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Preface

The preface of an academic book should contain information about its topic
and its intended audience. Starting with the former, let us say that extremal
combinatorics is a huge topic that can be described more easily than that
of our book: it is concerned with finding the largest, smallest, or otherwise
optimal combinatorial structures with a given property. Here we deal with
structures that consist of subsets of a finite set. Most typically, we focus on
maximizing the cardinality of a family of sets satisfying some properties.

It is equally important to describe what is not in this book. We only
mention (or use) results concerning 2-uniform families, i.e. ordinary graphs
(luckily, many good books and survey papers are available on extremal graph
theory). Many of the results we state in the book have analogous versions
in more structured creatures than sets (e.g. permutations, multisets, vector
spaces, block designs, etc) or infinite versions - we hardly even mention them.
We do not deal with colorings (this book contains hardly any Ramsey-type or
anti-Ramsey-type results). We usually focus on the cardinality of a family of
sets, and often ignore results about something else, like the minimum degree
(co-degree). One particular topic that would really fit in this book, but is
completely avoided due to space constraints, is coding theory.

When writing the book we had the following two goals in our minds:

• Presenting as many proof techniques as possible. Chapter 1 is completely
devoted to this aim via presenting several proofs of classical results of ex-
tremal set theory (apart from the very recent method of Croot, Lev, and
Pach) but later chapters also contain brief or more detailed introductions
to more novel methods like flag algebras, the container method, etc.

• Giving a detailed and almost complete list of recent developments, results
(mostly without proof, but mentioning the proof techniques applied) in the
areas covered.

As a consequence, the intended audience consists of

• Graduate students who are eager to to be introduced to the theory of ex-
tremal set systems. Note however, that the exercises are not those of a
proper textbook. Some of them are rather easy, they check whether the
reader understood the definitions, some of them state lemmas needed for
theorems with longer proofs, some others are “easier” results from research
papers.

xi



xii Extremal Finite Set Theory

• University professors giving courses in (extremal) combinatorics. The above
warning about the exercises applies here as well, but we hope that our book
could help to design the syllabus of graduate courses in different areas of
extremal set theory.

• Researchers interested in recent developments in the field. There has been
progress in many of the subtopics we cover since the publication of other
books dealing with set systems or extremal combinatorics. In some cases
even the latest survey articles are not very new. We are convinced that
senior academic people can profit in their research by reading or leafing
through some or all of the chapters.

Another way to describe the topic of this book is that we wanted to gather
results and proofs that could have been presented at the Extremal Sets Sys-
tems Seminar of the Alfréd Rényi Institute of Mathematics. (Some of the
theorems in the book were indeed presented there.) This might not be very
informative for some of our readers, but we wanted to mention it as both
authors gave their first talk at this seminar about fifteen years ago.

We also have Chapter 9 that glances at a different topic. We chose the
topic and the results mentioned to illustrate how extremal finite set theory
results can be applied in other areas of mathematics.

The topic of Chapter 9 runs under several names in the literature. It is
often referred to as combinatorial group testing or pool designs and many oth-
ers, as most applications of this area are in biology with its own terminology.
The reason for which we decided to go with the name combinatorial search
theory is again personal: the Combinatorial Search Seminar (formerly known
as Combinatorial Search and Communicational Complexity Seminar) is the
other seminar at the Rényi Institute that the two authors attend (apart from
the Combinatorics Seminar, probably the longest running of its sort world-
wide, started by Vera Sós and András Hajnal).

A very important final note: We cannot deny that we put more em-
phasis on topics we know and like. The number of our own results in this book
is in no way proportional to their importance.



Notation and Definitions

Here below we gather the basic notions (mostly with definitions, some without)
that we will use in the book. We use standard notation.

Sets. We denote by [n] the set {1, 2, . . . , n} of the first n positive integers
and for integers i < j let [i, j] = {i, i+1, . . . , j}. For a set S we use the notation
2S for its power set {T : T ⊆ S} and

(

S
k

)

for the family of its k-element
subsets (k-subsets for short) {T ⊆ S : |T | = k}. The latter will be referred
to as the kth (full) level of 2S . We will use the notation

(

X
≤k

)

:= ∪k
i=0

(

X
i

)

and
(

X
≥k

)

:= ∪|X|
i=k

(

X
i

)

. The symmetric difference (F \ G) ∪ (G \ F ) of two

sets F and G will be denoted by F△G. If a set F is a subset of [n], then its
complement [n] \ F is denoted by F . To denote the fact that A is a subset of
B we use A ⊆ B and A ( B with the latter meaning A is a proper subset
of B. The Cartesian product of r sets A1, . . . , Ar is A1 × A2 × · · · × Ar =
{(a1, a2, . . . , ar) : ai ∈ Ai for every 1 ≤ i ≤ r}.

Families of sets. We will mostly use the terminology families for collec-
tions of sets, although set systems is also widely used in the literature. If all
sets in a family F are of the same size, we say F is uniform, if this size is
k, then we say F is k-uniform. Sometimes (mostly in the chapters on Turán
type problems, and saturation problems) we will use the word hypergaph for
k-uniform families.

The shadow of a k-uniform family F ⊆
(

X
k

)

is ∆(F) = {G : |G| = k −
1, ∃F ∈ F G ⊂ F}, and its up-shadow or shade is ∇(F) = {G : |G| =
k+ 1, ∃F ∈ F F ⊂ G ⊆ X}. For not necessarily uniform families F ⊆ 2X we
will use ∆m(F) = {G : |G| = m, ∃F ∈ F G ⊂ F} and ∇m(F) = {G : |G| =
m, ∃F ∈ F F ⊂ G ⊆ X}.

Graphs. A graph G is a pair (V (G), E(G)) with V (G) its vertex set and

E(G) ⊆
(

V (G)
2

)

its edge set. G is bipartite if there exists a partition V = A∪B
such that every edge of G contains one vertex from A and one from B. In this
case, we will write G = (A,B,E). If U ⊆ V , the induced subgraph of G on U
has vertex set U and edge set {e = {u, v} ∈ E(G) : u, v ∈ U}. It is denoted
by G[U ]. In particular, if V (G) is a family of sets, we will write G[F ] for
the subgraph induced on the subfamily F of V . The number of edges in G
is denoted by e(G). Similarly the number of edges in G[U ] or between two
disjoint sets X,Y ⊆ V (G) is denoted by e(U) and e(X,Y ), respectively.

A path of length l in a graph G between vertices v0 and vl is a sequence

xiii



xiv Extremal Finite Set Theory

v0, e1, v1, e2 . . . , el, vl such that vi is a vertex for all i = 0, 1, . . . , l and ei+1 =
{vi, vi+1} is an edge in G for all i = 0, 1, . . . , l − 1. We say that a graph G is
connected if for any two vertices u, v ∈ V (G) there exists a path between u and
v in G. The (graph) distance dG(u1, u2) of two vertices u1, u2 in G is the length
of the shortest path between u1 and u2. The ball Br(v) of radius r at vertex v
is the set of all vertices at distance at most r from v. The open neighborhood
N(v) of a vertex v is the set of vertices that are adjacent to v. The closed
neighborhood N [v] of v is N(v)∪ {v}. For a set U ⊆ V (G) we define its open
and closed neighborhood by N(U) = ∪u∈UN(u) and N [U ] = ∪u∈UN [u]. The
degree dG(v) of a vertex v ∈ G is |N(v)|. If all vertices of a graph G have the
same degree, then we say that G is regular. A set of vertices is independent
in G if there is no edge between them, and a set of edges is independent in
G if they do not share any vertices. A matching in G is a set of independent
edges, and a perfect matching is a matching covering all the vertices of G.

We will use the following specific graphs: Pl is a path on l vertices (thus it
has l−1 edges). If we add an edge between the endpoints of a path, we obtain
the cycle Cl on l vertices. Kn is the complete graph on n vertices, having all
the possible

(

n
2

)

edges, while Ks,t is the complete bipartite graph with one part
having size s and the other size t, that has all the possible st edges between
the two parts. A graph that does not contain any cycle is a forest, and a
connected forest is a tree, usually denoted by T . A vertex of degree 1 is called
a leaf, and Sr is the star with r leaves, i.e. Sr = K1,r. Mn is the matching on
n vertices, i.e. the graph consisting of n/2 independent edges.

Binomial coefficients. The binomial coefficient
(

n
k

)

= n!
k!(n−k)! is the size

of
(

X
k

)

for an n-set X . For any n, we have
(

n
k

)

≤
(

n
k+1

)

if and only if k < n/2,
with equality if n is odd and k = ⌊n/2⌋. For any real x and positive integer k

we define
(

x
k

)

=
∏k−1

i=0
x−i
k−i . It is easy to see that for every positive real y and

positive integer k there exists exactly one x with
(

x
k

)

= y. We will often use

the well-known bounds (nk )k ≤
(

n
k

)

≤ ( enk )k and the fact that
(

x
k

)

is a convex
function.

