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Preface

The aim of the book is to offer a practical guide to researchers, graduate
students and those interested in the analysis of omic data. While our em-
phasis is on the use of data in publicly available repositories, the reader in-
terested in analyzing novel data will find settled methods for inquiring into
high-dimensional biological data. We have conceived the book as a first refer-
ence to tackle specific types of data, as well as a textbook for a bioinformatics
course at the MSc level. Our objective is to demonstrate how to analyze ge-
nomic, transcriptomic, epigenomic and exposomic data to explain phenotypic
differences among individuals. We describe the first analyses and methods of
inquiry that should be used to identify the patterns in the data that associate
with a trait of interest. During the past decade numerous methods have been
developed and, due to the complexity of the data, we expect many more to be
devised. Nonetheless, we describe some of the most established methods that
are available in the Bioconductor and R repositories, which should constitute
the first line of inquiry and to which future developments should be compared
against.

The methods and applications described here are all publicly available and
are accessible to anyone comfortable with fitting a linear regression model in
R. While we direct the reader to numerous introductory books in R and basic
statistical methods, the present book is directed to users. From a basic user
level, we aim to guide the readers to expand their toolkit in order to deal with
omic data with confidence.

All the methods discussed here are part of our daily toolkit. We are reg-
ular users of all the methods and are also developers of many of them. The
book is the result of compiling workshop and class material, of software pack-
age development and of years of research carried out in Juan R. González’s
Bioinformatics Group in Genetic Epidemiology, within ISGlobal. We have thus
developed expertise in the use of the methods and in their communication,
and have realized the need to offer a guide to new researchers in the field.
There is a wealth of publicly available software and data, yet the landscape
is overwhelming to newcomers. We offer them starting points from which to
begin inquiring into the omic data of interest. We do not offer a complete or
global view but indicate safe up-to-date entry points. As developers of some
of the packages discussed, we are committed, as part of the Bioconductor
community, to offer clear and reproducible documentation, clarify doubts and
update new versions. We insist that packages and pipelines to assist users are
also implemented so they are further improved by other developers.

xi



xii Preface

The material discussed in the book is largely based on cheap high-
throughput methods. They include microarrays and some sequencing meth-
ods such as RNA-sequencing. We are also aware of the developments in the
collection of new high-dimensional biological data, such as Next-Generation
Sequencing or those aimed at single cells. There are, however, important ad-
vantages in the use and analysis of microarrays which will keep them relevant
for many years. First, association studies require cohorts and technologies to
be scalable to hundreds of thousands of individuals to properly power epi-
demiological inferences. Microarrays clearly meet the target. While we may
conceive such scalability for future sequencing, the preprocessing of data may
change but the basic methods of inference would likely remain the same. In
addition, microarray data is widely available and it has been an important
source of continuous reanalysis to test novel focused hypotheses, confirm new
results or reproduce previous findings. Finally, SNPs arrays can be addition-
ally used to explore other genomic variants, for which specific high-throughput
technology is not yet available. Therefore, association analyses in large cohorts
can be performed on inversion polymorphisms and mosaicism, including the
loss of chromosome Y.

This book is the result of the joint effort with other colleagues whom we
have collaborated throughout the years. We would like to explicitly acknowl-
edge and thank Carles Hernández-Ferrer, Marcos López and Carlos Ruiz who
have contributed with their ideas, work and coding hours to the R packages
that we have developed at the BRGE and that are discussed within the book.
We are thankful to them for starting their research careers with us and for
the valuable input that they have given us through their PhD projects. Roger
Pique-Regi is also acknowledged for his fruitful collaboration with the R-
GADA package. We would also like to thank our colleagues and collaborators
from whom we continuously learn, get encouragement and intellectual stim-
ulation. We particularly would like to mention Luis Perez-Jurado, Mariona
Bustamante, Xavier Basagaña, Manolis Kogevinas, Jordi Sunyer and Martine
Vrijheid, and all our colleagues from ISGlobal. We also would like to thank
Tonu Esko from the Estonia Biobank for providing access to large amounts of
data to test our methods, when data sharing was not a standard procedure.
Finally, we would like to acknowledge support from Ministerio de Economı́a
y Competitividad y Fondo Europeo de Desarrollo (grant number MTM2015-
68140-R), Ministerio de Ciencia e innovación (grant numbers MTM2011-26515
and MTM2010-09526-E) and Ministerio de Educación y Ciencia (grant num-
ber MTM2008-02457/MTM).

The material presented in the book has been conceived as complete analy-
sis sessions, in which initial data is available and the reader can follow, step by
step, the R commands that will lead to a concrete result. Concepts and theory
are introduced and explained as we go along with the analysis demonstrations.
As such, all data, software and code are freely available and can be accessed
and reproduced in any platform. Most data can be downloaded from the In-
ternet. Data from the main repositories can be accessed directly within an R



Preface xiii

session, otherwise, we indicate functioning URLs at the time of publishing.
Some functions have been implemented to add functionality to existing soft-
ware. We have deposited them in the our GitHub repository which is publicy
available at https://github.com/isglobal-brge/book omic association.
Our GitHub repository (https://github.com/isglobal-brge/) also con-
tains vignettes for most of the packages used in this book describing more
detailed analyses. Also, the repository contains the most updated versions
of the packages which include new features and bugs fixed. Specific instruc-
tions for data access and software needed are explained within each analysis
demonstration.
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2 1 Introduction

1.1 Book overview

This book is concerned with the analysis of high dimensional data that is
acquired at specific biological domains. The aim of the analyses is the expla-
nation of phenotypic differences among individuals. We, therefore, search for
endogenous and exogenous factors that may influence such differences. The
endogenous domains on which we turn our attention are those at the molecu-
lar level involving basic DNA structure and function, which have been labeled
with the omic suffix. In particular, we will describe current methods to analyze
genomic data, which is high-dimensional at the gene (DNA sequence) level,
transcriptomic data involving transcription of DNA into mRNA and epige-
nomic/methylomic data that relate to the epigenetic modifications of DNA.
Many of the methods used at each domain overlap due to the biological na-
ture and high dimensionality of data. However, important specificities remain,
some derived from the acquisition of data and others from differences in the
underlying biological processes. Within the exogenous domain, we study the
high dimensional acquisition of exposure factors that are believed to influence
the development or progression of individual traits.

