te
si

de
$G

as

Figure 1.6: Scatterplot of Gas versus Temp from the whiteside data frame, with
distinct point shapes for the “Before” and “After” data subsets.

Fig. 1.7 shows a simple but extremely useful modification of Fig. 1.6: the
inclusion of a legend that tells us what the different point shapes mean. This
is also quite easy to do, using the legend function, which can be used to put a
box anywhere we like on the plot, displaying the point shapes we used together
with descriptive text to tell us what each shape means. The R code used to add
this legend is shown in Fig. 1.7.

The last example considered here adds two reference lines to the plot shown
in Fig. 1.7. These lines are generated using the R function lm, which fits linear
regression models, discussed in detail in Chapter 5. These models represent the
simplest type of predictive model, a topic discussed more generally in Chapter
10 where other classes of predictive models are introduced. The basic idea is
to construct a mathematical model that predicts a response variable from one
or more other, related variables. In the whiteside data example considered
here, these models predict the weekly average heating gas consumed as a linear
function of the measured outside temperature. To obtain two reference lines,
one model is fit for each of the data subsets defined by the two values of the
Insul variable. Alternatively, we could obtain the same results by fitting a
single linear regression model to the dataset, using both the Temp and Insul

variables as predictors. This alternative approach is illustrated in Chapter 5
where this example is revisited.

1.4. ORGANIZATION OF THIS BOOK 21

plot(whiteside$Temp, whiteside$Gas, pch=c(6,16)[whiteside$Insul])

legend(x="topright",legend=c("Insul = Before","Insul = After"), pch=c(6,16))

●
● ●

●
●● ● ●

●

●

●

●
●

●●
●
● ●

●

●

● ●

●
●
●

● ● ●

●
●

0 2 4 6 8 10

2
3

4
5

6
7

whiteside$Temp

w
hi

te
si

de
$G

as

●

Insul = Before
Insul = After

Figure 1.7: Scatterplot from Fig. 1.6 with a legend added to identify the two
data subsets represented with different point shapes.

Fig. 1.8 is the same as Fig. 1.7, but with these reference lines added. As
with the different plotting points, these lines are drawn with different line types.
The R code listed at the top of Fig. 1.8 first re-generates the previous plot,
then fits the two regression models just described, and finally draws in the
lines determined by these two models. Specifically, the dashed “Before” line is
obtained by fitting one model to only the “Before” points and the solid “After”
line is obtained by fitting a second model to only the “After” points.

1.4 Organization of this book

This book is organized as two parts. The first focuses on analyzing data in
an interactive R session, while the second introduces the fundamentals of R
programming, emphasizing the development of custom functions since this is
the aspect of programming that most R users find particularly useful. The
second part also presents more advanced treatments of topics introduced in the
first, including text analysis, a second look at exploratory data analysis, and an
introduction to some more advanced aspects of predictive modeling.

22 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

plot(whiteside$Temp, whiteside$Gas, pch=c(6,16)[whiteside$Insul])

legend(x="topright",legend=c("Insul = Before","Insul = After"), pch=c(6,16))

Model1 <- lm(Gas ~ Temp, data = whiteside, subset = which(Insul == "Before"))

Model2 <- lm(Gas ~ Temp, data = whiteside, subset = which(Insul == "After"))

abline(Model1, lty=2)

abline(Model2)

●
● ●

●
●● ● ●

●

●

●

●
●

●●
●
● ●

●

●

● ●

●
●
●

● ● ●

●
●

0 2 4 6 8 10

2
3

4
5

6
7

whiteside$Temp

w
hi

te
si

de
$G

as

●

Insul = Before
Insul = After

Figure 1.8: Scatterplot from Fig. 1.7 with linear regression lines added, repre-
senting the relationships between Gas and Temp for each data subset.

More specifically, the first part of this book consists of the first seven chap-
ters, including this one. As noted, one of the great strengths of R is its variety of
powerful data visualization procedures, and Chapter 2 provides a detailed intro-
duction to several of these. This subject is introduced first because it provides
those with little or no prior R experience a particularly useful set of tools that
they can use right away. Specific topics include both basic plotting tools and
some simple customizations that can make these plots much more effective. In
fact, R supports several different graphics environments which, unfortunately,
don’t all play well together. The most important distinction is that between
base graphics—the primary focus of Chapter 2—and the alternative grid graph-
ics system, offering greater flexibility at the expense of being somewhat harder
to use. While base graphics are used for most of the plots in this book, a number
of important R packages use grid graphics, including the increasingly popular
ggplot2 package. As a consequence, some of the things we might want to do—
e.g., add reference lines or put several different plots into a single array—can

1.4. ORGANIZATION OF THIS BOOK 23

fail if we attempt to use base graphics constructs with plots generated by an
R package based on grid graphics. For this reason, it is important to be aware
of the different graphics systems available in R, even if we work primarily with
base graphics as we do in this book. Since R supports color graphics, two sets
of color figures are included in this book, the first collected as Chapter 2.8 and
the second collected as Chapter 9.10 in the second part of the book.

Chapter 3 introduces the basic notions of exploratory data analysis (EDA),
focusing on specific techniques and their implementation in R. Topics include
descriptive statistics like the mean and standard deviation, essential graphical
tools like scatterplots and histograms, an overview of data anomalies (including
brief discussions of different types, why they are too important to ignore, and a
few of the things we can do about them), techniques for assessing or visualizing
relationships between variables, and some simple summaries that are useful in
characterizing large datasets. This chapter is one of two devoted to EDA, the
second being Chapter 9 in the second part of the book, which introduces some
more advanced concepts and techniques.

The introductory R session example presented in Sec. 1.3 was based on the
whiteside data frame, an internal R dataset included in the MASS package. One
of the great conveniences in learning R is the fact that so many datasets are
available as built-in data objects. Conversely, for R to be useful in real-world
applications, it is obviously necessary to be able to bring the data we want to
analyze into our interactive R session. This can be done in a number of different
ways, and the focus of Chapter 4 is on the features available for bringing external
data into our R session and writing it out to be available for other applications.
This latter capability is crucial since, as emphasized in Sec. 1.2.3, everything
within our active R session exists in RAM, which is volatile and disappears
forever when we exit this session; to preserve our work, we need to save it to a
file. Specific topics discussed in Chapter 4 include data file types, some of R’s
commands for managing external files (e.g., finding them, moving them, copying
or deleting them), some of the built-in procedures R provides to help us find
and import data from the Internet, and a brief introduction to the important
topic of databases, the primary tool for storing and managing data in businesses
and other large organizations.

Chapter 5 is the first of two chapters introducing the subject of predictive
modeling, the other being Chapter 10 in the second part of the book. Predictive
modeling is perhaps most simply described as the art of developing mathe-
matical models—i.e., equations—that predict a response variable from one or
more covariates or predictor variables. Applications of this idea are extremely
widespread, ranging from the estimation of the probability that a college base-
ball player will go on to have a successful career in the major leagues described
in Michael Lewis’ popular book Moneyball [51], to the development of mathe-
matical models for industrial process control to predict end-use properties that
are difficult or impossible to measure directly from easily measured variables like
temperatures and pressures. The simplest illustration of predictive modeling is
the problem of fitting a straight line to the points in a two-dimensional scat-
terplot; both because it is relatively simple and because a number of important

24 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

practical problems can be re-cast into exactly this form, Chapter 5 begins with
a detailed treatment of this problem. From there, more general linear regression
problems are discussed in detail, including the problem of overfitting and how
to protect ourselves from it, the use of multiple predictors, the incorporation
of categorical variables, how to include interactions and transformations in a
linear regression model, and a brief introduction to robust techniques that are
resistant to the potentially damaging effects of outliers.

When we analyze data, we are typically attempting to understand or predict
something that is of interest to others, which means we need to show them what
we have found. Chapter 6 is concerned with the art of crafting data stories to
meet this need. Two key details are, first, that different audiences have different
needs, and second, that most audiences want a summary of what we have done
and found, and not a complete account with all details, including wrong turns
and loose ends. The chapter concludes with three examples of moderate-length
data stories that summarize what was analyzed and why, and what was found
without going into all of the gory details of how we got there (some of these
details are important for the readers of this book even if they don’t belong in
the data story; these details are covered in other chapters).

The second part of this book consists of Chapters 7 through 11, introduc-
ing the topics of R programming, the analysis of text data, second looks at
exploratory data analysis and predictive modeling, and the challenges of orga-
nizing our work. Specifically, Chapter 7 introduces the topic of writing programs
in R. Readers with programming experience in other languages may want to skip
or skim the first part of this chapter, but the R-specific details should be useful
to anyone without a lot of prior R programming experience. As noted in the
Preface, this book assumes no prior programming experience, so this chapter
starts simply and proceeds slowly. It begins with the question of why we should
learn to program in R rather than just rely on canned procedures, and contin-
ues through essential details of both the structure of the language (e.g., data
types like vectors, data frames, and lists; control structures like for loops and
if statements; and functions in R), and the mechanics of developing programs
(e.g., editing programs, the importance of comments, and the art of debugging).
The chapter concludes with five programming examples, worked out in detail,
based on the recognition that many of us learn much by studying and modifying
code examples that are known to work.