Posets. A partially ordered set (poset) is a pair (P,≤) where P is a set and
≤ is a binary relation on P satisfying (i) p ≤ p for all p ∈ P , (ii) p ≤ q, q ≤ p
imply p = q, (iii) p ≤ q, q ≤ r imply p ≤ r. If the relation is clear from
context, we will denote the poset by P . For any poset (P,≤P ), the opposite
poset (P ′,≤P ′) is defined on the same set of elements with p ≤P ′ q if and
only if q ≤P p. Two elements p, q ∈ P are comparable if p ≤ q or q ≤ p holds,
and incomparable otherwise. A set C ⊆ P of pairwise comparable elements is
called a chain, its cardinality is called its length. A chain of length k is also
called a k-chain and it is denoted by Pk. A set S ⊆ P of pairwise incomparable
elements is called an antichain.

An element p ∈ P is minimal (maximal) if there does not exist q 6= p in P
with q ≤ p (p ≤ q). Most often we will consider the Boolean lattice/hypercube
Qn. Its set of elements is 2S and T1 ≤ T2 if and only if T1 ⊆ T2 holds. There-
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fore, a chain of length k (a k-chain) in Qn is a family C = {C1, C2, . . . , Ck}
with Ci ( Ci+1. A family F ⊆ 2[n] can be considered as a subposet of the
hypercube. We will say that a set F ∈ F is minimal/maximal if it is so in this
partial ordering, i.e. no proper subset/superset of F is contained in F .

We say that a poset is totally ordered if any two elements are comparable.
The initial segment of size s of a totally ordered set P is the set of the s
smallest elements of P . A poset is ranked if all maximal chains in it have the
same length.

Permutations. A permutation of a set X is a bijective function from X
to itself. We will denote permutations by Greek letters σ, π, etc. The set of
all permutations of X is denoted by SX . If X is finite, the number of per-
mutations in SX is |X |!. For any two elements σ, π ∈ SX , the composition
σ ◦π also belongs to SX . For a set X = {x1, x2, . . . , xn}, let α denote the per-
mutation with α(x1) = x2, α(x2) = x3, . . . , α(xn−1) = xn, α(xn) = x1. Two
permutations σ, π ∈ Sx are equivalent if σ = αk ◦ π for some integer k. This
defines an equivalence relation on SX with each equivalence class containing
|X | permutations. The equivalence classes are the cyclic permutations of X .
The number of cyclic permutations of X is (|X | − 1)!.

Linear algebra. We will assume that the reader is familiar with the no-
tions of linear independence, vector space dimension, matrix, positive definite
and semidefinite matrix. A reader interested in combinatorics but not feeling
comfortable with linear algebra might consult Sections 2.1-2.3 of the excellent
book [28] by Babai and Frankl. If v1, v2, . . . , vk are vectors in a vector space
V , then 〈v1, v2, . . . , vk〉 denotes the subpace of V spanned by these vectors.
The scalar product of two vectors u = (u1, u2, . . . , un), v = (v1v2, . . . , vn) is
u · v =

∑n
i=1 uivi. Fq denotes the finite field of q elements, and Fn

q the vector
space of dimension n over Fq. The multiplicative group of nonzero elements
of Fq is denoted by F×

q . Fn[x] denotes the vector space of polynomials of n
variables over F. A matrix or vector with only 0 and 1 entries will be called
binary matrix or binary vector.

There are several vectors that can be naturally associated with sets.
The characteristic vector of a subset F ⊆ [n] is the binary vector vF =
(v1, v2, . . . , vn) with vi = 1 if and only if i ∈ F .

Functions (or mappings). If A is a subset of the domain of a function
f , then f(A) will denote the set {f(a) : a ∈ A}. The inverse of a function f
will be denoted by f−1. To compare the order of magnitude of two functions
f(n) and g(n) we will write f(n) = O(g(n)) if there exists a positive constant

C such that
∣

∣

∣

f(n)
g(n)

∣

∣

∣ ≤ C for all n ∈ N. Similarly, f(n) = Ω(g(n)) means that

there exists a positive constant C such that
∣

∣

∣

f(n)
g(n)

∣

∣

∣ ≥ C for all n ∈ N. If the

constant C in the above definitions depends on some other parameter k, then
we write f(n) = Ok(g(n)) and f(n) = Ωk(g(n)). If both f(n) = O(g(n)) and
f(n) = Ω(g(n)) hold, then we write f(n) = Θ(n). Finally, f(n) = o(g(n)), or
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equivalently f(n) ≪ g(n) denotes that limn→∞
∣

∣

∣

f(n)
g(n)

∣

∣

∣ = 0. Similarly f(n) =

ω(g(n)), or equivalently f(n) ≫ g(n) denotes that limn→∞
∣

∣

∣

f(n)
g(n)

∣

∣

∣ = ∞. We

say that a real-valued function f is convex on an interval [x1, x2] if it lies
above its tangents. We will use Jensen’s inequality, which states that in this
case f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2).

Throughout the book, log and ln stand for logarithms of base 2 and e,
respectively.

Probability. The probabilities of an event E and the expected value of a
random variable X are denoted by P(E) and E(X), respectively. Its standard
deviation is σ(X) =

√

E(X − E(x))2 =
√

E(X2) − E(X)2. We say that a
sequence En of events holds with high probability (w.h.p.) if P(En) → 1 as n
tends to infinity. Standard inequalities concerning probabilities of events will
be introduced at the beginning of Chapter 4. For a detailed introduction to
applications of probability theory in combinatorics we recommend the book by
Alon and Spencer [19]. The binary entropy function −x log x−(1−x) log(1−x)
is denoted by h(x).
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Basics

CONTENTS

1.1 Sperner’s theorem, LYM-inequality, Bollobás inequality . . . . . . . . 1
1.2 The Erdős-Ko-Rado theorem - several proofs . . . . . . . . . . . . . . . . . . . 5
1.3 Intersecting Sperner families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Isoperimetric inequalities: the Kruskal-Katona theorem and

Harper’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Sunflowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

As its title suggests, this chapter contains some of the very first results of ex-
tremal finite set theory (Sperner’s theorem and the Erdős-Ko-Rado theorem),
and tries to present some of the major techniques used in the field (shifting,
the permutation method, the polynomial method). To this end, in many cases
we will include several proofs of the same theorem.

1.1 Sperner’s theorem, LYM-inequality, Bollobás in-
equality

In this section we will mostly consider families that form an antichain in the
hypercube (they are also called Sperner families). Recall that it means there
are no two different members of the family such that one of them contains the
other. We will be interested in the maximum size that an antichain F ⊆ 2[n]

can have. An easy and natural way to create antichains is to collect sets of the
same size, i.e. levels. Among full levels of 2[n] the largest is (are) the middle
one(s). Sperner proved [520] that this is best possible. His result is the first
theorem in extremal finite set theory. We will give two proofs of his theorem,
then consider a generalization by Erdős and a related notion by Bollobás.

Theorem 1 (Sperner [520]) If F ⊆ 2[n] is an antichain, then we have

|F| ≤
(

n
⌊n/2⌋

)

. Moreover |F| =
(

n
⌊n/2⌋

)

holds if and only if F =
( [n]
⌊n/2⌋

)

or

F =
( [n]
⌈n/2⌉

)

.

First proof of Theorem 1. We start with the following simple lemma.

1
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Lemma 2 Let G(A,B,E) be a connected bipartite graph such that for every
vertex a ∈ A and b ∈ B the inequality dG(a) ≥ dG(b) holds. Then for any
subset A′ ⊆ A the size of its neighborhood N(A′) is at least the size of A′.
Moreover if |N(A′)| = |A′| holds, then A′ = A, N(A′) = B and G is regular.

Proof of Lemma. The number of edges between A′ and N(A′) is exactly
∑

a∈A′ dG(a) and is at most
∑

b∈N(A′) dG(b). By the assumption on the de-
grees, the number of summands in the latter sum should be at least the number
of summands in the former sum; thus we obtain |N(A′)| ≥ |A′|. If the number
of summands is the same in both sums, then we must have dG(a) = dG(b) for
any a ∈ A′, b ∈ N(A′) and all edges incident to N(A′) must be incident to A′.
By the connectivity of G it follows that A′ = A and N(A′) = B hold. �

Let Gn,k,k+1 be the bipartite graph with parts
(

[n]
k

)

and
(

[n]
k+1

)

in which

two sets S ∈
(

[n]
k

)

and T ∈
(

[n]
k+1

)

are joined by an edge if and only if S ⊂ T .
We want to apply Lemma 2 to Gn,k,k+1. It is easy to see that it is connected.

The degree of a set S ∈
(

[n]
k

)

is n− k, while the degree of T ∈
(

[n]
k+1

)

is k + 1,

therefore as long as k ≤ ⌊n/2⌋ holds,
(

[n]
k

)

can play the role of A, and as soon

as k ≥ ⌈n/2⌉ holds,
(

[n]
k+1

)

can play the role of A. Moreover, if k < ⌊n/2⌋
or k ≥ ⌈n/2⌉, then Gn,k,k+1 is not regular. Note that if F ⊆

(

[n]
k

)

, then

N(F) = ∇(F), while if F ⊆
(

[n]
k+1

)

, then N(F) = ∆(F).