1.2 Overview of omic data

Omic data refers to data collected massively in a specific omic domain. The
notion of an unbiased scan of numerous biological entities of similar nature
comes to mind. The definition is clearly operational, given the differences in
understanding biological similarity and, perhaps more challenging, the vary-
ing characteristics of different biological levels. Genomic data, for instance, is
ultimately concerned with the full characterization of the DNA sequence of
an individual. As such, it is highly stable across tissues and the individual’s
lifespan. Some variations may arise in terms of somatic mutations that give
rise to mosaicisms or to specific mutations, as found in tumorous cells. By
contrast, transcriptomic or epigenomic data are highly variable across tissues,
each of which changes on different time scales. Transcription data is highly
dynamic and responds to physiological activity while epigenetic changes are
expected to occur at developmental and aging rates.

An additional consideration is the differences in the expected coverage of
each omic data or the data’s dimensionality. Nowadays, for instance, one can
expect from current technology that the complete DNA sequence of an in-
dividual may be determined, or estimated to high accuracy; and therefore,
genomic data is close to full coverage. However, transcriptomic data is cur-
rently far from giving us the full picture: the complete set of transcripts of an
individual in a given time across all cell types. While transcriptomic data is
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clearly not complete, it is, however, a highly-dimensional unbiased-scan of a
possible state of the transcriptome; that is, the complete set of transcripts in
a biological sample of the individual.

Current extensions of omic data include metabolomics and proteomics, and
other domains not strictly associated with specific molecular levels. These in-
clude, for instance, phenomic and exposomic data, which record multiple phe-
notypes and exposures at any level: molecular, organic or population. Studies
including such data, therefore, allow high dimensionality on the response,
traits or environmental conditions of individuals. Here, we will be concerned
with studies of single phenotypes and conditions that are controlled or can
be adjusted for covariates. We are primarily interested in describing subject
variability on single phenotypes at a molecular level. We, therefore, study
high dimensional data of DNA structure and function of groups of individ-
uals, whose analysis methods show wide consensus. Some attention will also
be given to exogenous factors given by exposomic data, which is a massive
collection of environmental conditions in an unbiased manner.

1.2.1 Genomic data

The genome of an individual is the entire DNA content of all the individual’s
chromosomes. Genomic data comprises extensive and unbiased measurements
of all the chromosomes’ nucleotide sequences. Therefore, the highest possible
dimensionality of genomic data is the number of nucleotides in the genome.
However, it is the comparison between genomes what informs about their
biological and meaningful substructures. As such, a collection of genomic data
across individuals is based on the sequence variability of given structures.

1.2.1.1 Genomic SNP data

The simplest and most common structural variants in the genome are single
nucleotide polymorphisms (SNPs). They are changes in only one nucleotide
within a short DNA sequence that is otherwise conserved across individuals.
The changes considered as SNPs are those given by only one substitution
of a nucleotide for another, they are bi-allelic mutations and not rare in the
population. Their allele frequencies are considered to be higher than 1%. SNPs
can be detected with microarrays or sequencing techniques.

1.2.1.2 SNP arrays

Short DNA sequences, with their variant nucleotides at their ends, constitute
probes that can be interrogated by its hybridization with the DNA of a given
subject, which has been amplified, cut and marked with fluorescent dyes, one
for each variant nucleotide or allele. Microarrays are scilico chips of millions of
immobilized probes that capture the luminous DNA fragments of the subject,
creating an optical pattern that is given by the individual’s allele pairs, or
genotypes, at each probe.
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Different microarray technologies are used to genotype individuals with
this approach, which is currently the most efficient and economical method
to measure a substantial part of the genomic variability between individuals.
The end result is an extensive coverage of SNP variants across the genomes of
thousands/hundred-of-thousands of individuals. For large studies, the dimen-
sionality of this data can achieve 105 (individuals) times 107 (SNPs), where the
SNP variables are typically encoded as 0, 1 and 2 for annotated homozygous,
heterozygous and variant homozygous, respectively. Annotations are comple-
mentary data on the genomic variables containing the two possible alleles at
a given SNP; among adenine (A), thymine (T), cytosine (C) or guanine (C);
the DNA strand, 5’ to 3’ (+) or 3’ to 5’ (-); and the alleles that should be
considered as reference. Other specific considerations, that influence posterior
analysis, include quality measurements of technical and biological conditions
affecting SNPs and individuals.

A typical human SNP array assay includes a couple of millions of reference
SNPs, from about 85 million SNPs existent in humans [23]. Neighboring SNPs
are, however, highly correlated. Due to recombination, the correlation between
SNPs diminishes with their distance but it is still substantial (R2 ∼ 0.2)
for SNPs as far as 200,000 base pairs. Blocks of correlated SNPs, namely
haplotypes, in reference populations have been used to impute the value of
unmeasured SNPs and thus help to increase the number of SNPs of a particular
study or facilitate the merging of genomic data from multiple studies [59].
The scalability of microarray-based studies is, therefore, their biggest asset
to identify the likely small independent effects of numerous SNPs on complex
traits [89].

SNP microarrays collect the genetic variability of individuals in known
sequence variants. The known variants have been determined from reference
population samples which have been fully sequenced. It remains to be de-
termined the extent to which the selected references can offer a complete
and unbiased coverage of different population samples. Despite the benefits
of microarray genotyping, genome sequencing is still the ultimate source of
information to fully define the genomic variability of individuals.

1.2.1.3 Sequencing methods

High-throughput sequencing methods aim to sequence all the DNA content
of individuals. Broadly, in these methods, DNA is cut at small sizes (∼ 100
base-pairs) or reads. Hundreds of millions of reads are then produced, which
can cover the genome a number of times (∼ 5/8), and need to be assembled
to reconstruct an individual genome. Specific sequence variants of individuals
can be estimated with high accuracy. The mapping of the reads of different
individual genomes to a reference genome recovers genomic SNP data with the
greatest coverage, unconditioned to ancestry. The scalability of genomic data,
obtained from sequencing, is, however, limited. Current technology is expen-
sive and computationally demanding and a suitable increase in the number of
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individuals, required to detect the likely small effects of common variants, is
at the moment unattainable.

Sequencing call of structural variants, therefore, remains an important tool
to investigate rare variations and specific genomic architectures, while SNP
arrays are most powerful in large studies of common genomic variation.