Text data analysis requires specialized techniques, beyond those covered in
most statistics and data analysis texts, which are designed to work with numer-
ical or simple categorical variables. Most of this book is also concerned with
these techniques, but Chapter 8 provides an introduction to the issues that arise
in analyzing text data and some of the techniques developed to address them.
One key issue is that, to serve as a basis for useful data analysis, our original text
data must be converted into a relevant set of numbers, to which either general
or highly text-specific quantitative analysis procedures may be applied. Typi-
cally, the analysis of text data involves first breaking it up into relevant chunks
(e.g., words or short word sequences), which can then be counted, forming the
basis for constructing specialized data structures like term-document matrices,

1.4. ORGANIZATION OF THIS BOOK 25

to which various types of quantitative analysis procedures may then be applied.
Many of the techniques required to do this type of analysis are provided by the
R packages tm and quanteda, which are introduced and demonstrated in the
discussion presented here. Another key issue in analyzing text data is the impor-
tance of preprocessing to address issues like inconsistencies in capitalization and
punctuation, and the removal of numbers, special symbols, and non-informative
stopwords like “a” or “the.” Text analysis packages like tm and quanteda include
functions to perform these operations, but many of them can also be handled
using low-level string handling functions like grep, gsub, and strsplit that
are available in base R. Both because these functions are often extremely useful
adjuncts to specialized text analysis packages and because they represent an
easy way of introducing some important text analysis concepts, these functions
are also treated in some detail in Chapter 8. Also, these functions—along with
a number of others in R—are based on regular expressions, which can be ex-
tremely useful but also extremely confusing to those who have not seen them
before; Chapter 8 includes an introduction to regular expressions.

Chapter 9 provides a second look at exploratory data analysis, building on
the ideas presented in Chapter 3 and providing more detailed discussions of
some of the topics introduced there. For example, Chapter 3 introduces the
idea of using random variables and probability distributions to model under-
tainty in data, along with some standard random variable characterizations like
the mean and standard deviation. The basis for this discussion is the popular
Gaussian distribution, but this distribution is only one of many and it is not
always appropriate. Chapter 9 introduces some alternatives, with examples to
show why they are sometimes necessary in practice. Other topics introduced in
Chapter 9 include confidence intervals and statistical significance, association
measures that summarize the relationship between variables of different types,
multivariate outliers and their impact on standard association measures, and a
number of useful graphical tools that build on these ideas. Since color greatly
enhances the utility of some of these tools, the second group of color figures
follows, as Chapter 9.10.

Following this second look at exploratory data analysis, Chapter 10 builds on
the discussion of linear regression models presented in Chapter 5, introducing
a range of extensions, including logistic regression for binary responses (e.g.,
the Moneyball problem: estimate the probability of having a successful major
league career, given college baseball statistics), more general approaches to these
binary classification problems like decision trees, and a gentle introduction to
the increasingly popular arena of machine learning models like random forests
and boosted trees. Because predictive modeling is a vast subject, the treatment
presented here is by no means complete, but Chapters 5 and 10 should provide
a useful introduction and serve as a practical starting point for those wishing
to learn more.

Finally, Chapter 11 introduces the larger, broader issues of “managing stuff”:
data files, R code that we have developed, analysis results, and even the R
packages we are using and their versions. Initially, this may not seem either
very interesting or very important, but over time, our view is likely to change.

26 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

In particular, as we get further into a data analysis effort, the data sources we
are working with change (e.g., we obtain newer data, better data, or simply
additional data), our intermediate analysis results accumulate (“first, I looked
at the relationship between Variable A and Variable B, which everybody said
was critically important, but the results didn’t seem to support that, so next
I looked at the relationship between Variables A and C, which looked much
more promising, and then somebody suggested I consider Variables D and E,
...”), and different people need different summaries of our results. Often, these
components accumulate rapidly enough that it may take a significant amount
of time and effort to dig up what we need to either explain exactly what we
did before or to re-do our analysis with a “simple” modification (“Can you
drop the records associated with the Florida stores from your analysis, and oh
yeah, use the 2009 through 2012 data instead of the 2008 through 2013 data?
Thanks.”). The purpose of Chapter 11 is to introduce some simple ideas and
tools available in R to help in dealing with these issues before our analytical life
becomes complicated enough to make some of them extremely painful.

1.5 Exercises

1: Section 1.2.2 considered the mammals data frame from the MASS package,
giving body weights and brain weights for 62 animals. Discussions in
later chapters will consider the Animals2 data frame from the robustbase
package which gives the same characterizations for a slightly different set of
animals. In both cases, the row names for these data frames identify these
animals, and the objective of this exercise is to examine the differences
between the animals characterized in these data frames:

1a. The rownames function returns a vector of row names for a data
frame, and the intersect function computes the intersection of two
sets, returning a vector of their common elements. Using these func-
tions, construct and display the vector commonAnimals of animal
names common to both data frames. How many animals are included
in this set?

1b. The setdiff function returns a vector of elements contained in one
set but not the other: setdiff(A, B) returns a vector of elements
in set A that are not in set B. Use this function to display the animals
present in mammals that are not present in Animals2.

1c. Use the setdiff function to display the animals present in Animals2

that are not present in mammals.

1d. Can you give a simple characterization of these differences between
these sets of animals?

2: Figure 1.1 in the text used the qqPlot function from the car package to
show that the log of the brain variable (brain weights) from the mammals

data frame in the MASS package was reasonably consistent with a Gaussian

1.5. EXERCISES 27

distribution. Generate the corresponding plot for the brain weights from
the Animals2 data frame from the robustbase package. Does the same
conclusion hold for these brain weights?

3: As discussed at the end of Section 1.2.3, calling the library function with
no arguments brings up a new window that displays a list of the R packages
that have been previously installed and are thus available for our use by
calling library again with one of these package names. Alternatively,
the results returned by the library function when it is called without
arguments can be assigned to an R data object. The purpose of this
exercise is to explore the structure of this object:

3a. Assign the return value from the library() call without arguments
to the R object libReturn;

3b. This R object is a named list: using the str function, determine how
many elements this object has and the names of those elements;

3c. One of these elements is a character array that provides the informa-
tion normally displayed in the pop-up window: what are the names
of the columns of this matrix, and how many rows does it have?

4: The beginning of Section 1.3 poses seven questions that are often useful to
ask about a new dataset. The last three of these questions deal with our
expectations and therefore cannot be answered by strictly computational
methods, but the first four can be:

4a. For the cabbages dataset from the MASS package, refer back to these
questions and use the str function to answer the first three of them.

4b. The combination of functions length(which(is.na(x))) returns the
number of missing elements of the vector x. Use this combination
to answer the fourth question: how many missing values does each
variable in cabbages exhibit?

5: The generic summary function was introduced in Section 1.3, where it
was applied to the whiteside data frame. While the results returned
by this function do not directly address all of the first four preliminary
exploration questions considered in Exercise 4, this function is extremely
useful in cases where we do have missing data. One such example is the
Chile data frame from the car package. Use this function to answer the
following question: how many missing observations are associated with
each variable in the Chile data frame?

6: As noted in the discussion in Section 1.2.2, the Gaussian distribution is
often assumed as a reasonable approximation to describe how numerical
variables are distributed over their ranges of possible values. This assump-
tion is not always reasonable, but as illustrated in the lower plots in Figure
1.1, the qqPlot function from the car package can be used as an informal
graphical test of the reasonableness of this assumption.

28 CHAPTER 1. DATA, EXPLORATORY ANALYSIS, AND R

6a. Apply the qqPlot function to the HeadWt variable from the cabbages
data frame: does the Gaussian assumption appear reasonable here?

6b. Does this assumption appear reasonable for the VitC variable?

7: The example presented in Section 1.3 used the boxplot function with the
formula interface to compare the range of heating gas values (Gas) for the
two different levels of the Insul variable. Use this function to answer the
following two questions:

7a. The Cult variable exhibits two distinct values, representing different
cabbage cultivars: does there appear to be a difference in cabbage
head weights (HeadWt) between these cultivars?

7b. Does there appear to be a difference in vitamin C contents (VitC)
between these cultivars?

8: One of the points emphasized throughout this book is the utility of scatter-
plots, i.e., plots of one variable against another. Using the plot function,
generate a scatterplot of the vitamin C content (VitC) versus the head
weight (HeadWt) from the cabbages dataset.