To prove Theorem 1 let F ⊆ 2[n] be an antichain. First we prove that
if F is of maximum size, then it contains sets only of size ⌊n/2⌋ and ⌈n/2⌉.
Suppose not and, say, there exists a set of size larger than ⌈n/2⌉. Then let m
be the largest set size in F and let us consider the graph Gn,m−1,m. Applying
Lemma 2 to Fm = {F ∈ F : |F | = m} we obtain that |F \Fm∪∆(Fm)| > |F|
holds. To finish the proof we need to show that F ′ = F \ Fm ∪ ∆(Fm) is
an antichain. Sets of ∆(Fm) have largest size in F ′, therefore they cannot be
contained in other sets of F ′. No set F ′ ∈ ∆(Fm) can contain any other set
F from F ′ ∩ F as there exists F ′′ ∈ Fm with F ′ ⊂ F ′′, thus F ⊂ F ′′ would
follow, and that contradicts the antichain property of F .

We showed that F ⊆
( [n]
⌊n/2⌋

)

∪
( [n]
⌈n/2⌉

)

, which proves the theorem if n

is even. If n is odd, then suppose F contains sets of size both ⌈n/2⌉ and
⌊n/2⌋. Applying the moreover part of Lemma 2 to F⌈n/2⌉, we again obtain a

larger antichain F \ F⌈n/2⌉ ∪ ∆(F⌈n/2⌉) unless F⌈n/2⌉ =
( [n]
⌈n/2⌉

)

. This shows

that if F is a maximum size antichain that contains a set of size ⌈n/2⌉, then

F =
( [n]
⌈n/2⌉

)

. Similarly, if F is a maximum size antichain that contains a set

of size ⌊n/2⌋, then F =
( [n]
⌊n/2⌋

)

. �

We give a second proof of Theorem 1 based on the inequality proved in-
dependently by Lubell, Yamamoto, and Meshalkin. As Bollobás obtained an
even more general inequality that we will prove in Theorem 6, it is some-
times referred to as YBLM-inequality (Miklós Ybl was a famous Hungarian
architect in the nineteenth century, who designed, among others, the State
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Opera House and St. Stephen’s Basilica in Budapest), but we will use the
more common acronym.

Lemma 3 (LYM-inequality, [397,415,554]) If F ⊆ 2[n] is an antichain,
then the following inequality holds:

∑

F∈F

1
(

n
|F |
) ≤ 1.

Moreover, the above sum equals 1 if and only if F is a full level.

Before the proof let us introduce a further definition. A chain C ⊆ 2[n] is
called a maximal chain if it is of length n+ 1, i.e. it contains a set of size i for
every 0 ≤ i ≤ n.
Proof. Let F ⊆ 2[n] be an antichain and let us consider the pairs (F, C)
such that C is a maximal chain in [n] and F ∈ F ∩ C. There are exactly
|F |!(n − |F |)! maximal chains containing F , therefore the number of such
pairs is

∑

F∈F |F |!(n− |F |)!. On the other hand, by the antichain property of
F , every maximal chain contains at most one set from F and thus the number
of pairs is at most n!. We obtained

∑

F∈F
|F |!(n− |F |)! ≤ n! (1.1)

and dividing by n! yields the LYM-inequality.
Let us now prove the moreover part of the lemma. Clearly, if F is a full

level
(

[n]
k

)

for some k, then
∑

F∈F
1

( n
|F |)

=
(

n
k

)

· 1

(n
k)

= 1 holds. If F is not a full

level, then there exist two sets F ∈ F , G /∈ F with |F | = |G| = |F ∩ G| + 1.
We construct maximal chains that do not contain any set from F and thus
(1.1) cannot hold with equality. Consider any maximal chain C that contains
F ∩G, G, and F ∪G. Any set C of C with C ⊆ F ∩G ⊂ F cannot be in F by
the antichain property of F , G is not in F by definition, finally all sets C ∈ C
with C ⊇ F ∪G ⊃ F are not in F by the antichain property. By the choice of
F and G there are no other sets in C and thus F ∩ C = ∅ holds. �

The function
∑

F∈F
1

( n
|F |)

in the LYM-inequality is called the Lubell func-

tion of F and it is often used (for several applications see Chapter 7 on forbid-
den subposet problems). It is denoted by λ(F , n) and we omit n if it is clear
from the context. Having Lemma 3 in hand, the second proof of Theorem 1
is immediate.

Second proof of Theorem 1. Let F ⊆ 2[n] be an antichain. Then we
have

∑

F∈F
1

( n
⌊n/2⌋)

≤∑F∈F
1

( n
|F |)

≤ 1 by Lemma 3. Therefore |F|, that equals

the number of summands, is at most
(

n
⌊n/2⌋

)

. The moreover part of the theorem

follows from the moreover part of Lemma 3. �
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Let us illustrate the strength of the LYM-inequality by the following gen-
eralization of Theorem 1. We say that a family F of sets is k-Sperner if all
chains in F have length at most k. We define Σ(n, k) to be the sum of the

k largest binomial coefficients of order n, i.e. Σ(n, k) =
∑k

i=1

(

n
⌊n−k

2 ⌋+i

)

. Let

Σ∗(n, k) be the collection of families consisting of the corresponding full levels,

i.e. if n + k is odd, then Σ∗(n, k) contains one family ∪k
i=1

( [n]

⌊n−k
2 ⌋+i

)

, while if

n+k is even, then Σ∗(n, k) contains two families of the same size ∪k−1
i=0

( [n]
n−k

2 +i

)

and ∪k
i=1

( [n]
n−k

2 +i

)

.

Theorem 4 (Erdős, [149]) If F ⊆ 2[n] is a k-Sperner family, then |F| ≤
Σ(n, k) holds. Moreover, if |F| = Σ(n, k), then F ∈ Σ∗(n, k).

Proof. We start with the following simple observation.

Lemma 5 A family F of sets is k-Sperner if and only if it is the union of k
antichains.

Proof of Lemma. If F is the union of k antichains, then any chain in F has
length at most k as any chain can contain at most one set from each antichain.
Conversely, if F is k-Sperner, we define the required k antichains recursively.
Let F1 denote the family of all minimal sets in F and if Fj is defined for all
1 ≤ j < i, then let Fi denote the family of all minimal sets in F \ ∪i−1

j=1Fj .
The Fi’s are antichains by definition and for every F ∈ Fi, there exists an
F ′ ∈ Fi−1 with F ′ ⊂ F . Hence, the existence of a set in Fk+1 would imply the
existence of a (k + 1)-chain in F . The partition we obtained is often referred
to as the canonical partition of F . �

Let F ⊆ 2[n] be a k-Sperner family. By Lemma 5, F is the union of
k antichains F1,F2, . . . ,Fk. Adding up the LYM-inequalities for all Fi’s we
obtain

∑

F∈F

1
(

n
|F |
) ≤ k.

This immediately yields |F| ≤ Σ(n, k). If |F| = Σ(n, k), then all these
LYM-inequalities must hold with equality. Therefore, by the moreover part
of Lemma 3, all Fi’s are full levels and thus F ∈ Σ∗(n, k). �

We finish this section by stating and proving an inequality of Bollobás
that generalizes the LYM-inequality. We say that a family of pairs of sets
(A1, B1), (A2, B2), . . . , (At, Bt) is an intersecting set pair system (ISPS) if Ai∩
Bj 6= ∅ holds if and only if i 6= j.

Theorem 6 (Bollobás, [62]) If (A1, B1), (A2, B2), . . . , (At, Bt) is an ISPS,
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then the following inequality holds:

t
∑

i=1

1
(|Ai|+|Bi|

|Ai|
)
≤ 1.

In particular, if all Ai’s have size at most k and all Bi’s have size at most l,
then t ≤

(

k+l
k

)

holds.

Proof. Let (A1, B1), (A2, B2), . . . , (At, Bt) be an ISPS and let us define
M = ∪t

i=1(Ai ∪ Bi) and m = |M |. Consider all pairs (i, σ) such that σ is
a permutation of M and all elements of Ai “come before” the elements of Bi,
i.e. σ−1(a) < σ−1(b) holds for all a ∈ Ai, b ∈ Bi. We count the number of such
pairs in two ways.

If we fix an index i, then the number of permutations σ of M such that
(i, σ) has the above property is exactly |Ai|! · |Bi|!(m− |Ai| − |Bi|)!

(

m
|Ai|+|Bi|

)

.

Indeed, one determines the order of the elements inside Ai, Bi and M\(Ai∪Bi)
independently from each other, and then determines where the elements of
Ai ∪Bi are placed in σ.

On the other hand for every permutation σ of M there is at most one pair
(i, σ) with the above property. Indeed, if the elements of Ai come before the
elements of Bi in σ, then for any j 6= i an element b ∈ Bj ∩ Ai comes before
an element a ∈ Aj ∩ Bi. As (A1, B1), (A2, B2), . . . , (At, Bt) is an ISPS, the
elements a and b exist. We obtained

m! ≥
t
∑

i=1

|Ai|! · |Bi|!(m− |Ai| − |Bi|)!
(

m

|Ai| + |Bi|

)

=

t
∑

i=1

|Ai|! · |Bi|!
(|Ai| + |Bi|)!

m!.