1.2.2 Genomic data for other structural variants

Genomic variation is rich, even between individuals with common recent an-
cestry. In a specific population, several DNA segments, of various lengths
and up to the order of mega bases-pairs, can be found inserted, duplicated,
deleted, translocated or inverted. While DNA sequencing is the best way to
detect genomic variation, its price and analysis demands in large cohorts limit
its use. SNP microarrays can, however, be exploited to detect many of these
variants. For instance, luminous intensities used to genotype SNPs, can also
be utilized to either detect regions with copy number alterations or cell pop-
ulations with different genotypes (mosaicism )[167, 45]. In addition, specific
haplotype patterns, which are produced by suppression of recombination, are
indicative of mispairing between homologous chromosomes due to likely struc-
tural differences between them. Large and divergent haplotype groups have
been associated with the suppression of recombination due to inversion poly-
morphisms. From genomic SNP data, inversion genotyping can be performed
and their variability and functional impact can be studied in large cohorts
[16].

Microarray SNP data opens the possibility to study more complex struc-
tural DNA variation in population samples across the genome. We can, there-
fore, exploit SNP data to have a more complete knowledge of genomic vari-
ability and to study the potential role of large structural variation in the
phenotypic differences between individuals.

1.2.3 Transcriptomic data

Complex biochemical reactions are involved in the de-codification, or tran-
scription, of DNA sequences. A direct product of these reactions is the pro-
duction of RNA molecules some of which is further processed to produce pro-
teins, the basic tools of the cells’ physiology. Transcriptomic data is, therefore,
a large-scale survey of the transcribed RNA repertoire of a biological sample.

The dimensionality of transcriptomic data is much smaller than that of
genomic data. While in the production of a single RNA molecule, extensive and
disjoint DNA may be involved, the structure of the molecule can be mapped
to one gene. Genes constitute specific genomic regions of high variability in
extent (up to 106 base-pairs) but cover in average 10,000 base-pairs of DNA
sequence. In humans, the number of coding genes is estimated to be around
20,000. As such, the coding region of the genome, composed by all genes,
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may represent only 2 − 8% of the genome. Consequently, the dimensionality
of transcriptomic, or gene expression, data can widely cover a transcriptome.

Unlike the genome, there are numerous transcriptomes per individual.
Given that the RNA repertoire of a cell underlies its specific functions there
is at least as many transcriptomes as cell types. In addition, transcriptomes
are dynamic and therefore full coverage of the conditions that alter the tran-
scriptome is currently limited.

1.2.3.1 Microarrays

Microarrays have been extensively used to study gene expression. Messenger
RNA (mRNA), RNA destined to be translated into protein, is collected from a
biological sample and used to synthesize complementary DNA (cDNA). cDNA
is then amplified, cut and marked with fluorescent dye and hybridized on a
chip containing probes, which are DNA segments of the genes’ encoding known
mRNAs. Luminous patterns are analyzed to measure the content of specific
parts of mRNAs, as markers for their abundance.

Each mRNA maps to a gene but one gene can be mapped by numer-
ous mRNAs. A gene encodes different mRNA transcripts, or isoforms, that
are produced by the alternative splicing of the primary RNA, the molecule
directly transcribed from the DNA sequence. Therefore, transcriptomic data,
obtained from hybridization of gene probes is typically a mixture of the mRNA
transcripts that map to a common gene. While specific junction probes can
be designed to test the abundance of a particular mRNA transcript, the com-
plete transcriptome, given by the abundance of all genes’ isoforms, has to be
derived from high dimensional data of probes that cover the entire structure
of all the possible mRNA transcripts. Because the coding region of a gene is
given by a set of disjoint sequences, exons, it is sufficient with one probe for
one exon. Therefore, a transcriptome can be inferred from exon microarray
data of hundreds of thousands of probes, as many as exons in the genome.
While microarray data are giving way to other sequencing-based technologies,
there is a large amount of available transcriptomic data that researchers can
access for re-analysis. In addition, it is economically viable for many studies.

1.2.3.2 RNA-seq

Microarrays query specific points of mRNAs requiring a priori knowledge.
An unbiased scan of the RNA repertoire in a biological sample is clearly a
sequencing of its entire RNA content. RNA-seq is the application of high
throughput sequencing to RNA. Reads are mapped to the gene exons of a
reference genome. As there are numerous transcripts in the sample, the pro-
duction of reads in a given region is a measure of the content of the mRNAs
that is encoded by the region. Therefore, the read count per exon is the main
output of this type of transcriptomic data. Again, the data is not the direct
observation on the transcriptome but a mixture of the gene isoforms at each



1.2 Overview of omic data 7

exon. However, RNA-seq also provides junction reads that can inform on a
particular mRNA transcript.

Compared to microarrays, RNA-seq allows detection of low expressed genes
and genes with higher fold change between conditions. Furthermore, RNA-seq
does not need a priori knowledge of probes, allows detection of genomic vari-
ants and it does not present problems like cross-hybridization. While RNA-seq
is expensive and its analysis complex, transcriptomic data collection is tran-
sitioning from microarrays to RNA-seq. This is aided by the fact that expres-
sion differences between conditions (tissue or disease) are already detectable
in hundreds of individuals and not in hundreds of thousands, as required by
genomic studies.

1.2.4 Epigenomic data

The accessibility to DNA material is essential for the expression of genes. The
way in which DNA is packed or its structure modified at a specific location
can alter the fate of gene translation. For instance, the addition of a methyl
group to the cytosine of a cytosine-guanine sequence 5’-3’ (CpG), reduces
the accessibility of DNA at this point by affecting the binding of proteins
that promote transcription. DNA methylation has attracted much attention
because it contributes to epigenetics (non-sequence modifications of DNA that
are heritable), cell differentiation and cellular response to the environment at
the genomic level [65].

Methylomic data is, therefore, the survey of the methyl modifications in the
genome. Methylomic data is tissue-specific and dynamic through an organisms
development and aging. Therefore, while the dimensionality of the data is
bounded by the number of CpG sequences in the genome (1% in humans), a
total covering of the methylomes of an individual is constrained by the number
of cell types and the individual’s age. CpG content is uneven across the genome
and tends to concentrate in islands on the promoter regions of genes, which in
humans are around 45,000 islands. Concentration on CpG islands and regions
near genes can reduce the dimensionality of the data.