9: Another topic discussed in this book is predictive modeling, which uses
mathematical models to predict one variable from another. The lm func-
tion was used to generate reference lines shown in Figure 1.8 for two
subsets of the whiteside data from the MASS package. As a preview of
the results discussed in Chapter 5, this problem asks you to use the lm

function to build a model that predicts VitC from HeadWt. Refer back to
the code included with Figure 1.8, noting that the subset argument is
not needed here (i.e., you need only the formula expression and the data

argument). Specifically:

9a. Use the lm function to build a model that predicts VitC from HeadWt,
saving the result as cabbageModel.

9b. Apply the summary function to cabbageModel to obtain a detailed
description of this predictive model. Don’t worry for now about the
details: the interpretation of these summary results will be discussed
in Chapter 5.

10: Closely related to both scatterplots and linear regression analysis is the
product-moment correlation coefficient, introduced in Chapter 9. This co-
efficient is a numerical measure of the tendency for the variations in one
variable to track those of another variable: positive values indicate that
increases in one variable are associated with increases in the other, while
negative values indicate that increases in one variable are associated with
decreases in the other. The correlation between x and y is computed using
the cor function as cor(x,y). Use this function to compute the correla-
tion between HeadWt and VitC from the cabbages data frame: do these
characteristics vary together or in opposite directions? Is this consistent
with your results from Exercise 8?

Chapter 2

Graphics in R

It has been noted both that graphical data displays can be extremely useful in
understanding what is in a dataset, and that one of R’s strengths is its range of
available graphical tools. Several of these tools were demonstrated in Chapter
1, but the focus there was on specific examples and what they can tell us. The
focus of this chapter is on how to generate useful data displays, with the axes we
want, the point sizes and shapes we want, the titles we want, and explanatory
legends and other useful additions put where we want them.

2.1 Exploratory vs. explanatory graphics

In their book, Iliinsky and Steele [44] draw a distinction between infograph-
ics and data visualizations, describing an infographic as an aesthetically rich,
manually drawn representation of a specific data source, in contrast to a data
visualization that is algorithmically drawn and “often aesthetically barren (i.e.,
data is not decorated),” but much more easily regenerated or modified, and
much richer in data details. Here, we are concerned with data visualizations,
which Iliinksy and Steele further divide into exploratory graphics, designed to
help us understand what is in a dataset, and explanatory graphics, designed to
convey our findings to others. Both exploratory and explanatory graphics are
relevant here, since this book is concerned with both exploratory data analysis
and conveying our results to others, which is the primary objective of Chapter
6 on data stories.

In describing exploratory visualizations, Iliinsky and Steele note that they
are appropriate when you are attempting to understand what is in a large col-
lection of data, and they offer two key observations [44, p. 7]. The first is
reminiscent of the working definition of exploratory data analysis from Persi
Diaconis [21] offered in Chapter 1:

When you need to get a sense of what’s inside your data set, translat-
ing it into a visual medium can help you quickly identify its features,
including interesting curves, lines, trends, and anomalous outliers.

29

30 CHAPTER 2. GRAPHICS IN R

Their second observation concerns the level of detail that is appropriate to
exploratory analysis:

Exploration is generally best done at a high level of granularity.
There may be a whole lot of noise in your data, but if you oversim-
plify or strip out too much information, you could end up missing
something important.

In contrast, the purpose of explanatory visualizations is to convey the analyst’s
conclusions about what is in the data to others. Consequently, it is important
in explanatory visualizations to remove or minimize data details that might
obscure the message. Iliinsky and Steele make the point this way [44, p. 8]:

Whoever your audience is, the story you are trying to tell (or the
answer you are trying to share) is known to you at the outset, and
therefore you can design to specifically accommodate and highlight
that story. In other words, you’ll need to make certain editorial
decisions about which information stays in, and which is distracting
or irrelevant and should come out. This is a process of selecting
focused data that will support the story you are trying to tell.

The following two examples illustrate some of the key differences between ex-
ploratory and explanatory visualizations. Both are based on the UScereal data
frame from the MASS package, which describes 11 characteristics of 65 breakfast
cereals available for sale in the U.S., based mostly on information taken from
the package label required by the U.S. Food and Drug Administration.

Fig. 2.1 represents a graphical data display that is best suited for exploration,
constructed by applying the plot function to the entire data frame:

plot(UScereal, las = 2)

Specifically, this figure shows a plot array—a useful construct discussed further
in Sec. 2.6—with one scatterplot for each pair of variables in the data frame.
The diagonal elements of this array list the name of the variable appearing in
the x-axis of all plots in that column, and the y-axis of all plots in that row.
Since there are 11 variables in this data frame, the result is an array of 110 plots,
making the result visually daunting at first glance. Further, because there are so
many plots included in this array, each one is so small that it is impossible to see
much detail in any individual plot. Nevertheless, this array represents a useful
tool for preliminary data exploration because it allows us to quickly scan the
plots to see whether any strong relationships appear to exist between any of the
variable pairs. Here, there appear to be strong relationships between fat and
calories (row 2, column 4 or vice versa: row 4, column 2), between carbo and
calories (row 2, column 7 and vice versa), and between potassium and fibre

(row 6, column 10 and vice versa). In addition, this display makes it clear that
certain variables—e.g., shelf and vitamins—exhibit only a few distinct values.
While this information can all be obtained using a combination of other displays