Dividing by m! yields the statement of the theorem. �

As we mentioned earlier, Theorem 6 generalizes the LYM-inequality as if
F = {F1, F2, . . . , Fm} ⊆ 2[n] is an antichain, then the pairs Ai = Fi, Bi = Fi

form an ISPS and 1

(|Ai|+|Bi|
|Ai| )

= 1

( n
|Fi|)

.

Exercise 7 Let F ⊆ 2[n] be a family such that for any F, F ′ ∈ F we have
|F \ F ′| ≥ l. Prove that the following inequality holds:

∑

F∈F

( ( |F |
F |−l

)

(

n
|F |−l

) +

(

n−|F |
l

)

(

n
|F |+l

)

)

≤ 2.

1.2 The Erdős-Ko-Rado theorem - several proofs

The main notion of this section is the following: a family F is intersecting if
for any F, F ′ ∈ F the intersection F ∩ F ′ is non-empty. We will be interested
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in the maximum possible size that an intersecting family can have. If there are
no restrictions on the sizes of sets in F , then we have the following proposition.

Proposition 8 If F ⊆ 2[n] is intersecting, then |F| ≤ 2n−1.

Proof. Clearly, an intersecting family cannot contain both F and F for any
subset F of [n]. �

Note that the bound is sharp as shown by the family {F ⊆ [n] : 1 ∈ F},
but there are many other intersecting families of that size (see Exercise 15
at the end of this section). This situation changes if we consider k-uniform
families. Again, if all the sets contain the element 1, the family is intersecting
(Such families are called trivially intersecting families .) The largest trivially

intersecting families are the star with center x {F ∈
(

[n]
k

)

: x ∈ F} for some

fixed x ∈ [n]. They give constructions of size
(

n−1
k−1

)

. The celebrated theorem
of Erdős, Ko, and Rado states that this is best possible if 2k ≤ n holds (the
additional condition is necessary, as if 2k > n, then any pair of k-subsets
of [n] intersects). They proved their result in 1938, but they thought that it
might not be interesting enough, so they published it only in 1961. They could
not have been more wrong about the importance of their theorem: the next
chapter is completely devoted to theorems that deal with families satisfying
properties defined by intersection conditions.

Theorem 9 (Erdős, Ko, Rado, [163]) If F ⊆
(

[n]
k

)

is an intersecting fam-

ily, then |F| ≤
(

n−1
k−1

)

holds provided 2k ≤ n. Moreover, if 2k < n, then

|F| =
(

n−1
k−1

)

if and only if F is a star.

The first proof we give is more or less the one given in the original paper
by Erdős, Ko, and Rado. It uses the very important technique of shifting
(or compression). Some of the many shifting operations will be defined in
this book. For a more detailed introduction see the not very recent survey of
Frankl [193].

First proof of Theorem 9. We proceed by induction on k, the base case
k = 1 being trivial. For k ≥ 2, let F ⊆

(

[n]
k

)

be an intersecting family. For
x, y ∈ [n], let us define

Sx,y(F ) =

{

F \ {y} ∪ {x} if y ∈ F, x /∈ F andF \ {y} ∪ {x} /∈ F
F otherwise

(1.2)

and write Sx,y(F) = {Sx,y(F ) : F ∈ F}.

Lemma 10 Let F ⊆
(

[n]
k

)

be an intersecting family and x, y ∈ [n]. Then

Sx,y(F) ⊆
(

[n]
k

)

is intersecting with |F| = |Sx,y(F)|.

Proof of Lemma. The statements Sx,y(F) ⊆
(

[n]
k

)

and |F| = |Sx,y(F)| are
clear by definition. To prove the intersecting property of Sx,y(F) let us call a
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set G ∈ Sx,y(F) new if G /∈ F and old if G ∈ F . Two old sets intersect by
the intersecting property of F and two new sets intersect as by definition they
both contain x. Finally, suppose F is an old, and G is a new set of Sx,y(F).
By definition x ∈ G, so if x ∈ F , then F and G intersect. Suppose x /∈ F and
consider F ′ := G\{x}∪{y}. As G is a new set of Sx,y(F) we have F ′ ∈ F and
therefore F ∩F ′ 6= ∅. If there exists z ∈ F ∩F ′ with z 6= y, then z ∈ F ∩G and
we are done. If F ∩ F ′ = {y}, then consider F ′′ = F \ {y} ∪ {x}. As F is an
old set of Sx,y(F), we must have F ′′ ∈ F , but then F ′ ∩F ′′ = ∅ contradicting
the intersecting property of F . Therefore F ∩ F ′ 6= {y} holds. This finishes
the proof of the lemma. �

Let us define the weight of a family G to be w(G) =
∑

G∈G
∑

i∈G i. Observe
that if x < y and Sx,y(F) 6= F , then w(Sx,y(F)) < w(F) holds. Therefore,
as the weight is a non-negative integer, after applying a finite number of such
shifting operations to F , we obtain a family F ′ with the following property:
Sx,y(F ′) = F ′ for all 1 ≤ x < y ≤ n. We call such a family left-shifted . By
Lemma 10, to obtain the bound of the theorem it is enough to prove that a
left-shifted intersecting family F has size at most

(

n−1
k−1

)

.

Lemma 11 If F ⊆
(

[n]
k

)

is a left-shifted intersecting family, then for any
F1, F2 ∈ F we have F1 ∩ F2 ∩ [2k − 1] 6= ∅.

Proof of Lemma. Suppose not and let F1, F2 ∈ F be such that F1 ∩ F2 ∩
[2k − 1] = ∅ holds and |F1 ∩ F2| is minimal. Let us choose y ∈ F1 ∩ F2 and
x ∈ [2k − 1] \ (F1 ∪ F2). As F is intersecting, y exists. By the assumption
F1∩F2∩ [2k−1] = ∅, we have y ≥ 2k, and thus |F1∩ [2k−1]|, |F2∩ [2k−1]| ≤
k − 1, therefore x exists. By definition, we have x < y. As F is left-shifted,
we have F ′

1 := F1 \ {y} ∪ {x} ∈ F , but then F ′
1 ∩ F2 ∩ [2k − 1] = ∅ and

|F ′
1 ∩ F2| < |F1 ∩ F2|, contradicting the choice of F1 and F2. �

We are now ready to prove the bound of the theorem. For i = 1, 2, . . . , k
let us define Fi = {F ∈ F : |F ∩ [2k]| = i} and Gi = {F ∩ [2k] : F ∈ Fi}.
By Lemma 11, Gi is intersecting for all i and F = ∪k

i=1Fi. By the inductive
hypothesis, we obtain |Gi| ≤

(

2k−1
i−1

)

for all i ≤ k − 1. By definition, Gk = Fk

holds, and for every k-subset S of [2k] at most one of S and [2k] \ S belongs
to Gk, therefore we have |Gk| ≤ 1

2

(

2k
k

)

=
(

2k−1
k−1

)

. Every set G ∈ Gi can be

extended to a k-set of Fi in at most
(

n−2k
k−i

)

ways. We obtain

|F| =
k
∑

i=1

|Fi| ≤
k
∑

i=1

|Gi|
(

n− 2k

k − i

)

≤
k
∑

i=1

(

2k − 1

i− 1

)(

n− 2k

k − i

)

=

(

n− 1

k − 1

)

.

We still have to prove that if 2k < n holds, then the only intersecting
families with size

(

n−1
k−1

)

are stars. First we show this for left-shifted intersecting
families, where obviously the center of the star should be 1. If k = 2, then there
are only two types of maximal intersecting families: the star and the triangle
{{1, 2}, {1, 3}, {2, 3}}. If k ≥ 3, then in the inductive argument above, all Fi’s
are stars with center 1 and all possible extensions of these sets to k-sets must
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be present in F , i.e. F ′ := {F ′ ∈
(

[n]
k

)

: 1 ∈ F ′, |F ′ ∩ [2k − 1]| ≤ k − 1} ⊆ F
holds. But for any k-set S with 1 /∈ S there exists a set F ′ ∈ F ′ with S∩F ′ = ∅,
therefore all sets in F must contain 1.

For general F , let us start applying shifting operations Sx,y with x < y. If
we obtain a left-shifted family H that is not a star, then we are done by the
above. If not, then at some point we obtain a family G such that Sx,y(G) is a
star. Therefore G∩{x, y} 6= ∅ for all G ∈ G. Then we apply shifting operations
Sx′,y′ with x′ < y′ and x′, y′ ∈ [n] \ {x, y} until we obtain a family H with
Sx′,y′(H) = H for all x′, y′ ∈ [n] \ {x, y} with x′ < y′. Clearly, we still have
H ∩{x, y} 6= ∅ for all H ∈ H. The next lemma is the equivalent of Lemma 11.

Lemma 12 Let A denote the first 2k − 2 elements of [n] \ {x, y} and let
B = A ∪ {x, y}. Then H ∩H ′ ∩B 6= ∅ for all H,H ′ ∈ H.