DNA methylation can be measured by means of DNA hybridization or
sequencing. Similar to genomic and transcriptomic data, methylomic data
can be obtained from microarray and high-throughput sequencing methods.
In microarray-based methods, DNA material of a biological sample is firstly
treated with bisulfite, which converts the unmethylated cytosines to uracils,
and then amplified, which converts uracils to thymines. Therefore, methylation
levels can be observed from SNP type probes of variant alleles C/T that mark
the methylation status methylated/unmethylated at their genomic locations.
As the collection of methylomic data is reduced to the sequencing of treated
DNA, where nucleotide replacements of unmethylated cytocines by thymines
are induced, high-throughput sequencing can also be applied.

Methylomic data is highly sensitive to cell type and is highly variable be-
tween individuals. Therefore, large association studies are required to observe
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reliable effects of methylation on phenotypes. As such, methylomic microar-
rays are currently favored due to their scalability to multicentric studies.

1.2.5 Exposomic data

Environmental factors are important contributors to the etiology of most com-
plex diseases. Therefore, individual differences in multifactorial traits will not
be completely explained as long as environmental conditions are not taken
into account [35]. In 2005, Christopher Wild defined the exposome as every
exposure to which an individual is subjected from conception to death [170].
While the definition parallels that of molecular omic data, as the total content
of similar entities of a given biological domain, the totality of an individual’s
exposure is clearly immesurable. Efforts to bound the exposome to an op-
erational definition need to consider both the nature of exposures and their
changes over time [170]. As for the nature of exposures, one can consider those
at the internal environment, specific external environment, and general exter-
nal environment [171]. Whereas characterizing the time scale of the exposome
is more challenging as the exposure dynamics and kinetics can change in or-
ders of magnitude depending on the exposure. While a state of the exposome
is difficult to define, following the parallels from the genome or transcriptome,
a high dimensional collection of exposures can be performed, each of which
is under their own spatiotemporal characteristics and methods of acquisition.
Unbiased assessment of the exposome is harder to achieve as targeted expo-
sures need to be previously defined. Higher degrees of unbiased measures can
be achieved with methods that intend to scan the compounds from the exoge-
nous origin within an organism, using mass spectrometry. However, it is still
early days for such developments.

1.3 Association studies

The most immediate interest in omic data is to underpin trait differences
between individuals at lower biological domains. Many causal relations do
exist in cases were specific differences at the molecular level are amplified at a
population level. For instance, Mendelian mutations in the gene F8 can lead
to hemophilia A, or de-regulation of biochemical signaling of insulin can result
in diabetes. However, complex multifactorial traits typically emerge from the
interactions between many units at different biological levels. Tracing back
the differences between individuals at lower levels is greatly challenged by the
complexity within and between biological domains.

Omic data offers an unbiased high-dimensional scan of a biological do-
main; and therefore, consistent patterns that associate with given individual
differences in the population can be searched. In this approach, the patterns
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do not arise from a specific scientific hypothesis, but rather from the more
general question of whether we can observe a consistent, reproducible set or
arrangement of variables in a given omic domain that associates with subject
differences. The analysis of omic data is therefore not based on the testing
of mechanistic hypotheses. It is based on the discovery of plausible biolog-
ical patterns that can guide researchers into the mechanisms. For instance,
genome-wide association studies have identified numerous genomic variants
associated with late-onset Alzheimer’s disease [73]. Some of the variants had
been associated with the disease before genomic data were available, such as
the variants in APOE [28]. Whereas most variants are within genes, not previ-
ously associated with the disease, but offer new insights into its etiology, like
the probable role of endocytosis by variants in PICALM [159].

1.3.1 Genome-wide association studies

Genome-wide association studies (GWASs) are based on the analysis of ge-
nomic data that try to identify SNP variants that are independently associated
with differences between population samples. GWASs are any type of observa-
tional studies where specific subject differences are of interest. Specifically, the
question that these studies address is if there exists any SNP that indepen-
dently associates with subject differences. The patterns searched in this type
of study are, therefore, at the univariate level. As such, massive univariate
tests are performed, one for each SNP in the dataset, for which suitable infer-
ences are drawn and tested for statistical consistency, scientific reproducibility,
and biological plausibility.

A large number of GWASs have been performed in the last decade. From
2008, the GWAS catalog, sponsored by the National Human Genome Research
(NHGRI) and the European Bioinformatics Institute (EMBL-EBI), has sys-
tematically collected the GWAS results of over 2,500 publications on humans
[168]. These include the significant associations of SNPs for several common
traits, including cardiovascular disease, cancer, type-2 diabetes and human
morphology, amongst many others.

GWASs have demonstrated the ability to discover genomic variants as-
sociated with complex traits. However, they have also shown that numerous
variants are needed to explain sizable amounts of common phenotypic vari-
ability [176]. In particular, for many heritable traits, there is still an amount
of heritability not explained by GWASs, as the associations are typical of
small in effect size [90]. In addition, the hypothesis of detecting any signifi-
cant association amongst all the genomic variants requires strong adjustment
of significance thresholds to account for random findings. The adjustment
for multiple comparisons, as it is known, is in the order of the dimension-
ality of the genomic data, reducing statistical thresholds to orders of 10−8.
Therefore, studies of large sample sizes have been required to achieve enough
statistical power to detect and validate findings [9]. Reasons for genomic data
not accounting for the expected heritability of given traits, as measured in
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twin studies, are the complexity between SNP interactions or the contribu-
tion of other genetic variants, such as translocations, CNVs or inversions.
Gene-environment interactions can also contribute to explain phenotype vari-
ability and lack of validation between studies. All these types of associations
are also considered in specific omic-wide association studies.

1.3.2 Whole transcriptome profiling

While genomic data can be regarded as structural data, inasmuch as it defines
the DNA content of an individual, transcriptomic data is functional. That is,
it is defined by the biological states of specific tissues of an individual, at given
moments. Given that some biological states are accessible to some tissues and
not others, such as the neurotransmission release in the brain, or T3 produc-
tion in thyroid, transcriptome profiling informs on the physiological functions
of the tissues. As genes are tightly correlated in biochemical pathways, tran-
scriptomic data reflects the co-regulation of genes by the correlation between
their transcripts levels. Therefore, the correlation structure of transcritomic
data is in itself of biological interest. Intense research is dedicated to revealing
the network structure of the transcriptomic data under different conditions,
such as disease state or different tissues. Numerous biochemical pathways are
known and have been carefully reconstructed from well-detailed experiments
[68]. Therefore, specific transcriptomic data can be methodologically com-
pared to this pathway knowledge and inferences can be drawn on whether
such-and-such pathway was active or differentiated in the data collected in a
given population sample [149].