2.1. EXPLORATORY VS. EXPLANATORY GRAPHICS 31

mfr

10
0

20
0

30
0

40
0

●
●●

●
●

●

●

●
●

● ●●●

●

●●
●

●●
●

●

●●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●

●
●●

●

●

●

● ●

●
●

●

●

●
●●
●●

●●●●●

●

●●

●
●●

●
●

●

●

●
●

●● ●●

●

●●
●

●●
●

●

●● ●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●

●
●●

●

●

●

● ●

●
●

●

●

●
●●

● ●
●●●●●

●

●●

0 2 4 6 8

●
●●
●

●
●

●

●
●

● ●●●

●

●●
●

●●
●

●

●●●

●

●

●●

●

●● ●
●

●

●

●
●

●

●
●

●
●●

●

●

●

● ●

●
●

●

●

●
●●

●●
●●●●●

●

●●

●
●●

●
●

●

●

●
●

●●●●

●

●●
●

●●
●

●

● ●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●
●
●●
●

●

●

● ●

●
●

●

●

●
●●

● ●
●●● ●●

●

●●

0 5 10 15 20 25 30

●
●●

●
●
●

●

●
●

●●●●

●

●●
●

●●
●

●

●●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●

●
●●
●

●

●

●●

●
●
●

●

●
●●

●●
●●●●●

●

●●

●
●●

●
●

●

●

●
●

●●●●

●

●●
●

●●
●

●

●●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●

●
●●
●

●

●

● ●

●
●

●

●

●
●●

●●
●●● ●●

●

●●

0 5 10 15 20

●
●●

●
●

●

●

●
●

● ●●●

●

● ●
●
●●
●

●

●●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●

●
●●

●

●

●

● ●

●
●

●

●

●
●●

●●
● ●●● ●

●

● ●

●
●●

●
●

●

●

●
●

● ● ●●

●

● ●
●

●●
●

●

●● ●

●

●

●●

●

●●●
●

●

●

●
●

●

●
●

●
● ●

●

●

●

●●

●
●
●

●

●
●●

●●
●●●●●

●

●●

0 20
0

40
0

60
0

80
0

10
00

●
●●

●
●

●

●

●
●

●●●●

●

●●
●

●●
●

●

●●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●
●

●
●●

●

●

●

● ●

●
●

●

●

●
●●

●●
● ●●●●

●

●● 1
2
3
4
5
6

●
●●
●
●
●

●

●
●

●●●●

●

●●
●
●●
●

●

●●●

●

●

●●

●

●●●
●

●

●

●
●

●

●
●
●
●●
●

●

●

●●

●
●
●

●

●
●●

●●
●●● ●●

●

●●

100
200
300
400

●●

●
●

●
●

●● ●
●
●
●

● ●●●●

●

●● ●●
●●

●● ●●● ●

●
●

●●
●

●

●
●

●

●

●
●●

●
●

●
●

●
●

● ●
●● ●●●

●●●●
●
●

●
●
●

calories ●●

●
●

●
●

●●●
●

●
●

●●●●●

●

●●●●
● ●

●●●●● ●

●
●

● ●
●

●

●
●

●

●

●
●●

●
●

●
●

●
●

●●
●● ●●●

●●●
●
●

●
●

●
●

●●

●
●

●
●

●● ●
●

●
●

●●●●●

●

●●●●
●●

●●●●●●

●
●

●●
●

●

●
●

●

●

●
●●

●
●

●
●

●
●

●●
●●
●●●
●●●●

●
●
●

●
●

● ●

●
●

●
●
●●●

●
●
●

●●●●●

●

●●●●
●●
●●●● ●●

●
●

●●
●

●

●
●

●

●

●
●●
●

●
●

●

●
●
●●

●●●●●
●●●●

●
●

●
●
●

●●

●
●
●
●

●●●
●

●
●

●●●●●

●

●●●●
●●

●●●●●●

●
●

●●
●

●

●
●

●

●

●
●●
●

●
●
●

●
●

●●
●●

●●●
●●●
●

●
●

●
●

●
●●

●
●

●
●
●●●

●
●

●

● ●●●●

●

●●●●
●●
●●●●●●

●
●

●●
●

●

●
●

●

●

●
●●
●

●
●

●

●
●
●●
●●

●●●
●●●
●

●
●

●
●
●

●●

●
●
●

●
●● ●

●
●
●

●●● ●●

●

● ●● ●
●●
●●●●●●

●
●

●●
●

●

●
●

●

●

●
●●

●
●

●
●

●
●
●●

●●
●● ●

●● ●
●
●

●
●

●
●

●●

●
●

●
●

● ●●
●

●
●

●●● ●●

●

●●●●
● ●

●●●● ● ●

●
●

●●
●

●

●
●
●

●

●
● ●

●
●
●
●

●
●

●●
●●
●● ●
● ●●●

●
●

●
●
●

●●

●
●

●
●
●●●

●
●

●

●●●●●

●

●●●●
●●

●●●●●●

●
●

●●
●

●

●
●

●

●

●
●●

●
●

●
●

●
●
●●

●●
●●●

●● ●
●
●

●
●

●
●

●●

●
●
●
●
●●●
●
●
●

●●●●●

●

●●●●
●●
●●●●●●

●
●

●●
●

●

●
●
●

●

●
●●
●
●

●
●

●
●
●●
●●

●●●
●●●●
●
●
●
●
●

●●

●

● ●
●

●
●

●

●

●

●

●
●●

●●

●

●● ●●●
● ●●

●●●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●
●

●

●
●

●●
●

●

●
●●●
●

●
●●

●●

●

●●
●

●
●

●

●

●

●

●
●●
●●

●

●●●●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●
●

●

●
●
●●
●

●

●
●●●

●

●
●●

protein

●●

●

●●
●

●
●

●

●

●

●

●
●●
●●

●

●●●●●
● ●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●
●
●●

●

●

●
●●●
●

●
●●

● ●

●

●●
●
●
●

●

●

●

●

●
●●

●●

●

●●●● ●
● ●●

●● ●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●● ●

●

●
●●

●●

●

●●
●

●
●

●

●

●

●

●
●●
●●

●

●●●●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●
●

●

●
●
●

●
●

●●
●

●

●
●●●

●

●
●●

●●

●

●●
●
●

●

●

●

●

●

●
●●

●●

●

●●●●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●
●

●

●

●
●

●

●
●

●●
●

●

●
●● ●
●

●
●●

●●

●

●●
●

●
●

●

●

●

●

●
●●

●●

●

● ●● ●●
● ●●

●●●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●
●

●

●
●

●●
●

●

●
●●●

●

●
● ●

●●

●

● ●
●

●
●

●

●

●

●

●
●●

●●

●

●●●●●
● ●●

●● ●
●

●

●

●

●

●

●

●

●

●
●

● ●
●
●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●●●

●

●
●●

●●

●

●●
●
●

●

●

●

●

●

●
●●
●●

●

●●●●●
● ●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●
●

●

●
●

●

●
●

●●
●

●

●
●●●

●

●
●● 2

4
6
8
10
12●●

●

●●
●
●
●

●

●

●

●

●
●●
●●

●

●●●●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●

●
●

●

●
●
●

●
●

●●
●

●

●
●● ●

●

●
●●

0
2
4
6
8

●●

●

●

●

●
●

●

●
●

●●

●
●●●

●

●

●
●

●
●
●●

●

●
●
●

● ●
●

●

●●
●

●●

●

●

●

● ●
●

●

●
● ●

●●

●

● ●● ●●
●
●

●●●●● ●●●
●●

●

●

●

●
●
●

●
●

●●

●
●●●
●

●

●
●
●

●
●●

●

●
●

●
●●

●

●

●●
●

●●

●

●

●

● ●
●

●

●
●●

●●

●

●●●●●
●

●
●●●●●●●●

●●

●

●

●

●
●

●

●
●

● ●

●
●●●

●

●

●
●
●

●
● ●

●

●
●
●

● ●
●

●

● ●
●

●●

●

●

●

●●
●

●

●
●●

●●

●

●●● ●●
●

●
●●●●● ●●●

fat
● ●

●

●

●

●
●
●

●
●

●●

●
●●●

●

●

●
●
●

●
●●

●

●
●

●
●●

●

●

●●
●

●●

●

●

●

●●
●
●

●
●●

●●

●

● ●●●●
●

●
●●● ●● ●●●

●●

●

●

●

●
●
●

●
●

●●

●
●●●
●

●

●
●
●
●
●●

●

●
●
●
●●

●

●

●●
●
●●

●

●

●

●●
●
●

●
●●

●●

●

●●● ●●
●
●
●●●●●●●●

●●

●

●

●

●
●

●

●
●

●●

●
●●●

●

●

●
●

●
●

●●

●

●
●

●
●●

●

●

●●
●

●●

●

●

●

●●
●

●

●
●●

●●

●

●●●●●
●
●
●●● ●● ●●●

●●

●

●

●

●
●

●

●
●

●●

●
●● ●

●

●

●
●

●
●
●●

●

●
●
●

●●
●

●

●●
●

●●

●

●

●

● ●
●

●

●
●●

● ●

●

●●●●●
●

●
● ●●● ●●● ●

●●

●

●

●

●
●

●

●
●

● ●

●
●● ●

●

●

●
●
●

●
● ●

●

●
●

●
● ●

●

●

●●
●

●●

●

●

●

● ●
●
●

●
●●

●●

●

●●●●●
●

●
●●●●●●●●

●●

●

●

●

●
●

●

●
●

●●

●
●●●
●

●

●
●

●
●
●●

●

●
●
●
●●

●

●

●●
●

●●

●

●

●

●●
●
●

●
●●

●●

●

●●● ●●
●
●
● ●●●●●●●

●●

●

●

●

●
●
●

●
●

●●

●
●●●
●

●

●
●
●
●
●●

●

●
●
●
●●
●

●

●●
●

● ●

●

●

●

●●
●
●

●
● ●

●●

●

●●● ●●
●
●

●●● ●●●●●

●

●

●●
●

● ●● ●●●●●
●●

●
●

●●● ●
●
●

●

●
●

●
●

●