Proof of Lemma. Suppose not and let H,H ′ be members of H with H ∩
H ′ ∩B = ∅ and |H ∩H ′| minimal. This means that H and H ′ meet {x, y} in
different elements and as H is intersecting, there exists y′ ∈ (H∩H ′)\B. Also
there exists x′ ∈ A \ (H ∪H ′) as H \ {x, y} and H ′ \ {x, y} are (k − 1)-sets
both containing y′ /∈ A. Then H \ {y′} ∪ {x′} ∈ H by Sx′,y′(H) = H, which
contradicts the choice of H and H ′. �

Now the exact same calculation and reasoning can be carried out as in the
left-shifted case. So H to have size

(

n−1
k−1

)

we must have that for all i ≤ k − 1
there exists zi with zi ∈ H for all H ∈ Hi = {H ∈ H : |H ∩ B| = i}
and |Hi| =

(

k−1
i−1

)(

n−2k
k−i

)

. Every H ∈ Hk must contain zi for all i ≤ k − 1
as otherwise we would find a H ′ ∈ Hi disjoint from H . So if zi 6= zj, then

|Hk| ≤
(

2k−2
k−2

)

and thus |H| <
(

n−1
k−1

)

or zi is the same for all i and thus H is
a star contradicting our assumption. �

The next proof we present is due to G.O.H. Katona [337]. This proof is
the first application of the cycle method . The idea is very similar to that in
the proof of the LYM-inequality where one considers maximal chains. One
addresses the original problem on a simpler structure S which is symmetric in
the sense that if two sets S1, S2 have the same size, then the number of copies
of S containing S1 equals the number of copies of S containing S2. And when
this simpler problem is solved, one tries to reduce the original problem to the
simpler one. The way to do that is to count the pairs (π, F ), where π is a
permutation, F is a member of the original family and π(F ) ∈ S. For an F it
is usually easy to count the number of permutations that form a pair with it,
while for every π the solution on the simpler structure gives an upper bound.

In this general form, the method is called the permutation method and
the cycle method is the following special case: if σ is a cyclic permutation
of [n], then a set S is an interval of σ if it is a set of consecutive elements.
More precisely either S = ∅ or S = [n] or S = {σ(i), σ(i + 1), . . . , σ(i + j)}
for some integers 1 ≤ i, j ≤ n − 1, where addition is considered modulo n.
An interval of size k is said to be a k-interval. The element σ(i) is the left
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endpoint of the interval and σ(i + j) is the right endpoint of the interval. For
a fixed permutation σ, there are n(n− 1) + 2 intervals of σ. For a fixed k-set
S ⊆ [n] with 1 < k < n there are |F |!(n−|F |)! cyclic permutations σ of which
S is an interval. Note that ∅ and [n] are intervals of all the (n − 1)! cyclic
permutations. Thus in the future calculations they need a separate treatment,
but we usually omit that, as it is trivial.

Second proof of Theorem 9. We start with the solution of the problem on
the cycle.

Lemma 13 Let σ be a cyclic permutation of [n] and let G1, G2, . . . , Gr be
k-intervals of σ that form an intersecting family G. Then r ≤ k holds provided
2k ≤ n. Furthermore, if 2k < n and r = k, then the Gi’s are all the k-intervals
that contain a fixed element of [n].

Proof of Lemma. Without loss of generality we may assume that G1 =
{σ(1), σ(2), . . . , σ(k)}. Then as the Gi’s all have the same size and they form
an intersecting family, all Gi’s have either left endpoint σ(j) for some 2 ≤ j ≤
k or right endpoint σ(j) for some 1 ≤ j ≤ k − 1. Furthermore, because of the
intersecting property and 2k ≤ n, the k-interval with right endpoint σ(j) and
the k-interval with left endpoint σ(j+1) cannot be both among the Gi’s. This
proves r ≤ k.

Let us assume now 2k < n and let σ(j) be the right endpoint of some Gi

with 1 ≤ j ≤ k− 1. Then k-intervals with left endpoint σ(j + 1) and σ(j + 2)
cannot be in G. Therefore, as |G| = k, the k-interval with right endpoint
σ(j+1) must belong to G. Similarly, if for some 2 ≤ j ≤ k the left endpoint of
some Gi is σ(j), then the k-interval with left endpoint σ(j − 1) must belong
to G. This means that if |G| = k and σ(1), σ(k) do not belong to all members
of G, then there is exactly one j (2 ≤ j ≤ k − 1) for which σ(j) is both a left
and a right endpoint and then σ(j) is an element of all the intervals in G. �

Let us consider the number of pairs (F, σ), where σ is a cyclic permutation
of [n] and F ∈ F is an interval of σ. By Lemma 13, for fixed σ the number of
such cycles is at most k. On the other hand, every set F in F is an interval
of k!(n− k)! cyclic permutations. We obtained

|F|k!(n− k)! =
∑

F∈F
k!(n− k)! ≤ k(n− 1)!.

Dividing by k!(n− k)! yields |F| ≤
(

n−1
k−1

)

.

If 2k < n and |F| =
(

n−1
k−1

)

, then by Lemma 13 for every cyclic permutation
σ there exists xσ ∈ [n] such that all intervals of σ containing xσ belong to F .
Suppose toward a contradiction that F is not a star. Let σ be an arbitrary
cyclic permutation and let xσ be the element that is contained in k intervals of
σ all in F . Let F1 ∈ F be the interval that has right endpoint xσ in σ and let
F2 ∈ F be the interval that has left endpoint xσ in σ. Finally let F ∈ F be a
set with xσ /∈ F (if no such F exists, then F is a star with center xσ). Writing
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A = F ∩ F1, B = F ∩ F2, and C = F \ (A ∪B) let π be a cyclic permutation
such that for some 1 ≤ j1 < j2 ≤ j3 < j4 < j5 we have (F1 \ {xσ}) \ F =
{π(1), . . . , π(j1)}, A = {π(j1 + 1), . . . , π(j2)}, C = {π(j2 + 1), . . . , π(j3)},
B = {π(j3 + 1), . . . , π(j4)}, and (F2 \ {xσ}) \ F = {π(j4 + 1), . . . , π(j5)}. In
words, F is an interval of π such that elements of A are at one end of the
interval, elements of B are at the other end, and elements of C (if any) are in
the middle. Furthermore, all remaining elements of F1 except xσ are placed
next to A and all remaining elements of F2 except xσ are placed next to B.
Note that we have not decided about the position of xσ in π. We distinguish
two cases:

Case I: C 6= ∅.
Then let π(j5+1) = xσ and therefore F2 is an interval of π. We obtain that

xπ ∈ B. As C is non-empty, the size of (C ∪F2) \ {xσ} is at least k. Therefore
any of its k-subintervals containing xπ should belong to F . But by definition,
it (at least one of them) is disjoint from F1. This contradiction finishes the
proof in Case I.

Case II: C = ∅ and thus F ⊂ (F1 ∪F2) \ {xσ} holds and (F1 ∪F2) \ {xσ}
has size 2k − 2.

Then let π(2k) = xσ. As F is an interval of π, we have xπ ∈ F . If xπ ∈
F ∩ F1 = A, then (F1 ∪ π(n)) \ {xσ} = {π(n), π(1), . . . , π(k − 1)} is a k-
interval of π that contains xπ , therefore it must belong to F . But as n > 2k,
we have π(n) 6= xσ and therefore (F1 ∪ π(n)) \ {xσ} is disjoint from F2 ∈
F , a contradiction to the intersecting property of F . If xπ ∈ F ∩ F2, then
(F2 ∪ π(2k − 1)) \ {xσ} = {π(k), π(k + 1), . . . , π(2k − 1)} is a k-interval of
π containing xπ , therefore it belongs to F . But it is disjoint from F1 ∈ F
contradicting the intersecting property of F . This finishes the proof of Case
II. �

We present a third proof of the Erdős-Ko-Rado theorem that uses the poly-
nomial method. The main idea of this method is to assign polynomials pF (x)
to every set F ∈ F and show that these polynomials are linearly independent
in the appropriate vector space V . If this is so, then |F| ≤ dim(V ) follows.
Let us start with a general lemma giving necessary conditions for polynomials
to be independent.

Lemma 14 Let p1(x), p2(x), . . . , pm(x) ∈ Fn[x] be polynomials and
v1, v2, . . . , vm ∈ Fn be vectors such that pi(vi) 6= 0 and pi(vj) = 0 holds
for all 1 ≤ j < i ≤ m. Then the polynomials are linearly independent.