Transcriptome-wide association studies have also been extensively per-
formed to study transcriptional differences between individuals or transcrip-
tional signatures of phenotypes. For instance, significant and consistent dif-
ferences in estrogen receptor signaling have been identified in breast cancer
subtypes [29]. Given the large variability in transcriptomic data, that arises
from technical (i.e. batch) and biological differences, large meta-analyses have
been required to validate findings. In addition, there is an increased effort to
reduce biological variability by profiling the transcriptome of single cell types.

Integration between genomic and transcriptomic data is also highly in-
formative. Association studies in which transcription levels can be explained
by genomic variation aim to determine quantitative trait loci (eQTL). These
are variants that can modulate the transcription of genes by altering their
coding or regulatory sequences. It has been observed that significant SNPs in
GWAS are likely to be eQTLs, offering further information into the biological
mechanisms underlying the associations with phenotypes [103].

1.3.3 Epigenome-wide association studies

Epigenome-wide association studies (EWAS) use epigenomic data to deter-
mine which methylated site can explain more phenotypic variability. Given
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that DNA methylation is affected by genomic variation and environmental
exposures, the interest is to find regions in the genome that are responsive
to the environment and can contribute either to adaptation or disease. Phe-
notypes with known heritable burden but also explained by differences in
environmental exposures are of high interest. For instance, as methylation
is important during development for tissue differentiation, there is interest
in studying methylation patterns on head circumference, body-mass index
and other developmental measures in children [131, 151]. In addition, phe-
notypes from mental diseases which require a gene-environment framework,
such as schizophrenia or post-traumatic stress disorder [174, 160], have been
approached by EWAS.

Similar to transcriptomic data, epigenomic data is strongly dependent on
tissue and technical collection of data. As with GWAS, the aim of EWAS
is to identify the methylation probes that are independently associated with
phenotype differences between subjects. Because there are correlations be-
tween neighboring methylation probes, univariate analysis has been extended
to multivariate analysis that comprises probes in extended genomic regions,
which can alter the expression of a given gene or cluster of genes. Methylomic
data is highly variable between individuals, therefore large meta-analyses are
also considered to account for this variability and to validate findings.

1.3.4 Exposome-wide association studies

Exposome-wide association studies (ExWAS) turn their attention to the en-
vironmental risk factors as a source of phenotypic differences between indi-
viduals. Rapid developments in technology and declining costs have led to a
massive increase in the amount of exposure data that can be collected for
individuals over time. Current epidemiological studies are able to simultane-
ously measure hundreds of exposures using a combination of questionnaires,
arrays of sensors and biochemical assays (see Table 1.1). Commonly assessed
exposures include chemicals in the air, water, food, or household products,
as well as information about individual behaviors, activities, and surrounding
physical environments. Exposomic data is therefore highly heterogeneous, as
it is the conjunction of different modalities that are derived from different
experimental methods. The correlational structure of exposomic data Expo-
somic data is also dependent on the sub-types of data that are included in
the exposure matrix. Therefore, given its complexity, association analyses are
also performed mainly at the univariate level, in which the objective is to de-
tect any exposure factor that is significantly associated with trait differences.
Scalability and power analyses at the exposome level are difficult to establish
given the heterogeneity of the exposures and the underlying mechanisms of
action. Therefore, as in other omic studies replication is necessary to validate
a finding.
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TABLE 1.1
Most relevant research projects studying the exposome in human health.

Project Web Site
The HELIX Project http://www.projecthelix.eu/
The EXPOsOMICS project http://www.exposomicsproject.eu/
HEALS http://www.heals-eu.eu/
The Human Exposome Project http://humanexposomeproject.com/

1.4 Publicly available resources

The ability to survey biological domains with high-throughput technology has
been matched with the ability to share the data through the Internet. Collec-
tion and analysis of omic data are complex and can yield to not reproducible
observations, particularly, if the effects are small, the biology complex and the
between-study variability large.

A first objective of making the raw data of omic studies publicly avail-
able is to promote their independent reanalysis to increment reproducibility.
Many meta-analyses have been made possible through the access of the data.
However, it is becoming increasingly the important use of data repositories
to confirm specific hypothesis, to find supporting evidence of initial findings
at different biological domains or to test new analysis methods that adapt
better to biological complexity. There are numerous data repositories, here
we cite some of the most widely used with a particular emphasis on associ-
ation studies. All data available through these repositories are susceptible to
be analyzed using the methods described in this book.

1.4.1 dbGaP

The database of genotypes and phenotypes (dbGaP) is a public repository
of genomic, epigenomic, somatic mutations, transcriptomic and microbiomic
data, with associated phenotypes [88]. The repository is provided by the Na-
tional Center for Biotechnology Information (NCBI). At the time of the pub-
lication of the book, the repository contained assay data for over 1.6 million
of SNP arrays (2.3 hundred imputed), 10 thousand expression arrays and 10
thousand methylation arrays. It also contains high-throughput sequencing as-
says for 150 thousand whole exome sequencing, 50 thousand whole genome
sequencing, and 25 thousand RNA-seq.

dbGaP offers open-access data and controlled-access data. Open data can
be accessed without permission and pertains to general data about the study,
including some phenotypic variables and summary results. dbGaP controls
access to de-identified genotypes and phenotypes. Formal requests to use the

http://www.projecthelix.eu
http://www.exposomicsproject.eu
http://www.heals-eu.eu
http://humanexposomeproject.com
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data are required to ensure its use for scientific purposes, to comply with the
ethical standards of the studies and to warrant proper use of sensitive data.

dbGaP is, therefore, a primary source of omic data and its influence is
only expected to grow, as specific studies will be required to contrast their
results with published raw data, and new methodologies will be able to access
large sets of observations to assess their viability.

1.4.2 EGA

The European Genome-phenome Archive (EGA) is a permanent archive that
promotes the distribution and sharing of genetic and phenotypic data con-
sented for specific approved uses but not fully open, public distribution. It
enables collaboration and data sharing of individual patient-level genomic
and phenotype data through a controlled-access system. The EGA includes
data collections for human genetics research [74].

The repository contains raw data from DNA sequencing and array-based
genotyping applications, e.g. gene expression experiments, transcriptomics,
epigenomics, sequencing or proteomics assays. It has processed datatypes such
as genotypes, structural variations or whole genome sequence. Phenotypic data
is also available, all consented for research purposes.