●

●

● ●
●

●
●● ●● ●● ●●● ●●

●

●●●

●

●
●

●●
●
●●●●

●

●

●
●●

●

●

●●
●

●●●●● ●●
●
●●

●
●

●●●●●
●

●

●
●

●
●

●

●

●

●●
●

●
●● ●● ●● ●●●●●

●

●●●

●

●
●

●●
●

●●●●
●

●

●
●●

●

●

●●
●

●●●● ●● ●
●
●●

●
●

●●●●●
●

●

●
●

●
●

●

●

●

●●
●

●
●● ●● ●●●●●●●

●

●● ●

●

●
●

●●
●

●●●●
●

●

●
●●

●

●

● ●
●

●●● ●● ●●
●

●●

●
●

●●●●
●

●

●

●
●

●
●

●

●

●

●●
●

●
●● ●● ●●●

●●●●

●

●● ●

●

●
●

●●
●

●●●●
●

●

●
●●

sodium ●

●

●●
●
●●●●●●●

●
●●

●
●

●●●●●
●

●

●
●

●
●

●

●

●

●●
●

●
●●●●●●●
●● ●●

●

●●●

●

●
●

●●
●
●●●●
●

●

●
●●

●

●

●●
●

●●●●●●●
●

●●

●
●

●●●●
●

●

●

●
●

●
●

●

●

●

●●
●

●
●●●● ●●●●●●●

●

●●●

●

●
●

●●
●
●●●●

●

●

●
●●

●

●

● ●
●

●●● ●● ●●
●

●●

●
●
●● ●●
●
●

●

●
●

●
●

●

●

●

●●
●

●
●● ●● ●● ●● ●●●

●

● ●●

●

●
●

●●
●

●● ●●
●

●

●
● ●

●

●

●●
●

●● ●●● ● ●
●

●●

●
●

●●●●●
●

●

●
●

●
●

●

●

●

●●
●

●
●●●● ●● ● ●●●●

●

●● ●

●

●
●

●●
●

● ●●●
●

●

●
●●

●

●

●●
●

●●●●●●●
●
●●

●
●

●●●●●
●

●

●
●

●
●

●

●

●

●●
●

●
●●●● ●●●
●●●●

●

●●●

●

●
●

●●
●
●● ●●
●

●

●
●●

0
200
400
600
800

●

●

●●
●
●●●●●●●●
●●

●
●
●●●●●
●

●

●
●

●
●

●

●

●

●●
●

●
● ●●●●●

●●●●●

●

●●●

●

●
●

●●
●
●●●●
●

●

●
●●

05
1015202530 ●

●●

● ●●
●●

●●●
●
● ●●●●

●

●● ●●●
●

●●

●●●
●

●
●

●● ●
●

●
●

●
●● ●
●●

●

● ●
●

●● ●
●●

●●
●●●

●●
●●

●●●

●
●●

●●●
●●

●● ●
●

●●●●●

●

●●●●●●
●●

●●●
●

●
●

●●●
●

●
●

●
●● ●

●●
●

●●
●

●●●
●●
●●
●●●
●●
●●
●●●

●
●●

●● ●
●●

● ●●
●

●●●●●

●

●●●●●
●
●●

●●●
●

●
●

● ●●
●

●
●

●
●●●
●●
●

●●
●

● ●●
●●

●●
● ●●
●●
●●

●●●

●
●●

●● ●
●●

●● ●
●

●●●●●

●

●●●●●●
●●

●●●
●

●
●

●●●
●

●
●

●
●●●
●●

●

●●
●

● ●●
●●
●●

●●●
●●
●●
●●●

●
●●

●● ●
●●

●●●
●

●●●●●

●

●●●● ●●
●●

●● ●
●

●
●

●●●
●

●
●

●
●●●

●●
●

●●
●
●●●

●●
●●

● ●●
●●

●●
●●●

fibre

●
●●

●● ●
●●

●●●
●

● ●●●●

●

●●●●●●
●●

●●●
●

●
●

●●●
●

●
●

●
●●●

●●
●

●●
●

●●●
●●

●●
●●●
●●

●●
●●●

●
●●

●●●
●●

●● ●
●
●●● ●●

●

● ●● ●●●
●●

●●●
●

●
●

●●●
●

●
●

●
●● ●

● ●
●

●●
●

●●●
●●

●●
●●●

●●
● ●
●● ●

●
●●

● ● ●
● ●

●● ●
●

●●● ●●

●

●●●●● ●
●●

●● ●
●

●
●

●●●
●

●
●
●

●● ●
●●
●

●●
●

● ●●
●●
●●

●● ●
●●
●●

●●●

●
●●

●●●
●●

●●●
●

●●●●●

●

●●●●●
●

●●

●●●
●

●
●

●●●
●

●
●

●
●●●
●●

●

●●
●

●●●
●●

●●
●●●

●●
●●
●●●

●
●●

●●●
●●

●●●
●
●●●●●

●

●●●●●
●
●●

●●●
●

●
●

●●●
●

●
●
●
●●●
●●
●

● ●
●
●●●
●●

●●
●●●

●●
●●
●●●

●
●
●● ●

● ●● ●●●
●

●
●●

●●
●●

●
●

●
●● ●● ●●

● ●

●

●

●● ●

●

● ●
●

●
●

●
●●

●●
●

●
●●
●

●●
●●

●●
●
●●
●

●
●

●● ●
●

●●●

●●●●● ●
●

●
●●
●●

●●
●
●

●
●●●●●●
●●

●

●

●●●

●

● ●
●

●
●

●
●●

●●
●

●
●●
●

●●
●●

●●●●●
●

●
●

●●
●
●

●●●

●●●● ●●
●

●
●●

●●
●●

●
●

●
● ●●●●●
● ●

●

●

● ●●

●

● ●
●

●
●
●

●●
●●

●

●
● ●
●

●●
●●

● ●●
●●
●

●
●

●● ●
●

● ●●

●●● ●● ●
●

●
●●
●●

●●
●

●

●
●● ●●●●

●●

●

●

●●●

●

● ●
●

●
●
●

●●
●●

●

●
● ●

●
●●
●●

●●●
●●
●

●
●

●● ●
●

●●●

●●●●●●
●

●
●●

●●
●●

●
●

●
●● ●●●●

●●

●

●

●●●

●

●●●

●
●
●
●●
●●●

●
●●

●
●●

●●

● ●●●●
●

●
●

●●
●

●
●●●

●●●●●●
●

●
●●
●●

●●
●
●

●
●●●●●●
●●

●

●

●●●

●

●●
●

●
●

●
●●

●●
●

●
●●

●
●●

●●

●●
●

●●
●

●
●
●●

carbo

●
●

● ●●

●●● ●● ●
●

●
●●

●●
●●
●

●

●
●● ●●●●

●●

●

●

●●●

●

● ●
●

●
●

●
● ●

●●
●

●
●●

●
●●

●●

●●● ●●
●

●
●

● ●
●
●
●● ●

●● ●●● ●
●

●
●●

●●
●●
●
●

●
● ● ●●●●

● ●

●

●

●●●

●

●●●

●
●

●
●●
●●●

●
● ●

●
●●
●●

●● ●
●●
●

●
●
●● ●

●
●●●

●●●●●●
●

●
●●
●●

●●
●

●

●
●● ●●●●
●●

●

●

●●●

●

●●
●

●
●
●

●●
●●

●

●
●●

●
●●

●●

●●
●

●●
●

●
●

●● 10
20
30
40
50
60
70

●
●
●●●

●●●●●●
●

●
●●
●●
●●
●
●

●
●●●●●●
●●

●

●

●●●

●

●●●

●
●
●
●●
●●

●

●
●●
●
●●

●●

●●
●
●●

●

●
●
●●

0
5

10
15
20 ●

●

●

● ●
● ●●

●

●

●
●●

●●

●● ●

●

●

●

●●

●

●
●

●●

●

●

●● ●
●

●
●

●

●
●

●

●

●
●

● ●

●
●

●
●●
●

●●
●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
●●
●

●●●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
● ●
●

●●
●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●● ●

●

●

●

●●

●

●
●

●●

●

●

● ●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
● ●

●

●●●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●●

●

●

●

● ●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
●●

●

●●
●●

●

●●

●

● ●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

● ●

●
●

●
●●

●

●● ●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
●●

●

●●●●

●

●●

●

● ●

●

●●

● sugars

●
●

●

● ●
●● ●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
● ●

●

●●●●

●

● ●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●

●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
●●

●

●● ●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●●●

●

●

●
●●

●●

●●
●

●

●

●

●●

●

●
●
●●

●

●

●●●
●

●
●

●

●
●

●

●

●
●

●●

●
●

●
●●
●

●● ●●

●

●●

●

● ●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●● ●

●

●

●

●●

●

●

●

●●●

●

● ●

●

● ●●

●

●

●

●● ●● ●●

●

● ●

●● ●●

●

●

●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

● ●●

●

●

●

●●●●● ●

●

●●

●●●●

●

●

●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

● ●●

●

●

●

●●●●● ●

●

●●

●● ●●

●

●

●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

●● ●

●

●●

●

● ●●

●

●

●

●●●●● ●

●

●●

●●●●

●

●

●●●●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●●●

●

●

●

●●●●● ●

●

●●

●●●●

●

●

●●● ●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●●●

●

●

●

●● ●●●●

●

●●

●● ●●

●

●

●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●●●

●

●

●

●●●●● ●

●

●●

●●●●

●

●

●●● ●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●● ●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

● ●●

●

●

●

● ●●●● ●

●

●●

●●●●

●

●

● ●●●

●

●● ●

shelf

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●●●

●

●

●

●●●●● ●

●

●●

●● ●●

●

●

● ●●●

●

●●● 1.0
1.5
2.0
2.5
3.0●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●●●● ●●

●

●●

●● ●●

●

●

●●● ●

●

●●●

0
200
400
600
800

1000
●

●

●

● ●
● ●

●

●●●
●
● ●●●●

●

●
● ●●●

●
●●

●●● ●

●●

●●
●

●
●

●
●

●
● ●

●●
●

● ●
●

●● ●
●●

●●
●●●

●
●●●

●●●

●
●

●

●●
●●

●

●● ●
●

●●●●●

●

●
●●●●
●

●●

●●●●

●●

●●●
●

●
●

●
●

● ●
●●

●

●●
●

●●●
●●
●●
●●●
●

●●●
●●●

●
●

●

●●
●●
●

● ●●
●

●●●●●

●

●
●●●●
●
●●

●●● ●

●●

● ●
●

●
●

●
●

●
●●

●●
●

●●
●

● ●●
●●

●●
● ●●
●
●●●

●●●

●
●

●

●●
●●

●

●● ●
●

●●●●●

●

●
●●●●

●
●●

●●●●

● ●

●●●
●

●
●

●
●

●●
●●

●

●●
●

● ●●
●●
●●

●●●
●
●●●
●●●

●
●

●

●●
●●
●

●●●
●

●●●●●

●

●
●●● ●

●
●●

●● ●●

●●

●●
●

●
●
●

●
●
●●

●●
●

●●
●
●●●

●●
●●

● ●●
●
● ●●

●●●

●
●

●

●●
●●

●

●●●
●

●●●●●

●

●
●●●●
●

●●

●●●●

●●

●●●
●

●
●

●
●

●●
●●

●

●●
●
●●●

●●
●●

●●●
●
●●●
●●●

●
●

●

●●
●●

●

●●●
●

● ●●●●

●

●
●●●●
●
●●

●●●●

●●

●●●
●

●
●

●
●

●●
●●

●

●●
●

●●●
●●

●●
●●●
●
● ●●

●●●

●
●

●

●●
●●

●

●● ●
●
●●● ●●

●

●
●● ●●

●
●●

●●●●

●●

●●
●

●
●

●
●

●
● ●

● ●
●

●●
●

●●●
●●

●●
●●●

●
●● ●
●● ●

●
●

●

● ●
●●
●

●● ●
●

●●● ●●

●

●
●●●●

●
●●

●● ● ●

●●

●●
●

●
●
●
●

●
● ●

●●
●

●●
●

● ●●
●●
●●

●● ●
●
●●●

●●●

potassium

●
●

●

●●
●●
●

●●●
●
●●●●●

●

●
●●●●
●
●●

●●●●

●●

●●●
●

●
●
●
●
●●
●●
●

● ●
●
●●●
●●

●●
●●●

●
● ●●

●●●

1 2 3 4 5 6

●●●● ●● ●● ●●●●● ●●●● ●●● ●●●● ●● ●●● ●●● ●● ●

●

● ●● ●● ●●● ●

●

●

●●● ● ●●

●●

●●

●●●

●● ●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●

●

● ●● ●● ●●●●

●

●

●●●●●●

●●

●●

●●●

●●●●●

2 4 6 8 10 12

●●●●● ●●●● ●● ●●●●●● ●●●●●● ●●●●●● ● ●●● ●●

●

● ●● ●●●●●●

●

●

●● ●●●●

●●

● ●

●●●

●● ●●● ●●● ●● ●●● ●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●

●

● ●● ●●●●●●

●

●

●● ●●●●

●●

●●

●●●

●●●●●

0
20

0
40

0
60

0
80

0

● ●●●● ●●●●●●●●●●●●●●●●● ●● ●●●● ●● ●●●●●

●

●●●●●●●●●

●

●

●●●● ●●

●●

● ●

●●●

●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●

●

●●●●●●●● ●

●

●

●●●●●●

●●

●●

●●●

●●●●●

10 20 30 40 50 60 70

●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●

●

●●● ●●●●●●

●

●

●●●●●●

●●

●●

●●●

●● ●●● ●●● ●●●●● ●● ●●●●● ●●●● ●● ●●● ●●●●●● ●●●●●

●

● ●● ●● ●● ●●

●

●

● ●●●●●

●●

●●

● ●●

● ●●● ●

1.
0

1.
5

2.
0

2.
5

3.
0

●●●● ● ●● ●●● ● ●●●● ●● ●●●●●● ● ●●●● ● ●●●●●●

●

●●● ●● ● ●●●

●

●

●● ●●●●

●●

●●

●●●

●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●

●

●●● ●●●●●●

●

●

●●●●●●

●●

●●

● ●●

●●●●●

1.
0

1.
5

2.
0

2.
5

3.
0

1.0
1.5
2.0
2.5
3.0

vitamins

Figure 2.1: Array of pairwise scatterplots summarizing the UScereal data frame.

and/or nongraphical tools in R, this quick and simple plot array does provide
a lot of useful preliminary information if we look at it carefully enough. That
said, this plot array is not a good explanatory visualization because it contains
far too much extraneous detail for any story we might wish to tell about any
individual variable pair.

In contrast, Fig. 2.2 presents a much more detailed view of one of these
scatterplots—that between the calories and sugars variables—augmented
with a robust regression line emphasizing the general trend seen in most of this
data, and with labels that explicitly identify two glaring outliers. Specifically,
the dashed line in this plot represents the predictions of a robust linear regres-
sion model, generated using the lmrob function from the robustbase package
discussed in Chapter 5. The key point here is that this dashed line highlights
the trend our eye sees in the data if we ignore the two outlying points. These

32 CHAPTER 2. GRAPHICS IN R

●●

●

●

●

●

●●

●

●

●

●

●●
●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

0 5 10 15 20

10
0

20
0

30
0

40
0

Grams of sugar per serving

C
al

or
ie

s
pe

r
se

rv
in

g

Grape−Nuts −−>

Great Grains Pecan −−>

Figure 2.2: Annotated scatterplot showing the relationship between calories per
serving and grams of sugar per serving from the UScereal data frame.

points correspond to the two cereals identified in the plot, representing much
higher-calorie cereals than any of the others in the dataset. Fig. 2.2 tells a
much more detailed story about the relationship between the variables sugars

and calories from the UScereal data frame than we could infer from Fig. 2.1.
Thus, Fig. 2.2 represents a much more effective way to describe or explain the
relationship we have seen between sugars and calories to others.

2.2 Graphics systems in R

As noted, R supports many different graphical tools, but it is important to note
that the underlying graphics systems on which these tools are built come in dif-
ferent flavors, and that tools built on different graphics systems generally don’t
play well together. The simplest of these systems is base graphics, described in
Sec. 2.2.1 and used to create almost all of the graphical displays presented in
this book. The other major graphics system in R is grid graphics, described in
Sec. 2.2.2 and forming the basis for both lattice graphics, described in Sec. 2.2.3,
and the ggplot2 graphics package, described very briefly in Sec. 2.2.4.

2.2. GRAPHICS SYSTEMS IN R 33

Function Object type Nature of plot generated

plot Many Depends on the object type
barplot Numeric Bar plot (Sec. 2.5.2)
boxplot Formula, numeric, or list Boxplot summary (Chapter 3)
hist Numeric Histogram (Chapter 3)
sunflowerplot Numeric + Numeric Sunflower plot (Chapter 3)
mosaicplot Formula or table Mosaic plot (Chapter 3)
symbols Multiple numeric Bubbleplots, etc. (Sec. 2.5.3)

Table 2.1: A few of the more common base graphics functions.

2.2.1 Base graphics

The terms base graphics or traditional graphics [57] refer to the graphics system
originally built into the R language. Because it is typically the default graphics
system and is, in many respects, the easiest to learn, it is the primary graphics
system used in this book, with exceptions noted when they arise. Probably the
most common base graphics function is plot, described in detail in Sec. 2.3.
As discussed in Chapter 1, this is a generic function, whose results depend
on the type of R object we ask it to plot, an important concept discussed
further in Sec. 2.3.2. Also, the detailed appearance of base graphics displays is
partially controlled by a collection of 72 graphics parameters discussed further
in Sec. 2.3.3. In addition, these displays can be further customized by using
what Murrell calls low-level plotting functions [57] that add lines, points, text,
and other details to an existing plot, discussed in Sec. 2.4.

Table 2.1 lists a few of the more common base graphics functions, along with
the types of R objects they can accept as plot data arguments and the types
of plot they generate. As noted, the basic plot function listed there is generic,
accepting many different R object types and generating many different types
of plots as a result; examples illustrating the range of plots possible with this
function are presented in Sec. 2.3. The other functions listed in Table 2.1 are
less flexible in the range of object types they accept, but as examples presented
in Sec. 2.5 and in Chapter 3 illustrate, these functions can be extremely useful
in generating both exploratory and explanatory data visualizations.

2.2.2 Grid graphics

As Murrell notes [57], almost all R graphics functions are ultimately based on
the graphics engine represented by the grDevices package, which supports the
lowest-level interface between R and the devices that display our graphics, han-
dling details like fonts, colors, and display formats. Traditional or base graphics

34 CHAPTER 2. GRAPHICS IN R

functions are based on the graphics package, while grid graphics is based on the
grid package (which Murrell developed). Murrell gives the following description
of this package [57, p. 18]:

The grid package provides a separate set of basic tools. It does not
provide functions for drawing complete plots, so it is not often used
directly to produce statistical plots. It is more common to use one of
the graphics packages that are built on top of grid, especially either
the lattice package or the ggplot2 package.

In addition to these large graphics systems—described briefly in the following
sections—it is important to note that certain data analysis packages in R are also
built on grid graphics. A specific example is the vcd package, which provides a
number of extremely useful visualization tools for categorical data. If we want
to modify these plots—e.g., add annotations, construct multiple plot arrays,
etc.—it is necessary to use grid graphics to do this.

While a detailed introduction to grid graphics is beyond the scope of this
book, it is important to be aware of its existence, its general incompatibility
with base graphics, and its basic structure. A key component of grid graphics
is the viewport, which Murrell defines as “a power facility for defining regions”
[57, p. 174]. To construct a graphical display using the grid package, the basic
steps are these:

• create a viewport;

• put a collection of graphic objects in the viewport;

• render the viewport to obtain a graphical display.

A useful introduction to the grid package, with a number of very good examples,
is Murrell’s package vignette “grid Graphics.” The package is also supported
by about a dozen other vignettes, giving more detailed discussions of different
aspects of working with grid graphics, and additional details are given in Part
II of his book [57].

Finally, it is important to note two other points. First, a potential source of
confusion is the existence of the grid function, which is part of the base graphics
system and not related to the grid package. The base graphics function grid

adds a rectangular grid to an existing base graphics plot; refer to the results
from help(grid) for details. The second important point is that Murrell has
also developed the gridBase package which allows both grid and base graphics
to be used together. For an introduction to what is possible and some prelimi-
nary ideas on how to use this package, refer to the gridBase package vignette,
“Integrating Grid Graphics Output with Base Graphics Output.”

2.2.3 Lattice graphics

As noted, one of the complete graphics systems in R that is based on the grid

package is lattice graphics, implemented in the lattice package. This package

2.2. GRAPHICS SYSTEMS IN R 35

provides an alternative implementation of many of the standard plotting func-
tions available in base graphics, including scatterplots, bar charts, boxplots, his-
tograms, and QQ-plots. Two of the primary advantages of this package over base
graphics are, first, that many prefer the lattice default options (e.g., colors, point
shapes, spacing, and labels) over the corresponding base defaults [57, p. 123],
and, second, that lattice graphics provides simple implementations of certain
additional features. One example, illustrated in Fig. 2.3, is the multipanel con-
ditioning plot, which shows how the relationship between two variables depends
on a third categorical conditioning variable. Specifically, Fig. 2.3 shows six in-
terrelated scatterplots, each describing the relationship between the variables
Horsepower and MPG.city from the Cars93 data frame in the MASS package,
but only for a single level of the categorical conditioning variable Cylinders.
The code to generate this plot is extremely simple:

library(lattice)

xyplot(MPG.city ~ Horsepower | Cylinders, data = Cars93)

The first line here loads the lattice package, which makes the scatterplot
function xyplot available for use. The second line applies this function, which
supports R’s standard formula interface. Specifically, the first argument repre-
sents a three-component formula: the variable MPG.city, appearing to the left
of the ~ symbol, represents the response variable to be plotted on the y-axes of
all plots; the variable Horsepower, appearing to the right of this symbol but to
the left of the symbol |, defines the x-axis in all of these plots; and the variable
Cylinders that appears to the right of this symbol is the categorical condition-
ing variable. Thus, the xyplot function constructs one scatterplot of MPG.city
versus Horsepower for each distinct value of Cylinders and displays them in
the format shown in Fig. 2.3. The data parameter in the above function call
specifies the data frame containing these variables.

Another useful feature of the lattice package is the group argument, which
allows different groups within a dataset (e.g., distinct Cylinders values in the
previous example) to be represented by different point shapes in a single scatter-
plot. In addition, a legend is automatically generated that identifies the groups
and their associated plotting symbols. Nevertheless, these capabilities come at
a price [57, p. 135]:

One advantage of the lattice graphics system is that it can produce
extremely sophisticated plots from relatively simple expressions, es-
pecially with its multipanel conditioning feature. However, the cost
of this is that the task of adding simple annotations to a lattice plot,
such as adding extra lines or text, is more complex compared to the
same task in traditional graphics.

It is for this reason that this book focuses on traditional (i.e., base) graphics.

36 CHAPTER 2. GRAPHICS IN R

Horsepower

M
P

G
.c

ity

20

30

40

50 100 150 200 250 300

●

●

●

3

●

●●

●●

●
●

●

●
●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

4

50 100 150 200 250 300

●

●

5

●
●
●●

●

●●
●

●

●●

●
●

●

●

●

● ●
●

●
●●

●
●

●

●
●● ●●

●

6

50 100 150 200 250 300

● ●
● ●

●
●

●

8

20

30

40

●

rotary

Figure 2.3: Lattice conditioning plot, showing the relationship between Horse-
power and MPG.city, conditional on Cylinders, all from the Cars93 data frame.

2.2.4 The ggplot2 package

As noted, another R graphics system based on the grid package is ggplot2

by Hadley Wickham, similar in some respects to lattice graphics, but with
a fundamentally different basis and structure. Specifically, ggplot2 is based
on the grammar of graphics, a systematic approach to constructing graphical
objects described in a book of the same title by Wilkinson [76]. Like lattice
graphics, many of the default options for plots generated by ggplot2 are based
on research in human perception and are therefore preferred by many to the base
graphics defaults [57, p. 21]. Also like lattice graphics, ggplot2 provides better
support for multipanel conditioning plots, and because this package is highly
extensible and has become extremely popular, many extensions are available
in the form of other R packages that provide significant additional capabilities
beyond the ggplot2 package itself. As with lattice graphics, however, one price
paid for this additional flexibility is a steeper learning curve; another is the
greater complexity of generating multiple plot arrays, which requires explicitly
working with viewports in grid graphics.

Both because the learning curve is steeper and because some extremely use-
ful tools like the qqPlot function from the car package, based on traditional
graphics, are not available as built-in functions in ggplot2, this book uses base
graphics instead of the more flexible ggplot2 package. (Note that the basic

2.3. THE PLOT FUNCTION 37

QQ-plot is available in ggplot2 via the qq stat, but this option only displays
the points in the plot: addition of the reference line, confidence intervals, and
options for non-Gaussian distributions is all possible, but requires additional
programming; in the qqPlot function, this is all included.) For a detailed intro-
duction to the ggplot2 package, good references are Hadley Wickham’s book
[73] and the chapter on grammar of graphics in Murrell’s book [57, Ch. 5].

2.3 The plot function

Probably the most commonly used base graphics function is plot, which is
a generic function, meaning that the nature of the plot it generates depends
on the type of R object we pass to it. Most of the plots in Chapter 1 were
generated using the plot function, usually augmented with some of the added
details described in Sec. 2.4. Sec. 2.3.1 presents a collection of examples that
illustrate the range of capabilities of the plot function, and Sec. 2.3.2 presents
a brief but broader discussion of the concept of generic functions, giving some
typical examples in R and their relationship to S3 objects. The essential idea is
that an S3 object has certain defining characteristics, and generic functions with
methods defined for a specific S3 object class can exploit those characteristics
to return class-specific results. In the case of the generic plot function, this
means that a command like “plot(x, y)” can generate a scatterplot if x and y
are both numeric, a boxplot summary if x is categorical and y is numeric, or a
mosaic plot if both variables are factors.

2.3.1 The flexibility of the plot function

The flexibility of the plot function was illustrated in the sample R session
presented in Chapter 1, where results were shown for this function applied to a
complete data frame, a numeric vector, a factor, and a pair of numeric variables:
the same function returned an array of scatterplots, a plot of the numerical
values in their order of appearance, a bar chart, and a scatterplot. In addition,
this sample R session began by using the boxplot function to generate a boxplot
summary of heating gas consumption both before and after the installation; this
boxplot summary can also be generated by using the plot function:

plot(whiteside$Insul, whiteside$Gas)

Many of the modeling functions in R return an object of the type discussed
in Sec. 2.3.2 (i.e., an S3 object), and special plot methods have frequently been
developed for these objects. Fig. 2.4 provides an example, based on the class of
decision tree models discussed in Chapter 10. This model predicts the average
value of the heating gas consumption Gas in the whiteside data frame from
the values of the other two variables, Temp and Insul. It is easily generated
using the rpart package, with the following code:

38 CHAPTER 2. GRAPHICS IN R

|Insul=b

Temp>=5.75

Temp>=2.4

Temp>=4.85

2.438
3.627 4.371

4.006 5.94

Figure 2.4: Plot of an rpart model built from the whiteside data frame.

library(rpart)

rpartModel <- rpart(Gas ~ ., data = whiteside)

For now, don’t worry about the details of this model, its interpretation, or the
rpart function used to obtain it: this example is discussed in detail in Chapter
10. The key point here is that the rpart function returns an S3 object of class
“rpart,” which the plot function has a method to support. Thus, we can execute
the command plot(rpartModel) to obtain the plot shown in Fig. 2.4. Actually,
the plot function only displays the tree structure of the model, without labels;
to obtain the labels, we must also use text, another generic function with a
method for rpart objects:

plot(rpartModel)

text(rpartModel)

The second model-based example is shown in Fig. 2.5 and it belongs to the
class of MOB models, also discussed in Chapter 10. Like the rpart model just
described, this model has a tree-based structure, but rather than generating a
single numerical predicted value to each terminal node of the tree (i.e., each
“leaf”), each terminal node contains a linear regression model that generates

2.3. THE PLOT FUNCTION 39

Insul
p < 0.001

1

Before After

Node 2 (n = 26)

●
●

●

●
●●

●

●

●

●
● ●

●●
●●

●
●

●
●●

●

●

●

●

●

−1.9 11.2

1

7

Node 3 (n = 30)

●
●●

●
●● ●●

●
●

●

●
●
●●

●
●●
●
●

●●

●
●
●

● ● ●

●
●

−1.9 11.2

1

7

Figure 2.5: Plot of an MOB model built from the whiteside data frame.

predictions from other covariates. These models may be fit using the lmtree

function from the partykit package, using very similar code to that used to
generate the rpart model discussed above:

library(partykit)

MOBmodel <- lmtree(Gas ~ Temp | Insul, data = whiteside)

The resulting model object, MOBmodel, is an S3 object of class “lmtree” and
when the plot function is applied to this object, we obtain the result shown in
Fig. 2.5. In this case, the model is created using a three-part formula structure:
the variable Gas appears to the left of the ~ symbol to indicate it is the response
variable to be predicted; the variable Temp appears between this symbol and
the | symbol to indicate it is the covariate used to predict the response variable
in the models that appear at the terminal nodes of the tree; and the variable
Insul that appears to the right of the | symbol is the partitioning variable used
to build the tree. Since this partitioning variable is binary in this example, the
resulting tree has two nodes, one corresponding to the “Before” data and the
other corresponding to the “After” data. The structure of this model is clear
from the plot: all records are assigned to one of these nodes, and a separate
linear regression model that predicts Gas from Temp is built for each node. In

40 CHAPTER 2. GRAPHICS IN R

favorable cases—like this one—the MOB model class can be extremely effective
in finding and exploiting strong heterogeneity in the underlying data, a point
discussed further in Chapter 10 where this example is revisited.

The primary point of this discussion has been to illustrate the vast range of
graphical results that can be generated using the generic plot function. The
following section introduces the concepts of S3 object classes and their associated
methods, the concepts that make this behavior possible. In fact, it is easy to
define our own S3 object classes and construct methods for generic functions
like plot or summary that make them generate specialized results for our object
classes. This idea is discussed in detail in Chapter 7.

2.3.2 S3 classes and generic functions

The ability of functions like plot to behave very differently depending on the
type of the R object we give it is a consequence of the language’s object-oriented
structure. Many programming languages are object-oriented, and in his book
Advanced R, Hadley Wickham offers the following useful description of the min-
imal requirements for an object-oriented language [74, p. 99]:

Central to any object-oriented system are the concepts of class and
method. A class defines the behavior of objects by describing their
attributes and their relationship to other classes. The class is also
used when selecting methods, functions that behave differently de-
pending on the class of their input. Classes are usually organized in
a hierarchy: if a method does not exist for a child, then the parent’s
method is used instead; the child inherits behavior from the parent.

Wickham further notes that R has three distinct object-oriented systems, based
on three different object types: S3 objects, S4 objects, and reference classes.
Since the S3 system is both the simplest of these three and the one we encounter
the most often, it is useful to know something about S3 classes, particularly in
understanding the behavior of generic functions like plot. Also, it is easy—and
sometimes extremely useful—to define our own S3 objects and their associated
methods, an important idea discussed further in Chapter 7.

The key feature of the S3 system is that methods belong to functions—
specifically, generic functions—which is different from the object-oriented sys-
tems encountered in languages like Python, Ruby, or Java, where methods be-
long to objects. The newest object-oriented system in R—reference classes—has
this more traditional structure, making it very different from the S3 system con-
sidered here. The S4 system is also significantly different from the S3 system—
methods still belong to generic functions, but the structure is more formal; like
the lattice and ggplot2 graphics systems, the S4 system has greater flexibil-
ity, but a correspondingly steeper learning curve. Consequently, only S3 objects
and their associated methods are considered here.

To see how this system works, consider the decision tree model, rpartModel,
discussed in Sec. 2.3.1, built using the rpart package. The class function shows
that the result is an S3 object of class “rpart”:

2.3. THE PLOT FUNCTION 41

class(rpartModel)

[1] "rpart"

Fig. 2.4 was generated from this S3 object with the generic functions plot and
text. In each case, the behavior of the function depends on the class of the
object: for example, text is the same generic function as that used in Sec. 2.4.2
below to add annotation to scatterplots, but the two methods used with this
generic function are different. Specifically, if we type “text” without trailing
parentheses, we are asking R to display the function’s code, which is:

text

function (x, ...)

UseMethod("text")

<bytecode: 0x000000001599f1f8>

<environment: namespace:graphics>

This result tells us that text is a function, taking one required argument (x) and
allowing an unspecified number of optional arguments, via “...” (see Chapter
7 for a detailed discussion). The second line of this result tells us that this
function is generic, having different methods associated with different object
types. To see a list of these methods, use the methods function with the name
of the generic function, i.e.:

methods("text")

[1] text.default text.formula* text.rpart*

see '?methods' for accessing help and source code

In the examples presented in Sec. 2.4.2, the text.default method is used to
add text to a scatterplot, while the text.rpart method was used to add the text
labels to the rpart plot. The methods not marked with the asterisk (*) can be
displayed directly as we did with the text function above, while those marked
with the asterisk cannot; also, note that additional information is available if
we type “?methods” and follow the instructions given there.

It is also possible to ask what methods are available for a given S3 object
class. Again, we use the class function, but now we specify the desired class:

methods(class = "rpart")

[1] as.party labels meanvar model.frame plot

[6] post predict print prune residuals

[11] summary text

see '?methods' for accessing help and source code

We can see from this result that—based on the packages we currently have
loaded in our R session—we have 12 methods available for S3 objects of class
“rpart,” including both the plot and text methods used above.

42 CHAPTER 2. GRAPHICS IN R

Finally, it is worth noting that some generic functions have many associated
methods, and this number depends on what packages are loaded into our R
session (specifically, many packages define new S3 objects and methods). For
example, in the R environment used to develop this book, the plot function
has 133 methods, and the summary function has 156.

2.3.3 Optional parameters for base graphics

It was noted earlier that there are 72 optional base graphics parameters that
affect many of the base graphics plot functions. These parameters are set by the
par function, which can also be called to return a named list with the current
values for these parameters. The names are:

names(par())

[1] "xlog" "ylog" "adj" "ann" "ask"

[6] "bg" "bty" "cex" "cex.axis" "cex.lab"

[11] "cex.main" "cex.sub" "cin" "col" "col.axis"

[16] "col.lab" "col.main" "col.sub" "cra" "crt"

[21] "csi" "cxy" "din" "err" "family"

[26] "fg" "fig" "fin" "font" "font.axis"

[31] "font.lab" "font.main" "font.sub" "lab" "las"

[36] "lend" "lheight" "ljoin" "lmitre" "lty"

[41] "lwd" "mai" "mar" "mex" "mfcol"

[46] "mfg" "mfrow" "mgp" "mkh" "new"

[51] "oma" "omd" "omi" "page" "pch"

[56] "pin" "plt" "ps" "pty" "smo"

[61] "srt" "tck" "tcl" "usr" "xaxp"

[66] "xaxs" "xaxt" "xpd" "yaxp" "yaxs"

[71] "yaxt" "ylbias"

Detailed descriptions of these parameters are available via the help(par) com-
mand, which notes that some of them are read-only, meaning that their values
are fixed and cannot be modified (an example is cin, the default character size
in inches). The following discussion does not attempt to discuss all of these
parameters, only a few that are particularly useful. It is also worth noting that
some of these parameters can be set in calls to certain base graphics functions
(e.g., plot), while others can only be set through a call to the par function.

One of the most useful of the graphics parameters set by par is mfrow, a two-
dimensional vector that sets up an array of plots; discussion of this parameter
is deferred to Sec. 2.6 where the generation of plot arrays is covered in detail.

Several of these parameters come in closely related groups. One is the “cex-
family” that specifies the extent to which text and symbols should be magnified
relative to their default size. These parameters include:

• cex specifies the values for text and plotting symbols in the next plot
generated, serving as a base for all of the other parameters in this group;

• cex.axis specifies the scaling of the axis annotations, relative to cex;

• cex.lab specifies the scaling of the axis labels, relative to cex;