Proof. Suppose that
∑m

i=1 cipi(x) = 0. As pi(v1) = 0 for all 1 < i we obtain
c1p1(v1) = 0 and therefore c1 = 0 holds. We proceed by induction on j. If
ch = 0 holds for all h < j, then using this and pi(vj) = 0 for all i > j, we
obtain cjpj(vj) = 0 and therefore cj = 0. �

Recall that the characteristic vector vF of a set F ⊆ [n] is the binary
vector of length n with ith entry 1 if and only if i ∈ F . By definition, we have
vF · vG = |F ∩G| for any pair of sets F,G ⊆ [n]. Therefore if F ⊆

(

[n]
k

)

is an
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intersecting family, then the polynomials pF (x) =
∏k−1

i=1 (x · vF − i) and the
characteristic vectors vF satisfy the conditions of Lemma 14 (independently of
the order of sets of F). What is the dimension of the smallest vector space that
contains these polynomials? As characteristic vectors have only 0 and 1 entries,
we can replace all powers xh

j by xj in the pF ’s and the polynomials p′F obtained
will still satisfy the conditions of Lemma 14. The vector space generated by
these polynomials is a subspace of V = 〈{xi1 · xi2 · . . . · xih , 1 ≤ i1 < i2 <

. . . < ih, 0 ≤ h ≤ k− 1}〉 and clearly, we have dim(V ) =
∑k−1

i=0

(

n
i

)

holds. This

yields the weak bound |F| ≤∑k−1
i=0

(

n
i

)

. The next proof that improves this and
attains the bound of Theorem 9 is due to Füredi, Hwang, and Weichsel [238]
and uses an idea that first appeared in a paper of Blokhuis [55].

Third proof of Theorem 9. Our plan is to add
∑k−1

i=0

(

n
i

)

−
(

n−1
k−1

)

=

2
∑k−2

j=0

(

n−1
j

)

many sets to F and define corresponding polynomials and vec-
tors such that the conditions of Lemma 14 are still satisfied. More precisely,
we will also change some of the polynomials corresponding to sets in F , and
replace the characteristic vectors by other vectors. Let a ∈ [n] be arbitrary
and let us define A = F0 ∪ H ∪ F1 ∪ G where F0 = {F ∈ F : a /∈ F},
H = {H ⊂ [n] : a /∈ H, 0 ≤ |H | ≤ k − 2}, F1 = {F ∈ F : a ∈ F},

G = {G ⊂ [n] : a ∈ G : 1 ≤ |G| ≤ k − 1}. Clearly, |H| = |G| =
∑k−2

j=0

(

n−1
j

)

holds. We define the following polynomials:

• For F ∈ F0 let pF (x) =
∏k−1

i=1 (vF · x − i), therefore for a set S ⊆ [n] we
have pF (vS) = 0 if and only if 1 ≤ |(F ∩ S| ≤ k − 1. As opposed to what
we had before, let uF = vF\{a}.

• For H ∈ H we define pH(x) = (1 · x − (n − k − 1))
∏

h∈H xh, where 1
denotes the vector of length n with all 1 entries. For a set S ⊆ [n] we have
pH(vS) = 0 if and only if |S| = n− k − 1 or H 6⊆ S. We let uH = vH .

• For F ∈ F1 we consider pF (x) =
∏k−2

i=0 (vF\{a} · x − i); therefore for a set
S ⊆ [n] we have pF (vS) = 0 if and only if 0 ≤ |(F \ {a}) ∩ S| ≤ k − 2. Let
uF = vF\{a}.

• For G ∈ G we define pG(x) =
∏

g∈G xg . For a set S ⊆ [n] we have pG(vS) = 0
if and only if G 6⊂ S. We let uG = vG.

Again, as all vectors are binary, we can change every power xs
i to xi in these

polynomials, so they are contained in the vector space of polynomials with
n real variables that have degree at most 1 in each variable. Therefore |F| +

|H|+ |G| = |A| ≤∑k−1
i=0

(

n
i

)

and thus |F| ≤
(

n−1
k−1

)

provided these polynomials
are independent. To check that the conditions of Lemma 14 hold, we still
need to define an order of these sets and polynomials. First we enumerate the
polynomials pF belonging to sets in F0 in arbitrary order, then the polynomials
pH belonging to sets in H such that if |H | < |H ′| then H comes before H ′.
Then come polynomials pF belonging to sets in F1 in arbitrary order, finally
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polynomials pG belonging to sets in G such that if |G| < |G′| then G comes
before G′. We verify that the conditions of Lemma 14 hold by a simple case
analysis.

• For F, F ′ ∈ F0 we have pF (uF ) 6= 0 as F ∩ F = ∅ and pF (u′
F ) = 0 as

1 ≤ |F ′ ∩ (F \ {a})| ≤ k − 1 if F 6= F ′. Indeed, 1 ≤ |F ′ ∩ F | ≤ k − 1 as F
is intersecting, and also we have a /∈ F ′. For H ∈ H we have pH(uF ) = 0
as |F \ {a}| = n− k − 1. For F1 ∈ F1 we have pF1(uF ) = 0 as |(F1 \ {a})∩
(F \ {a})| ≤ k − 2. Indeed, |F1 ∩ F | ≤ k − 1 as F is intersecting, and a is
contained in both. For G ∈ G we have pG(uF ) = 0 as G 6⊂ F \ {a} since
a ∈ G for all G ∈ G.

• For H,H ′ ∈ H with |H | ≤ |H ′| we have pH(uH) 6= 0 as H ⊆ H and
|H | ≤ k − 2 < n − k − 1 (this is the only time we use the assumption
2k ≤ n). We also have pH′(uH) = 0 as H ′ 6⊂ H . For F ∈ F1 we have
pF (uH) = 0 as |H | ≤ k − 2 and for G ∈ G we have pG(uH) = 0 as G 6⊂ H
since a ∈ G, a /∈ H .

• Trivially, for F, F ′ ∈ F1 we have pF (uF ) 6= 0 and pF ′(uF ) = 0. For G ∈ G
we have pG(uF ) = 0 as G 6⊂ F \ {a} since a ∈ G for all G ∈ G.

• For G,G′ ∈ H with |G| ≤ |G′| we have pG(uG) 6= 0 as G ⊆ G, and
pG′(uG) = 0 as G′ 6⊂ G.

�

Exercise 15 Show that any maximal intersecting family F ⊆ 2[n] of sets has
size 2n−1.

1.3 Intersecting Sperner families

This short section is devoted to antichains that also possess the intersecting
property. They are called intersecting Sperner families. They are interesting
in their own right, but we would also like to give more examples of easy
applications of the cycle method. First we prove the result of Milner that
determines the maximum possible size of an intersecting Sperner family F ⊆
2[n]. Obviously, if n is odd, then

( [n]
⌈n/2⌉

)

is intersecting Sperner and by Theorem

1 it has maximum size even among all antichains. Therefore the important part
of the following theorem is when n is even. The proof we present here is due
to Katona [340].

Theorem 16 (Milner, [419]) If F ⊆ 2[n] is an intersecting Sperner family,
then |F| ≤

(

n
⌈n+1

2 ⌉
)

.
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Proof. First we prove the following lemma.

Lemma 17 Let σ be a cyclic permutation of [n] and let G1, G2, . . . , Gr be
intervals of σ that form an intersecting Sperner family. Then the following
inequality holds:

r
∑

i=1

(

n

|Gi|

)

≤ n

(

n

⌈n+1
2 ⌉

)

.

Proof of Lemma. By being an antichain, we see that all the Gi’s have
distinct left endpoints and therefore r ≤ n holds. This finishes the proof if n
is odd (as in that case

(

n
⌈n+1

2 ⌉
)

is the largest binomial coefficient). If n is even,

we distinguish two cases.

Case I: r = n.
We can assume that the left endpoint of Gi is σ(i). Then by the Sperner

property, we must have |Gi| ≤ |Gi+1|. Consequently, we obtain |G1| ≤ |G2| ≤
. . . |Gn| ≤ |G1| and therefore all Gi’s must have the same size. By the inter-
secting property this size is at least ⌈n+1

2 ⌉.
Case II: r < n.
By the intersecting property and Lemma 13, at most n/2 intervals have

size n/2. Therefore we have

r
∑

i=1

(

n

|Gi|

)

≤ n

2

(

n
n
2

)

+
(n

2
− 1
)

(

n
n
2 + 1

)

= n

(

n
n
2 + 1

)

= n

(

n

⌈n+1
2 ⌉

)

.

�

Let F ⊆ 2[n] be an intersecting Sperner family and let us consider the sum

∑

σ,F

(

n

|F |

)

,

where the summation is over all cyclic permutations σ of [n] and sets F ∈ F
that are intervals of σ. For a fixed set F , the number of cyclic permutations of
which F is an interval is |F |!(n−|F |)!, therefore the above sum equals |F| ·n!.
On the other hand, by Lemma 17, the sum is at most (n− 1)! ·n

(

n
⌈n+1

2 ⌉
)

. This

yields |F| · n! ≤ (n− 1)! · n
(

n
⌈n+1

2 ⌉
)

and the theorem follows. �

Theorem 18 (Bollobás, [64]) If F ⊆ 2[n] is an intersecting Sperner family
such that all sets of F have size at most n/2, then the following inequality
holds:

∑

F∈F

1
(

n−1
|F |−1

) ≤ 1.

Note that this inequality is a strengthening of Theorem 9 as any family
containing sets of the same size is an antichain.
Proof. We start with a generalization of Lemma 13.
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Lemma 19 Let σ be a cyclic permutation of [n] and let G1, G2, . . . , Gr be
intervals of σ of size at most n/2 that form an intersecting Sperner family.
Then r ≤ min{|Gi| : 1 ≤ i ≤ r} holds.