The archive is used as the repository of large genomic studies that include
the International Cancer Genome Consortium (ICGC), the International Hu-
man Epigenome Consortium (IHEC), the The International Human Micro-
biome Consortium (IHMC), the UK10K project for Rare Genetic Variants
in Health and Disease or the Deciphering Developmental Disorders (DDD)
project among others.

1.4.3 GEO

The Genome Expression Omnibus (GEO) is a data repository specialized in
functional genomic studies, including transcriptomic data from microarray and
RNA-seq[8]. GEO is hosted by NCBI and has a number of on-line analysis
results for specific datasets. An important advantage of GEO is that its data
can be directly retrieved with Bioconductor packages in R. It hosts more than
90,000 accession entries. Most of the entries are for expression microarrays
(50,000) but fastest growth of submissions are for high-throughput sequencing
data (15,000). Large meta-analyses, including numerous studies of common
phenotypes, can be routinely performed, such as those for breast cancer or
Alzheimer’s disease. Similar to dbGaP, GEO constitutes an archive of raw
data for studies to be continuously consulted to advance understanding of
trait differences at lower biological domains.
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1.4.4 1000 Genomes

Other public data resources correspond to large multi-centric studies that
have ambitiously collected data to characterize omic data across conditions
of great interest [23]. The 1000 Genomes study is, for instance, based on the
characterization of human genomes across numerous ancestries. The idea was
to create a detailed map of human genomic variability, offering a platform to
further support research in genetics, medicine, bioinformatics, pharmacology,
and biochemistry.

The 1000 Genomes comprises genomic data from the sequencing of 2,504
individuals from 26 different ancestries with 4 × genome coverage that allows
detection of variants with more than 1% frequency. This genomic data is,
therefore, a reference panel of populations to impute SNPs that have not been
genotyped in specific studies and to help merge genomic data across multiple
studies. High dimensional meta-analysis of GWAS can be thus performed on
85 million SNPs and over 5,000 haplotypes. A subset of 423 subjects from
4 European and one African ancestry was selected for transcriptomic data
collection using RNA-seq. The data was produced by the GUEVADIS project
and is also freely available. The aim of GUEVADIS was, in particular, to
study the transcriptome variability, in the lymphoblastoid cell line, across
human populations. Focused on European ancestry, the study has shown that
significant SNPs in GWASs are likely to be eQTLs, demonstrating that the
integration of transcriptomic and genomic data can reveal causal variants and
biological mechanisms of diseases.

1.4.5 GTEx

The genotype tissue-expression (GTEx) project aimed to study transcriptome
variability across 53 different human tissues [85]. The project collected tran-
scriptomic data for 714 donors, 635 of which were also genotyped, which al-
lows the study of specific changes in the relationship between genomic and
transcriptomic data across tissues. Genotype data were collected with SNP
microarrays covering 5 million SNPs, while transcriptomic data was obtained
from RNA-seq, with 50 million aligned reads per sample. eQTL analyses have
been performed and its results are available through a web-browser. Specific
queries can be performed that inform on the SNPs that modulate gene expres-
sion and splicing across tissues. The integration of genomic and transcriptomic
data through eQLT analysis aims to guide GWAS results into the mechanisms
underlying the associations between SNPs and phenotypes.

Data is freely available, as the GTEx project intended to offer a resource
to find further support of novel findings, develop new methods for integration
of genomic and transcriptomic data and investigate the variability of tran-
scription across tissues.
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1.4.6 TCGA

The cancer genome atlas (TCGA) is an initiative to collect multiomic data to
support cancer research [156]. It is sponsored by the national cancer institute
(NCI) and the NHGRI. The project has collected data on 33 different types
of tumors in 11 thousand patients. Omic data includes high-throughput DNA
and RNA sequencing , SNP, DNA methylation and reverse-protein arrays. It
has generated 2.5 petabytes of information by its closure in 2017. However,
further initiatives plan to build on this initial effort.

The objective of the project was to support research aimed at assessing the
extent to which multiomic variability can explain differences between individ-
uals in cancer susceptibility, cancer types, progression and treatment. As such,
the data has supported, at the time of publication of this book, more than a
thousand studies, including those by independent researchers from the TCGA
network. Clearly, the analysis of such massive data to account for biological
complexity across different biological domains will take decades to complete.

1.4.7 Others

There are several Biobanks that also provide free access to different omic
data. The UK Biobank (UKB) is a prospective cohort study with deep ge-
netic, physical and health data collected on 500,000 individuals across the
United Kingdom from 2006-2010 (https://www.ukbiobank.ac.uk/). The
Estonian Biobank contains genetic information about 50,000 individuals from
the Estonian population as well as data from different resources including
medical records (https://www.geenivaramu.ee/en). The BioBank Japan
project has a registry of patients diagnosed with any of 47 common diseases
and genomic data of 200,000 patients.

ReCount is a specialized repository for RNA-seq data. It stores processed
and summarized expression data for nearly 70,000 human RNA-seq samples ht
tp://bowtie-bio.sourceforge.net/recount. The data, accessible through
a web-application (https://jhubiostatistics.shinyapps.io/recount/
and the Bioconductor’s package recount [22], is made available with the aim
of reproducing the expression profiles of reported findings. For instance, the
RNA-seq data from the GTEx project is stored in ReCount. There are several
Bioconductor data packages including omic data. Among others, the pack-
age curatedTCGA contains different objects corresponding to TCGA tumors
that integrates RNA-seq, copy number, mutation, microRNA, protein with
clinical/pathological data.

A source of publicly available exposomic data is offered by the National
Health and Nutrition Examination Survey (NHANES) https://www.cdc.

gov/nchs/nhanes/index.htm [107]. NHANES is a US national survey that
covers demographics, health, nutrition, and environmental chemical exposures.
NHANES started surveying in 1999, repeating every two-year cycles. The data
is also available through R by the package RNHANES .

https://www.ukbiobank.ac.uk
https://www.geenivaramu.ee
http:///bowtie-bio.sourceforge.net/recount
https://jhubiostatistics.shinyapps.io
https://www.cdc.gov
https://www.cdc.gov
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1.5 Bioconductor

Collection of high dimensional data at different biological domains demands
the development of new analysis methods and generalizations of old ones.
There are multiple ways in which data can be stored, preprocessed and an-
alyzed. Diversity arises from technical capabilities, experimental conditions,
and scientific hypotheses to be tested. Therefore, as volume and complex-
ity of data increases so analytical methodology does. A proliferation of “in-
house” software to address the specific needs of studies greatly challenged
reproducibility, absorption and further development of the methods by a wide
community of users. Bioconductor is an open source software project aimed to
address these issues, by orchestrating software development in the programing
language R to analyze high-throughput biological data [40].

1.5.1 R

Parallel and independently from the development of omic data acquisition, the
data analyst community made important advancements into the integration
and sharing of methodologies through the extensions of R. R is a high-level
programing language that initially focused on the implementations of func-
tions for statistical analysis. From the developer’s perspective, R offers flexible
syntax for object-oriented programming, which is easily packaged into soft-
ware units with clear functionality. As free software, package contents can be
modified by other developers or incorporated into other packages. The great
flexibility of R has promoted software development in diverse research fields,
in particular, those that need to quickly integrate new statistical analyses and
visualization methods. R packages are shared through various public reposi-
tories such as The Comprehensive R Archive Network (CRAN), GitHub and
Bioconductor.

In the production of R packages, great effort is put into documentation
that includes detailed information on how to use its functions, example data,
and demonstrations. In addition, manuals in form of vignettes are distributed
to guide users into the specific tasks supported by the packages. The code
in the examples and in the vignettes must be reproducible in any platform
and by any R user. Initiatives to increase the reproducibility of code and
reporting have been also incorporated into the production of packages. Com-
prehensive information of software, clearly delimited to achieve concrete tasks,
have greatly incremented the users base of R to non-developer analysts. The
R user’s community is highly active on the Internet and packages are typically
found by common Internet queries on specific topics of interest. In its website,
CRAN offers the list of the packages available, all of which can be installed in
R using the command
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> install.package("nameOfPackage")

once the package is installed, it is accessible in each R session by

> library("nameOfPackage")

1.5.2 Omic data in Bioconductor

Bioconductor offers methods to analyze a wide range of omic data and to
access publicly available resources [63]. Important additional tools include an-
notation resources and visualization capabilities. Bioconductor’s project in-
tegrates all these facilities under common data structures that enable easy
integration of new data and methods into existing workflows. Users can find
sufficient information at different levels, such as functions, packages, and work-
flows, which allows them to combine and develop analysis strategies with spe-
cific needs. Bioconductor’s packages are continuously growing, as technologies
evolve and produce new data, and developers create packages with new capa-
bilities. However, numerous packages have been settled into standard proce-
dures, through an intense use and feedback, from user to developer, that con-
tinuously put to test the underlying methods. In particular, Bioconductor’s
methods to preprocess and perform association studies of genomic, epigenomic
and transcriptomic data have achieved great consensus. They include microar-
ray and high-throughput sequencing data.

Integration between analysis methods and retrieval of data from repos-
itories is highly coordinated. Specific packages have been developed to use
R packages to query specific databases. For instance, GEO, can be queried
with the package GEOquerry . The package has implemented the function
getGEO to download data of a study with a given accession number from the
GEO website. Data is retrieved and made available in R as a variable of class
ExpressionSet, a recognizable data structure of Bioconductor. The data can
thus be analyzed following established workflows, to reproduce the study’s
reported results, or to further exploit the data to test alternative hypotheses
or methods. Specific projects like TCGA and GTEx have also R packages,
supported by Bioconductor, to retrieve their data.

Previously, Bioconductor’s installations used the commands

> source("https://bioconductor.org/biocLite.R")

> biocLite("nameOfPackage")

Currenlty, packages in Bioconductor, like GEOquery , are installed with the
library BiocManager

> library(BiocManager)

> install("GEOquery")

Once installed, the package can be loaded as an usual R package
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> library("GEOquery")

GitHub https://github.com/ is another R repository, mainly used to
deposit development version of new packages. Packages from GitHub can be
installed into R using the devtools package

> library(devtools)

> install_github("nameOfRepository/nameOfPackage")

For instance, the author’s GitHub repository is isglobal-brge, from which
multiple packages discussed in the book can be installed

> library(devtools)

> install_github("isglobal-brge/nameOfPackage")

1.6 Book’s outline

The book is designed to give an introduction on how to use established tools
to analyze association studies of genomic, transcriptomic, methylomic and
exposomic data. We focus our discussion on publicly available datasets. The
aim for this is double: to help readers who are interested in acquiring the
analytical tools to start analyzing real datasets and to show those working
on statistical methodologies how to access a large amount of biological data.
In addition, readers who are interested in learning how to exploit available
data can start proving specific hypotheses, or find further support for specific
results. We, therefore, start in Chapter 2 with case studies, whose main ob-
jective is to illustrate how to access particular data repositories and how to
obtain the main results that can be expected from a standard analysis. Chap-
ter 3 describes how to deal with omic data in Bioconductor. Chapters 4 to 9
are dedicated to explaining in detail the preprocessing and analysis methods,
functions and visualization tools of genomic, transcriptomic, epigenomic and
exposomic association studies. Chapter 10 gives a first approach to the inte-
gration of omic data with biochemical pathways, through enrichment analysis
methods. Chapter11 describes integration between different omic data-sets in-
cluding how to gather results into functional, disease and pathway annotations
and how to perform multi-omic data analysis using advanced multivariate
methods.

All data in the book is freely available. Most of it can be directly down-
loaded from the public repositories however some data has been compiled
in an R package to explain specific analyses. Those data are available at
https://www.github.com/isglobal-brge and can be installed with

https://github.com
https://www.github.com
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> library(devtools)

> install_github("isglobal-brge/brgedata")

The data is loaded in R with the command

> library(brgedata)

The brgedata package contains several files in specific formats (binary or
text files) that will be used throughout the book. Data stored in file format
are found in the folder extdata that is created when installing the package
and can be accessed by

> path <- system.file("extdata", package="brgedata")

Binary data are accessed by using the data function. For instance, data of
a SNP association study can be retrieved into R by:

> data(asthma, package = "brgedata")

> asthma[1:5, 1:10]

country gender age bmi smoke casecontrol rs4490198 rs4849332

1 Germany Males 42.80630 20.14797 1 0 GG TT

2 Germany Males 50.22861 24.69136 0 0 GG GT

3 Germany Males 46.68857 27.73230 0 0 GG TT

4 Germany Females 47.86311 33.33187 0 0 AG GT

5 Germany Females 48.44079 25.23634 0 1 AG GG

rs1367179 rs11123242

1 GC CT

2 GC CT

3 GC CT

4 GG CC

5 GG CC

The package contains the following datasets:

> library(brgedata)

> ls("package:brgedata")

[1] "asthma" "breastMulti" "breastMulti_list"

[4] "brge_expo" "brge_gexp" "brge_methy"

[7] "brge_prot" "genesAD" "gwascatalog"

[10] "lusc"



http://www.taylorandfrancis.com


2

Case examples

CONTENTS

2.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Reproducibility: The case for public data repositories . . . . . . . . . . 21
2.3 Case 1: dbGaP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Case 2: GEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Case 3: GTEx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Case 4: TCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Case 5: NHANES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1 Chapter overview

In this chapter, we will show, with five case examples, how to retrieve data
from five public repositories and some basic analysis that can be performed
on the data. We introduce the functions and packages in R/Bioconductor that
can be used to perform specific queries, retrieval, and analysis, all within a
single R session. Further chapters will treat in detail the packages and the
functions used to produce the results.

2.2 Reproducibility: The case for public data reposito-
ries

Accessibility to primary data has been strongly motivated by the research
community to encourage reproducibility of results. Studies based on omic
data collection are particularly sensitive to reproducibility issues due to the
variety of methods and strategies of analyses, and the numerous small effects
and complex interactions that may underlie a particular pattern in the data.

For a given dataset and a given analysis strategy, it is at least expected
that the results obtained by two different analysts will be the same. This level
of reproducibility is analytical and can be tested with independent analyses
of one reference study. This is easily achieved when primary research data

21
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is freely available for reanalysis and the methods together with their imple-
mentations are clearly explained and documented [147]. The second level of
reproducibility refers to the validity of a scientific observation. In this case,
we expect that under one analysis strategy the pattern observed in one study
is reproduced in another independent study. Having the data of independent
studies freely available clearly motivates validation of results.

In addition to reproducibility, the access to primary data has motivated the
testing of novel methodologies. In this case, two different methodologies can
be tested on the same dataset and study their differences and commonalities.

The use of freely available data has greatly contributed to advance repro-
ducible research in studies with high dimensional data. As such, the initiatives
of sharing data together with strengthening public repositories are only going
to increase and become a common practice in future research programs.

2.3 Case 1: dbGaP

dbGaP is a data repository of primary research on genome-wide association
studies. The detailed description of the studies available can be queried in
https://www.ncbi.nlm.nih.gov/gap. Studies can be queried by keywords,
i.e. “Alzheimer” or directly by its accession number. Our first case example
is based on the summarized data of a study on late-onset Alzheimer’s disease
(LOAD). The NIA-LOAD study was carried out by the National Institute
of Aging (NIA) on families with at least two affected siblings and unrelated
controls [77]. The database contains 5,273 individuals with genomic data (SNP
microarray), and 5,220 individuals with phenotypic information. The dbGap’s
accession number is phs000168.v2.p2, a full description of the study can be
found in the dbGap’s website, corresponding to the accession number.

Data is available under controlled-access. Authorization for use of geno-
type data needs to be granted by the NIH Data Access Committee (DAC),
who evaluate the purpose of use and handling of data by researchers and in-
stitutions. Research and dissemination of results are encouraged with proper
acknowledging of the study. Interested readers should apply for data access.
Note that this is the only example where data access is controlled, all other
data in the book is unrestricted. Here, we illustrate how to display summa-
rized results of reported GWAS of the LOAD-NIA study. The phenotypic
variables are distributed in the dataset LOAD610K Subject Phenotypes. In
particular, they report the first four principal components (PC) of SNP array
data, comprising 599,011 SNPs and 3,007 subjects. A PC analysis of genomic
data is used to determine the components that capture most genetic variability
between the subjects. Therefore, individuals represented in the first PC com-
ponents will be clustered in groups according to similar genetic background.
Clearly, ancestry is the strongest predictor of common genetic background

https://www.ncbi.nlm.nih.gov
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and therefore PC analysis is used to infer ancestral similarities and differences
between individuals, based on the genomic data. Therefore, one can expect
that there is a strong correlation between the first PC of the genomic data
and the self-reported ancestry. A scatter plot between the first two PCs of
the LOAD-NIA genomic data (encoded in variables AllEthnicity PC1 and
AllEthnicity PC2), colored by the self-reported ancestry (encoded in Race)
clearly illustrates this point.

Data is loaded in R as it is distributed in dbGap, in the appropriate phe-
notype subdirectory of the complete LOAD610K Subject Phenotypes dataset.

> data <- read.delim(

+ file = "phs000168.v2.pht000707.v2.p2.c1.LOAD610K_Subject_Phenotypes.GRU.txt",

+ comment.char = "#")

>

> names(data)[1:18]

[1] "dbGaP_Subject_ID" "SUBJ_NO" "SEX"

[4] "Dx_Level" "Case_Control" "RecruitedAsControl"

[7] "ConType" "BirthYr" "AgeAtLastEval"

[10] "VitalSt" "AgeDeath" "Autopsy"

[13] "Race" "Hispanic" "AllEthnicity_PC1"

[16] "AllEthnicity_PC2" "AllEthnicity_PC3" "AllEthnicity_PC4"

We obtain the self-reported race variable as described in the variable
report documentation

> race <- as.factor(data$Race)

> table(race)

race

1 2 3 4 50 99

2692 123 3 3 12 1

We can then plot the first two PCs in the dataset and color them according
to race.

> mycols <- c("gray90", "black", "gray70", "gray50", "gray20", "white")

> cols <- as.character(factor(race, labels=mycols))

> plot(data$AllEthnicity_PC1, data$AllEthnicity_PC2,

+ type="n", main="PCA LOAD-NIA",

+ xlab="PC1", ylab="PC2")

> points(data$AllEthnicity_PC1, data$AllEthnicity_PC2,

+ col = cols, pch=0:5)

>

> legend("bottomright", c("white", "black", "american indian",

+ "asian", "other", "missing"),

+ col=mycols, pch=0:5)

PC components are strong predictors of ancestry and relevant measures of
population stratification. Therefore, they can be used to identify individuals
with strong genomic differences from a given population sample. In addition,
they are important covariates to account for in association studies of genetic
variants, as we will discuss in Chapter 4.
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FIGURE 2.1
Genome-wide PCA of LOAD-NIA dataset.