Proof of Lemma. By symmetry, it is enough to show that r ≤ |G1| =: j.
If G1 = {σ(i), σ(i + 1), . . . , σ(i + j − 1)}, then by the intersecting Sperner
property, all Gk’s must have one of their endpoints in G1 and σ(i) cannot be
a left endpoint and σ(i + j − 1) cannot be a right endpoint. This would give
2j − 1 possible other intervals in the family. Notice that as all Gk’s have size
at most n/2, if σ(i+ h) is a right endpoint, then σ(i + h+ 1) cannot be a left
endpoint and vice versa. This leaves at most j − 1 possible other Gk’s. �

Let us consider the sum
∑

σ,F

1

|F | ,

where the summation is over all cyclic permutations σ of [n] and sets F ∈ F
that are intervals of σ. For fixed σ, by Lemma 19, we have that if F1, F2, . . . , Fr

are the intervals of σ belonging to F , then
∑r

i=1
1

|Fi| ≤ 1. For fixed F ∈ F
the number of cyclic permutations of which F is an interval is |F |!(n− |F |)!,
therefore

∑

σ
1
|F | = (|F | − 1)!(n− |F |)!. We obtained

∑

F∈F
(|F | − 1)!(n− |F |)! ≤ (n− 1)!,

and dividing by (n− 1)! finishes the proof. �

Theorem 20 (Greene, Katona, Kleitman, [273]) If F ⊆ 2[n] is an in-
tersecting Sperner family, then the following inequality holds:

∑

F∈F ,|F |≤n/2

1
(

n
|F |−1

) +
∑

F∈F ,|F |>n/2

1
(

n
|F |
) ≤ 1.

Proof. The core of the proof is again an inequality for intersecting Sperner
families of intervals equipped with an appropriate weight function.

Lemma 21 Let σ be a cyclic permutation of [n] and let G1, G2, . . . , Gr,
G′

1, G
′
2, . . . , G

′
s be intervals of σ that form an intersecting Sperner family such

that |Gi| ≤ n/2 for all 1 ≤ i ≤ r and |G′
j | > n/2 for all 1 ≤ j ≤ s. Then the

following inequality holds:

r
∑

i=1

n− |Gi| + 1

|Gi|
+

s
∑

j=1

1 ≤ n.

Proof. We distinguish two cases.

Case I: r = 0.
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Then the first sum of the left hand side of the inequality is empty and all
we have to prove is s ≤ n. This follows from the Sperner property as the left
endpoints of the intervals must be distinct.

Case II: r > 0.
We may assume that k = |G1| is the smallest size among all Gi’s and

that G1 = {σ(1), σ(2), . . . , σ(k)}. Note that the weight n−w+1
w is monotone

decreasing in w, therefore all weights are at most n−k+1
k . Because of the in-

tersecting Sperner property every Gi and G′
j has either left endpoint σ(u)

for some u = 2, 3, . . . , k or right endpoint σ(u′) for some u′ = 1, 2, . . . , k − 1.
Therefore apart from G1 the possible remaining sets can be partitioned into
at most k − 1 pairs (not all pairs and not both sets of a pair are necessarily
present): the (u−1)st such pair consists of the set with left endpoint σ(u) and
the set with right endpoint σ(u − 1). Observe that because of the intersect-
ing property every pair contains at most one set with size smaller than n/2.
Therefore the sum of all weights is at most

n− k + 1

k
+ (k − 1)

(n− k + 1

k
+ 1
)

= n.

�

Having Lemma 21 in hand we prove the theorem by considering the sum

r
∑

σ,F,|F |≤n/2

n− |F | + 1

|F | +
∑

σ,F,|F |>n/2

1,

where the summation in both sums is over all cyclic permutations σ and all
sets F of F that are intervals of σ. By Lemma 21, for fixed σ the sum is at
most n. Recall that for fixed F the number of cyclic permutations of which F
is an interval is |F |!(n− |F |)!. We obtain

r
∑

F∈F ,|F |≤n/2

n− |F | + 1

|F | |F |!(n− |F |)! +
∑

F∈F|F |>n/2

|F |!(n− |F |)! ≤

≤ (n− 1)! · n = n!.

Note that n−|F |+1
|F | |F |!(n− |F |)! = (|F | − 1)!(n− |F | + 1)!, therefore dividing

by n! finishes the proof of the theorem. �

Exercise 22 (Scott [501]) Prove Theorem 16 for even n in the following
three steps:

• By an argument similar to that in the first proof of Theorem 1, show that a
maximum size intersecting Sperner family F ⊆

(

[n]
n
2

)

∪
(

[n]
n
2 +1

)

.

• Observe that ∇(F ∩
(

[n]
n
2

)

) is disjoint from F ∩
(

[n]
n
2 +1

)

.

• Using the cycle method show |F ∩
(

[n]
n
2

)

| ≤ |∇(F ∩
(

[n]
n
2

)

)| holds.
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1.4 Isoperimetric inequalities: the Kruskal-Katona the-
orem and Harper’s theorem

The original geometric isoperimetric problem dates back to antiquity and
states that if R is a region in the plane of area 1 and the boundary of R
is a simple curve C, then the length of C is minimized when C is a cycle.
There are mainly two discrete versions of this problem. For a graph G and
a subset U of the vertex V (G), the vertex boundary of U is ∂U = {v ∈
V (G) \ U : ∃u ∈ U such that u is adjacent to v} and the exterior of U is
ext(U) = V (G) \ (U ∪ ∂U). For fixed integer m and a graph G the vertex
isoperimetric problem is to minimize |∂U | over all subsets U ⊆ V (G) with
|U | = m. The edge isoperimetric problem is to minimize the number of edges
between U and ∂U over all subsets U ⊆ V (G) with |U | = m. Note that
the edge isoperimetric problem is equivalent for values m and |V (G)| − m.
Discrete isoperimetric appear frequently in the literature, we only consider
some examples for graphs the vertex set of which are associated with set
families.

Our first example is the bipartite graph G = Gn,k−1,k that we defined in
the first proof of Theorem 1. Let us remind the reader that G is bipartite with
parts

(

[n]
k

)

and
(

[n]
k−1

)

and the (k − 1)-set F is adjacent to the k-set F ′ if and

only if F ⊂ F ′. Note that if F ⊆
(

[n]
k

)

, then ∂F = N(F) = ∆(F) holds.
The lexicographic ordering of sets is defined by A being smaller than B

if and only if minA \ B < minB \ A holds (i.e. the first difference matters).
However, the following theorem uses an ordering where the last different ele-

ment matters. Let us define the colex ordering ≺k on
(

Z
+

k

)

by setting A ≺k B
if and only if maxA \ B < maxB \ A holds. The smallest element of this

ordering is the set [k] and for every n ≥ k the family
(

[n]
k

)

is an initial segment

of (≺k,
(

Z
+

k

)

. For general m, we denote its initial segment of size m by Ik
m.

Theorem 23 (Kruskal, Katona, [335,385]) Let F be a k-uniform family
of size m. Then the inequality |∆(F)| ≥ |∆(Ik

m)| holds.
The Kruskal-Katona theorem is not a real vertex isoperimetric inequality

as it states a sharp lower bound on the size of ∂U only for some sets U ⊆ V (G):
those that do not contain vertices from the class corresponding to sets of size
k − 1.

Proof. The proof we present here is due to Bollobás and Leader [70]. It uses
the following generalization of the shifting operation introduced in the first
proof of Theorem 9. For disjoint sets X,Y with |X | = |Y | we define

SX,Y (F ) =

{

F \ Y ∪X if Y ⊆ F,X ∩ F = ∅ and F \ Y ∪X /∈ F
F otherwise,

(1.3)

and write SX,Y (F) = {SX,Y (F ) : F ∈ F}. We say that F is (X,Y )-shifted
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if SX,Y (F) = F , and F is s-shifted if it is (X,Y )-shifted for all disjoint pairs
X,Y with |X | = |Y | = r, X ≺r Y and r ≤ s. Finally, we say that F is
shifted if it is shifted for all s ≤ k. Note that by definition, every family F
is (∅, ∅)-shifted and thus 0-shifted. Also, being 1-shifted and left-shifted are
equivalent.

First we prove a lemma that characterizes initial segments of the colex
ordering with the above compression operation.

Lemma 24 A family F ⊆
(

Z
+

k

)

is an initial segment of the colex ordering if
and only if F is shifted.

Proof of Lemma. Suppose first that F is shifted. If F is not an initial
segment, then there exist F ∈ F , G /∈ F with G ≺k F . Writing X = G\F, Y =
F \G and r = |F ∩ G|, we have X ∩ Y = ∅, X ≺r Y and (F \ Y ) ∪X = G.
As F is shifted, we must have G ∈ F , a contradiction.

Conversely, if F is an initial segment of the colex ordering, then for any
F,X, Y with Y ⊆ F,X ∩ F = ∅, X ≺r Y we have (F \ Y ) ∪X ≺k F and thus
(F \ Y ) ∪X ∈ F . This shows SX,Y (F) = F and F is shifted. �

Our strategy to prove the theorem is to apply shifting operations SXi,Yi

to F until we obtain a shifted family F ′ and show that the size of the shadow
never increased when applying a shifting operation. Unfortunately, it would
not be true for an arbitrary sequence of operations; however, the following
lemma holds.

Lemma 25 Let F be a family of k-subsets of Z+ and X,Y be disjoint sets
with |X | = |Y | and suppose that for every x ∈ X there exists y ∈ Y such that
F is (X \ {x}, Y \ {y})-shifted. Then ∆(SX,Y (F)) ≤ ∆(F) holds.

Proof of Lemma. We define an injective mapping from ∆(SX,Y (F)) \∆(F)
to ∆(F)\∆(SX,Y (F)). If A is in ∆(SX,Y (F))\∆(F), then there exists x ∈ [n]
such that A∪ {x} ∈ SX,Y (F) \ F . Therefore X ⊆ A∪ {x}, Y ∩ (A∪ {x}) = ∅
and S−1

X,Y (A ∪ {x}) = A ∪ {x} \ X ∪ Y ∈ F . If x ∈ X held, then by the
condition of the lemma there would exist y ∈ Y for which SX\{x},Y \{y}(A ∪
{x} \X ∪ Y ) = A ∪ {y} would be in F and thus A would belong to ∆(F), a
contradiction. Therefore we have x /∈ X and so A ∪ Y \X ( A ∪ {x} \X ∪ Y
and A ∪ Y \X ∈ ∆(F).

We show that A ∪ Y \X /∈ ∆(SX,Y (F)). Suppose towards a contradiction
that there exists u such that (A ∪ Y \ X) ∪ {u} ∈ SX,Y (F) holds. As Y ⊂
(A∪Y \X)∪{u} we have (A∪Y \X)∪{u} ∈ F . If u ∈ X , then by the condition
of the lemma, there exists a v ∈ Y such that SX\{u},Y \{v}(F) = F . It follows
that (A∪Y \X)∪{u}\(Y \{v})∪(X\{u}) = A∪{v} belongs to F , in particular
A ∈ ∆(F), a contradiction. If u /∈ X , then SX,Y ((A∪Y \X)∪{u}) = A∪{u} ∈
SX,Y (F). Recall that we indirectly assumed (A ∪ Y \ X) ∪ {u} ∈ SX,Y (F)
holds also. But then both these sets must belong to F , too, which contradicts
A /∈ ∆(F).
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This means that the images of the mapping i : A 7→ A∪Y \X are indeed in
∆(F)\∆(SX,Y (F)). Moreover, i is injective as for all A ∈ ∆(SX,Y (F))\∆(F)
we showed that X ⊂ A and it is obvious that Y ∩A = ∅. �

All that is left to prove is that starting with any family F ⊆
(

Z
+

k

)

using
only shifting operations allowed in Lemma 25 one can arrive at a shifted family
F ′. The next claim finishes the proof of the theorem.

Claim 26 For every 1 ≤ s ≤ k and F ⊆
(

Z
+

k

)

, using only shifting operations
SX,Y with X ≺r Y , and r ≤ s that satisfy the conditions of Lemma 25, one
can turn F into an s-shifted family F ′.

Proof of Claim. We proceed by induction on s. As every family is 0-shifted,
all shifting operations SX,Y are allowed when X and Y are singletons; thus,
as seen in the first proof of Theorem 9, one can achieve a left-shifted family.
Assume that for some s ≥ 2 the statement of the claim is proved for s− 1 and

let F ⊆
(

Z
+

k

)

. Suppose there is an integer r with 2 ≤ r ≤ s, and a disjoint pair
of r-sets X,Y with X ≺r Y and SX,Y (F) 6= F . By induction, we can achieve
an (r− 1)-shifted family F∗ using only allowed operations. Now we show that
SX,Y is an allowed operation, i.e. for every x ∈ X there exists y ∈ Y such
that F∗ is (X \ {x}, Y \ {y})-shifted. Take any y ∈ Y with y 6= maxY , then
we have X \ {x} ≺r−1 Y \ {y}, and by the (r − 1)-shifted property of F∗ we
have SX\{x},Y \{y}(F∗) = F∗.

Finally, this process ends, as whenever a shifting operation SX,Y with
X ≺r Y changes a family F , then

∑

G∈SX,Y (F) |G| <∑F∈F |F | holds. ��

It is easy to see that for every pair of positive integers m and k there
exists a sequence ak > ak−1 > · · · > al > 0 with ai ≥ i such that m =
∑k

i=l

(

ai

i

)

holds. If so, then again it is easy to see that Ik
m is the union of

(

[ak]
k

)

, {S∪{ak + 1} : S ∈
(

[ak−1]
k−1

)

}, {S∪{ak + 1, ak−1 + 1} : S ∈
(

[ak−2]
k−2

)

}, etc.

It follows that |∆(Ik
m)| =

∑k
i=l

(

ai

i−1

)

. Unfortunately, it is very inconvenient to
calculate using this expression, therefore in most applications of the shadow
theorem, one uses the following version of Theorem 23 due to Lovász.

Theorem 27 (Lovász, [392]) Let F be a k-uniform family with |F| =
(

x
k

)

for some real number x ≥ k. Then |∆(F)| ≥
(

x
k−1

)

holds. Moreover if ∆(F) =
(

x
k−1

)

, then x is an integer and F =
(

X
k

)

for a set X of size x.

We present a proof by Keevash [347].

Proof. We start with stating an equivalent form of the theorem. Let Kr
r+1 be

the family consisting of all the r + 1 r-sets on an underlying set of size r + 1.
For an r-uniform family G we denote by Kr

r+1(G) the set of copies of Kr
r+1 in

G and by Kr
r+1(v) = Kr

r+1(G, v) the set of copies of Kr
r+1 in G containing v.

Lemma 28 If G is a (k − 1)-uniform family with |G| =
(

x
k−1

)

, then



Basics 19

|Kk−1
k (G)| ≤

(

x
k

)

and equality holds if and only if x is an integer and G =
(

X
k−1

)

for some set X of size x.

Before proving the lemma we show that it is indeed equivalent to the
theorem. We prove first that the theorem implies the lemma. If G satisfies the
conditions of the lemma, then let us define F = Kk−1

k (G). If |F| >
(

x
k

)

held,

then by the theorem we would have
(

x
k−1

)

< |∆(F)| ≤ |G|, a contradiction.
Assume now the lemma holds and let F satisfy the conditions of the theorem.
Suppose |∆(F)| =

(

y
k−1

)

with y < x and apply the lemma to G = ∆(F). We

obtain |F| ≤ |Kk−1
k (G)| ≤

(

y
k

)

<
(

x
k

)

, a contradiction.
The equivalence of the cases of equality follows similarly.

Proof of Lemma. We proceed by induction on k with the case k−1 = 1 being
trivial. We will need the following definition. If G is a k-uniform family and
v is an element of the underlying set, then the link L(v) is a (k − 1)-uniform
family with S ∈ L(v) if and only if S ∪ {v} ∈ G.

Claim 29 (i) |Kk−1
k (v)| ≤ |G| − dG(v),

(ii)|Kk−1
k (v)| ≤ |Kk−2

k−1 (L(v))|,
(iii) |Kk−1

k (v)| ≤ ( x
k−1 −1)dG(v) for every vertex v and equality holds only

if dG(v) =
(

x−1
k−2

)

.

Proof of Claim. Observe that for a k-set S not containing v, S ∪ {v} spans
a copy of Kk−1

k in G if and only if S ∈ G and S spans a copy of Kk−2
k−1 in L(v).

The first condition implies (i), the second implies (ii).
To see (iii), suppose first that dG(v) ≥

(

x−1
k−2

)

. Then by (i), we have

|Kk−1
k (v)| ≤

(

x
k−1

)

−dG(v) ≤ ( x
k−1 −1)dG(v). If dG(v) ≤

(

x−1
k−2

)

, then let xv ≤ x

be the real number with dG(v) =
(

xv−1
k−2

)

. Using induction and (ii), we obtain

|Kk−1
k (v)| ≤ |Kk−2

k−1(L(v))| ≤
(

xv−1
k−1

)

= ( xv

k−1 − 1)dG(v) ≤ ( x
k−1 − 1)dG(v). In

both cases, dG(v) =
(

x−1
k−2

)

is necessary for all inequalities to hold with equality.
�

Using (iii) of Claim 29 we have

k|Kk−1
k (G)| =

∑

v

|Kk−1
k (v)| ≤

∑

v

(
x

k − 1
− 1)dG(v)

= (
x

k − 1
− 1)|G|(k − 1) = k

(

x

k

)

.

This finishes the proof of the inductive step for the inequality, and equality
holds if all the degrees are equal to

(

x−1
k−2

)

. But then writing n = | ∪G∈G G| we

have n
(

x−1
k−2

)

=
∑

v dG(v) = (k − 1)|G| = (k − 1)
(

x
k−1

)

= x
(

x−1
k−2

)

. Therefore x

equals n and G =
(∪G∈GG

k−1

)

. �

�


