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Preface 

MOTIVATION 
Although the idea of using discrete methods for modeling partial differential equa-
tions occurred very early, the actual statement that cellular automata techniques 
can approximate the solutions of hydrodynamic partial differential equations was 
first discovered by Frisch, Hasslacher, and Pomeau. Their description of the deriva-
tion, which assumes the validity of the Boltzmann equation, appeared in the Phys-
ical Review Letters in April 1986. It is the intent of this book to provide some 
overview of the directions that lattice gas research has taken from 1986 to early 
1989. 

There are several reasons for the recent rapid growth in lattice gas research. The 
method provides very high resolution. Problems with 5,000,000,000 cells can now be 
run on a CRAY Y /MP. Also, the algorithm is totally parallel. This parallel feature 
is easily exploited on existing computers. In addition, an enormous gain can be 
made by constructing dedicated hardware. Already, inexpensive dedicated boards 
are available which allow small PCs to run lattice gas problems near CRA Y speeds. 
Dedicated boards are now planned for delivery in 1990 which are expected to be 
a thousand times more powerful. It is possible to build with existing technology a 
dedicated machine which has the complexity of existing CRAYs but which would 
execute lattice gas algorithms many millions of times faster. One should interpret 
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this impressive gain in computer speed cautiously. For periodic problems on existing 
machines, lattice gas methods are slower than spectral methods at least by an order 
of magnitude. But for complicated boundary conditions, lattice gas methods can 
solve problems which are not solvable by other methods. An example is flow through 
porous media. 

At least four separate communities are closely following lattice gas develop-
ments with quite different expectations. The molecular dynamics community con-
siders the lattice gas method to be a minimal-bit strategy for solving Newton's 
equations of motion using orders of magnitude more particles than are usually sim-
ulated. Finite difference theorists consider the method to be an over-restricted set 
of finite difference equations, rightly expecting many finite difference diseases to be 
amplified. Statistical mechanicians hope to use the method to gain new insight into 
the relation between microdynamics and macrodynamics. Parallel computer hard-
ware scientists see the method as the simplest and fastest totally parallel algorithm 
with broad applications. 

BOOK OVERVIEW 
In the section labeled "Basic Papers," a Scientific-American-level reprint of an arti-
cle by Shimomura, Doolen, Hasslacher, and Fu highlights the principal advantages 
and some of the limitations of lattice gas methods. Derivations of the hydrody-
namic equations are outlined in articles by Wolfram and by Frisch, d'Humieres, 
Hasslacher, Lallemand, Pomeau, and Rivet. The article by Diemer et al. gives some 
details of the viscosity and mean free path for several two-dimensional and three-
dimensional models. The article by Henon derives the analytic formula for viscosity 
from the definition of viscosity. The section on computer hardware begins with a 
paper which outlines the impressive speed which could be obtained by building 
a dedicated lattice gas computer with existing hardware. The following article by 
Margolus and Toffoli describes the CAM-6, an existing computer board which en-
ables a personal computer to achieve supercomputer speeds for small lattice gas 
systems. This article also describes the CAM-8, a dedicated board now in the de-
sign phase. The article by Clouqueur and d'Humieres describes the capabilities of 
the RAP-1, a board with capabilities similar to those of the CAM-6. 

The section on hydrodynamic studies and application papers contains a selec-
tion of some of the many papers on hydrodynamic applications of the lattice gas 
method. The power of the method to use minimal computer memory and to con-
serve exactly the required constants of the motion have been studied in several of 
these reprints. Many of the articles describe detailed computer simulations, but to 
date there have not been any articles which describe the codes themselves. A few 
translations of original French articles are included in this section. 
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The section on more partial differential equations gives a small sampling of a 
few of the lattice gas algorithms developed to solve partial differential equations 
which differ considerably from the Navier-Stokes equations. 

Finally, a bibliography including most of the papers which reference the original 
Frisch, Hasslacher and Pomeau article is provided which includes some abstracts. 
An attempt was made to include articles through April1989. 

FUTURE CHALLENGES 
One can think of the lattice gas method as filling a niche between molecular dy-
namic methods and continuum methods. A present challenge is to determine the 
boundaries of parameter space where lattice gas methods are most appropriate. 
It is possible to add complexity to these methods until the results become indis-
tinguishable from both molecular dynamics and continuum methods. However, the 
method becomes slower as the complexity increases. At the present time, the lattice 
gas method appears to be ideal for describing flow through porous media. 

The lattice gas algorithm can be shown to approximately solve the Navier-
Stokes equations in the long wavelength limit. But the algorithm can go far below 
this limit and possibly give considerable insight into the correct macroscopic treat-
ment in situations where gradients are important and also in situations where the 
mean-free path is not negligible. The understanding of how to go from the mi-
croscopic rules to the correct macroscopic equations remains a challenge, and the 
lattice gas has much to contribute here. 

Another challenge is to determine the fastest lattice algorithm. At present, table 
look-up methods are very fast. For example, 300,000,000 sites can now be updated 
each second on a CRAY X/MP 416. The table size grows, however, as 2 to the 
Nth power, where N is the number of bits required at each site. For 24-bit models, 
16-million-word tables are required. It appears that reduced-size tables are possible, 
but the restrictions which they place on the collision rules may significantly limit 
the range of allowed viscosities. Several studies are in progress to determine the 
class of algorithms which ought to be implemented in the type of dedicated lattice-
gas computer described in the first article in this book in the section on computer 
hardware. 

The most significant challenge is the implementation of the lattice gas algorithm 
on large-scale dedicated hardware. The gain in speed over existing computers is a 
factor of the order of many millions. This opportunity does not belong exclusively 
to lattice gas techniques but applies to all algorithms which have a parallel imple-
mentation. 
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INTENDED READERSHIP 
The book is assembled to show potential users and lattice gas scientists what re-
search has been completed and to give some indication of the utility and limitations 
of lattice gas models. Most articles should be readable by students who are consid-
ering entering the field or who are contemplating the application or extension of 
these methods to their favorite problems. 
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Tsutomu Shimomura, Gary D. Doolen, Brost Hasslacher, and Castor Fu 
Los Alamos National Laboratory, Los Alamos, NM 87545 

Calculations Using Lattice Gas Techniques 

This paper originally appeared in Los Alamos Science, Special Issue, 1987, 
pages 201-210. 

Over the last few years the tantalizing prospect of being able to perform hy-
drodynamic calculations orders-of-magnitude faster than present methods 
allow has prompted considerable interest in lattice gas techniques. A few 
dozen published papers have presented both advantages and disadvantages, 
and several groups have studied the possibilities of building computers spe-
cially designed for lattice gas calculations. Yet the hydrodynamics commu-
nity remains generally skeptical toward this new approach. The question is 
often asked, "What calculations can be done with lattice gas techniques?" 
Enthusiasts respond that in principle the techniques are applicable to any 
calculation, adding cautiously that increased accuracy requires increased 
computational effort. Indeed, by adding more particle directions, more par-
ticles per site, more particle speeds, and more variety in the interparticle 
scattering rules, lattice gas methods can be tailored to achieve better and 
better accuracy. So the real problem is one of tradeoff: How much accu-
racy is gained by making lattice gas methods more complex, and what is 
the computational price of those complications? That problem has not yet 
been well studied. This paper and most of the research to date focus on the 
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simplest lattice gas models in the hope that knowledge of them will give 
some insight into the essential issues. 
We begin by examining a few of the features of the simple models. We then 
display results of some calculations. Finally, we conclude with a discussion 
of limitations of the simple models. 

FEATURES OF SIMPLE LATTICE GAS METHODS 
We will discuss in some depth the memory efficiency and the parallelism of lattice 
gas methods, but first we will touch on their simplicity, stability, and ability to 
model complicated boundaries. 

Computer codes for lattice gas methods are enormously simpler than those 
for other methods. Usually the essential parts of the code are contained in only 
a few dozen lines of FORTRAN. And those few lines of code are much less com-
plicated than the several hundred lines of code normally required for two- and 
three-dimensional hydrodynamic calculations. 

There are many hydrodynamic problems that cause most standard codes (such 
as finite-difference codes, spectral codes, and particle-in-cell codes) to crash. That 
is, the code simply stops running because the algorithm becomes unstable. Stability 
is not a problem with the codes for lattice gas methods. In addition, such methods 
conserve energy and momentum exactly, with no roundoff errors. 

Boundary conditions are quite easy to implement for lattice gas methods, and 
they do not require much computer time. One simply chooses the cells to which 
boundary conditions apply and updates those cells in a slightly different way. One 
of three boundary conditions is commonly chosen: bounce-back, in which the di-
rections of the reflected particles are simply reversed; specular, in which mirror-like 
reflection is simulated; or diffusive, in which the directions of the reflected particles 
are chosen randomly. 

We consider next the memory efficiency of the lattice gas method. When the 2-
dimensional hydrodynamic lattice gas algorithm is programmed on a computer with 
a word length of, say, 64 bits (such as the Cray X-MP), two impressive efficiencies 
occur. The first arises because every single bit of memory is used equally effectively. 
Coined "bit democracy" by von Neumann, such efficient use of memory should be 
contrasted with that attainable in standard calculations, where each number re-
quires a whole 64-bit word. The lattice gas is "bit democratic" because all that one 
needs to know is whether or not a particle with a given velocity direction exists in 
a given cell. Since the number of possible velocity directions is six and no two par-
ticles in the same cell can have the same direction, only six bits of information are 
needed to completely specify the state of a cell. Each of those six bits corresponds 
to one of the six directions and is set to 1 if the cell contains a particle with that 
direction and to 0 otherwise. Suppose we designate the six directions by A, B, C, 
D, E, and F as shown in Figure 1. We associate each bit in the 64-bit word A with 
a different cell, say, the first 64 cells in the first row. If the first cell contains (does 
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FIGURE 1 Six directions designated 
as A through F corresponding to six 
bits used to specify the state of a cell. 

5 

not contain) a particle with direction A, we set the first bit in A to 1 (0). Similarly, 
we pack information about particles in the remaining 63 cells with direction A into 
the remaining 63 bits of A. The same scheme is used for the other five directions. 
Consequently, all the information for the first 64 cells in the first row is contained 
in the six words,A, B, C, D, E, and F. Note that all bits are equally important and 
all are fully utilized. 

To appreciate the significance of such efficient use of memory, consider how 
many cells can be specified in the solid-state storage device presently used with 
the Cray X-MP /416 at Los Alamos. That device stores 512,000,000 64-bit words. 
Since the necessary information for 10~ cells can be stored in each word, the device 
can store information for about 5,000,000,000 cells, which corresponds to a two-
dimensional lattice with 100,000 cells along one axis and 50,000 cells along the 
other. That number of cells is a few orders-of-magnitude greater than the number 
normally treated when other methods are used. (Although such high resolution may 
appear to be a significant advantage of the lattice gas method, some averaging over 
cells is required to obtain smooth results for physical quantities such as velocity 
and density.) 

The second efficiency is related to the fact that lattice gas operations are bit 
oriented rather than floating-point-number oriented and therefore execute more 
naturally on a computer. Most computers can carry out logic operations bit by 
bit. For example, the result of the logic operation AND on the 64-bit words A and 
B is a new 64-bit word in which the ith bit has a value of 1 only if the ith bits 
of both A and B have values of 1. Hence in one clock cycle a logic operation can 
be performed on information for 64 cells. Since a Cray X-MP /416 includes eight 
logical function units, information for 8 times 64, or 512, cells can be processed 
during each clock cycle, which lasts about 10 nanoseconds. Thus information for 
51,200,000,000 cells can be processed each second. The two-dimensional lattice gas 
models used so far require from about thirty to one hundred logic operations to 
implement the scattering rules and about another dozen to move the particles to 
the next cells. So the number of cells that can be updated each second by logic 
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operations is near 500,000,000. Cells can also be updated by table-look-up methods. 
The authors have a table-look-up code for three-dimensional hydrodynamics that 
processes about 30,000,000 cells per second. 

A final feature of the lattice gas method is that the algorithm is inherently par-
allel. The rules for scattering particles within a cell depend only on the combination 
of particle directions in that cell. The scattering can be done by table look-up, in 
which one creates and uses a table of scattering results-one for each possible cell 
configuration. Or it can be done by logic operation. 

USING LATTICE GAS METHODS TO APPROXIMATE 
HYDRODYNAMICS 

In August 1985 Frisch, Hasslacher, and Pomeau demonstrated that one can 
approximate solutions to the Navier-Stokes equations by using lattice gas meth-
ods, but their demonstration applied only to low-velocity incompressible flows near 
equilibrium. No one knew whether more interesting flows could be approximated. 
Consequently, computer codes were written to determine the region of validity of 
the lattice gas method. Results of some of the first simulations done at Los Alamos 
and of some later simulations are shown in Figures 1 through 6. (Most of the early 
calculations were done on a Celerity computer, and the displays were done on a 
Sun workstation.) All the results indicate qualitatively correct fluid behavior. 

Plate la (see color plates) demonstrates that a stable trailing vortex pattern 
develops in a 2-dimensionallattice gas flowing past a plate. Figure lb shows that 
without a three-particle scattering rule, which removes the spurious conservation 
of momentum along each line of particles, no vortex develops. 

Plate 2 shows that stable vortices develop in a lattice gas at the interface 
between fluids moving in opposite directions. The Kelvin-Helmholtz instability is 
known to initiate such vortices. The fact that lattice gas methods should stimulate 
vortex evolution was reassuring and caused several scientists to begin to study the 
new method. 

Plate 3 shows the complicated wake that develops behind the V-shaped wedge 
in a uniform-velocity flow. 

Plate 4 shows the periodic oscillation of a low-velocity wake behind a cylinder. 
With a Reynolds number of 76, the flow has a stable period of oscillation that 
slowly grows to its asymptotic limit. 

Plate 5 shows a flow with a higher Reynolds number past an ellipse. The wake 
here becomes chaotic and quite sensitive to details of the flow. 

Plate 6 shows views of a 3-dimensional flow around a square plate, which was 
one of the first results from Los Alamos in 3-dimensionallattice gas hydrodynamic 
simulations. 
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Rivet and Frisch and other French scientists have developed a similar code that 
measures the kinematic shear viscosity numerically; the results compare well with 
theoretical predictions. 

The lattice gas calculations of a group at the University of Chicago (Kadanoff, 
MeN amara, and Zanetti) for two-dimensional flow through a channel agree with 
the known parabolic velocity profile for low-velocity channel flows. 

The above calculations, and many others, have established some confidence that 
qualitative features of hydrodynamic flows are simulated by lattice-gas methods. 
Problems encountered in detailed comparisons with other types of calculations are 
discussed in the next section. 

LIMITATIONS OF SIMPLE LATTICE GAS MODELS 
As we discussed earlier, lattice gas methods can be made more accurate by mak-
ing them more complicated-by, for example, adding more velocity directions and 
magnitudes. But the added complications degrade the efficiency. We mention in 
this section some of the difficulties (associated with limited range of speed, velocity 
dependence of the equation of state, and noisy results) encountered in the simplest 
lattice-gas models. 

The limited range of flow velocities is inherent in a model that assumes a single 
speed for all particles. The sound speed in such models can be shown to be about 
two-thirds of the particle speed. Hence flows in which the Mach number (flow speed 
divided by sound speed) is greater than 1.5 cannot be simulated. This difficulty is 
avoided by adding particles with a variety of speeds. 

The limited range of velocities also restricts the allowed range of Reynolds 
numbers. For small Reynolds numbers (0 to 1000) the flow is smooth, for moder-
ate Reynolds numbers (2000 to 6000) some turbulence is observed, and for high 
Reynolds numbers (10,000 to 10,000,000) extreme turbulence occurs. Since the ef-
fective viscosity, v, is typically about 0.2 in two-dimensional problems, the Reynolds 
number scales with the characteristic length, l, allowed by computer memory. Cur-
rently the upper bound on l is of the order of 100,000. 

The velocity dependence of the equation of state is unusual and is a consequence 
ofthe inherent Fermi-Dirac distribution of the lattice gas. The low-velocity equation 
of state for a lattice gas can be written asp= ~p (1- ~v2 ), where pis the pressure, 
p is the density, and v is the flow speed. Thus, for constant-pressure flows, regions 
of higher velocity flows have higher densities. 

The velocity dependence of the equation of state is related to the fact that 
lattice gas models lack Galilean invariance. The standard N a vier-Stokes equation 
for incompressible fluids is 
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But in the incompressible, low-velocity limit the single-speed hexagonal lattice gas 
follows the equation 

ov 
ot + g(p)v. 'Vv = -'Vp + v\72v, 

where 
g(p) = 36- p 

-p 
and p is the average number of particles per cell. The extra factor g(p) requires 
special treatment. The conventional way to adjust for the fact that g(p) does not 
equal unity (as it does in the Navier-Stokes equation) is to simply scale the time, 
t, and the viscosity, v, by the factor g(p) as follows: t' = g(p)t and v' = vjg(p). 
(The pressure must also be scaled.) Hence a density-dependent scaling of the time, 
the viscosity, and the pressure is required to bring the lattice gas model into a 
form that closely approximates the hydrodynamics of incompressible fluids in the 
low-velocity limit. 

Finally, the discreteness of the lattice gas approximation introduces noise into 
the results. One method of smoothing the results for comparison with other meth-
ods is to average in space and time. In practice, spatial averages are taken over 
64, 256, 512, or 1024 neighboring cells for time-dependent flows in two dimensions. 
For steady-state flows, time averaging is done. The details of noise reduction are 
complicated, but they must be addressed in each comparison calculation. The pres-
ence of noise is both a virtue and a defect. Noise ensures that only robust (that 
is, physical) singularities survive, whereas in standard codes, which are subject to 
less noise, mathematical artifacts can produce singularities. On the other hand, the 
noise in the model can trigger instabilities. 

CONCLUSION 
In the last few years lattice gas methods have been shown to simulate the qualitative 
features of hydrodynamic flows in two and three dimensions. Precise comparisons 
with other methods of calculation remain to be done, but it is believed that the 
accuracy of the lattice gas method can be increased by making the models more 
complicated. But how complicated they have to be to obtain the desired accuracy 
is an unanswered question. 

Calculations based on the simple models are extremely fast and can be made 
several orders-of-magnitude faster by using special-purpose computers, but the 
models must be extended to get quantitative results with an accuracy greater than 
1 percent. Significant research remains to be done to determine the accuracy of a 
given lattice gas method for a given flow problem. 
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NOTE ADDED IN PROOF: Recently Kadanoff, MeN amara, and Zanetti reported 
precise comparisons between theoretical predictions and lattice gas simulations. 
They used a seven-bit hexagonal model on a small automaton universe to simulate 
forced two-dimensional channel flow for long times. Three tests were used to probe 
the hydrodynamic and statistical-mechanical behavior of the model. The tests de-
termined (1) the profile of momentum density in the channel, (2) the equation of 
state given by the statistical mechanics of the system, and (3) the logarithmic di-
vergence in the viscosity (a famous effect in two-dimensional hydrodynamics and a 
deep test of the accuracy of the model in the strong nonlinear regime). 

The results were impressive. First, to within the accuracy of the simulation, 
there is no discrepancy between the parabolic velocity profile predicted by macro-
scopic theory and the lattice gas simulation data. Second, the equation of state 
derived from theory fits the simulation data to better than 1 percent. Finally, the 
measured logarithmic divergence in the viscosity as a function of channel width 
agrees with prediction. These results are at least one order-of-magnitude more ac-
curate than any previously reported calculations. 

REFERENCES 
1. University of Chicago, preprint, October 1987 
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Lattice-Gas Automata for the Navier-Stokes 
Equation 

This paper originally appeared in Physical Review Letters, Volume 56, 
Number 14, April 7, 1986, pp. 1505-1508. 
We show that a class of deterministic lattice gases with discrete Boolean 
elements simulates the Navier-Stokes equation, and can be used to design 
simple, massively parallel computing machines. 

The relatively recent availability of sophisticated interactive digital simulation 
has led to considerable progress in the unraveling of universal features of complexity 
generated by nonlinear dynamical systems with few degrees of freedom. In contrast, 
nonlinear systems with many degrees offreedom, e.g., high-Reynolds-number flow, 
are understood only on a quite superficiallevel,1 and are likely to remain so, unless 
they can be explored in depth, e.g., by interactive simulation. This is many orders 
of magnitude beyond the capacity of existing computational resources. There are 
similar limitations on our ability to simulate many other multidimensional field 
theories. 

Massively parallel architectures and algorithms are needed to avoid the ulti-
mate computation limits of the speed of light and various solid-state constraints. 
Also, when parameter space must be explored quickly and extreme accuracy is 
unnecessary, a floating-point representation may not be efficient. For example, to 

Lattice Gas Methods for Partial Differential Equations, SFI SISOC, 
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compute the drag due to turbulent flow past an obstacle with a modest accuracy 
of 5 bits, common experience in computational fluid dynamics shows that inter-
mediate computations require from 32 to 64 bits. Floating-point representations 
hierarchically favor bits in the most significant places, 2 which is a major cause of 
numerical instability. In principle, schemes which give bits equal weight would be 
preferable. Because of roundoff noise, a floating-point calculation can run away to 
unphysical regimes, in an attempt to treat each bit equally. 

A simulation strategy can be devised which both is naturally parallel and treats 
all bits on an equal footing, for systems which evolve by discrete cellular automaton 
rules, with only local interactions.3 This avoids the complex switching networks 
which limit the computational power of conventional parallel arrays. 

There has been speculation that various physically interesting field equations 
can be approximated by the large-scale behavior of suitably chosen cellular auto-
mata. 4 We shall here construct lattice-gas automata which asymptotically go over 
to the incompressible 2-D and 3-D Navier-Stokes equations. 

To understand the physics behind lattice gases, we first point out that a fluid 
can be described on three levels: the molecular level at which motion, usually 
Hamiltonian, is reversible; the kinetic level, in the irreversible low-density Boltz-
mann approximation; and the macroscopic level, in the continuum approximation. 
At the first two levels of description, the fluid is near thermodynamic equilibrium. 
In the last there are free thermodynamic variables: local density, momentum, tem-
perature, etc. A macroscopic description of the fluid comes about by a patching 
together of equilibria which are varying slowly in space and time, implying con-
tinuum equations for thermodynamic variables as consistency conditions. This was 
first realized by Maxwell,5 and put in final form by Chapman and Enskog.6 

There are many ways of building microscopic models that lead to a given set 
of continuum equations. It is known that one can build two- and three-dimensional 
Boltzmann models, with a small number of velocity vectors, which, in the continuum 
limit, reproduce quite accurately major fluid dynamical features (e.g., shock waves 
in a dilute gas, etc.7). Such Boltzmann models are fundamentally probabilistic, 
discrete only in velocity, but continuous in space and time. In contrast, we will 
use lattice-gas models, which have a completely discrete phase space and time and 
therefore may be viewed as made of "Boolean molecules." 

The simplest case is the Hardy, de Pazzis, and Pomeau model8 (hereafter called 
HPP) which has an underlying regular, square, two-dimensional lattice with unit 
link lengths. At each vertex, there are up to four molecules of equal mass, with unit 
speed, whose velocities point in one of the four link directions. The simultaneous 
occupation of a vertex by identical molecules is forbidden. Time is also discrete. 
The update is as follows. First, each molecule moves one link, to the nearest vertex 
to which its velocity was pointing. Then, any configuration of exactly two molecules 
moving in opposite directions at a vertex (head-on collisions) is replaced by another 
one at right angles to the original. All other configurations are left unchanged. The 
HPP model has a number of important properties.8 The crucial one is the exis-
tence of thermodynamic equilibria. No ergodic theorem is known, but relaxation 
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to equilibrium has been demonstrated numerically.8 These equilibria have free con-
tinuous parameters, namely, the average density and momentum. The equilibrium 
distribution functions are completely factorized over vertices and directions, being 
independent of vertex position, but dependent on direction, unless the mean mo-
mentum vanishes. When the density and momentum are varied slowly in space and 
time, "macrodynamical" equations emerge which differ from the nonlinear N avier-
Stokes equations in three respects. 

The discrepancies may be classified as (1) lack of Galilean invariance, (2) lack 
of isotropy, and (3) a crossover dimension problem. Galilean invariance is by defi-
nition broken by the lattice; consequently, thermodynamic equilibria with different 
velocities cannot be related by a simple transformation. This is reflected by the 
nonlinear term in the momentum equation, containing a momentum flux tensor, 
which not only has quadratic terms in the hydrodynamic velocity u, as it should 
be in the N avier-Stokes equation, but also has nonlinear corrections to arbitrarily 
high order in the velocity. However, these terms are negligible at low Mach num-
ber, a condition which also guarantees incompressibility. The HPP automaton is 
invariant under 1r /2 rotations. Such a lattice symmetry is insufficient to insure the 
isotropy of the fourth-degree tensor relating momentum flux to quadratic terms in 
the velocity. Finally, crossover dimension is a general property of two-dimensional 
hydrodynamics, when thermal noise is added to the Navier-Stokes equation or to 
the HPP version of it. Simply put, the viscosity develops a logarithmic scale depen-
dence, which is a dimensional crossover phenomenon, common in phase transitions 
and field theory.9 In three dimensions, this difficulty does not exist. 

Focusing on the isotropy problem, we note that for the HPP model, the mo-
mentum flux tensor has the form 

(1) 

Here p = p/2 is the pressure; terms odd in u vanish by parity. The tensor T is, 
by construction, pairwise symmetric in both (o:,/3) and (r,f). Observe that when 
the underlying microworld is two-dimensional and invariant under the hexagonal 
rotation group (multiples of 1r /3), the tensor T is isotropic and Eq. (1) takes the 
form 

(2) 

with suitable scalar factors >. and J.l. At low Mach number, this is the correct form 
for the Navier-Stokes equation. This observation appears to be new. So, in two 
dimensions, we will use a triangular instead of a square lattice. Each vertex then 
has a hexagonal neighborhood (Figure 1). We will call this model the hexagonal 
lattice gas (IILG). The setup is the same as in the HPP lattice gas, except for 
modified collision rules. A suitable set is one given by Harris,10 in connection with 
a discrete Boltzmann model, supplemented by a Fermi exclusion condition, of single 
occupation of each Boolean state. The Fermi-modified Harris rules are as follows: 
Number the six links out of any vertex counterclockwise, with an index i, defined on 
the integers (mod6). There are both two- and three-body collisions. For two-body 
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collisions, we have (i,i + 3) goes to (a) (i + 1,i- 2) or (b) (i- 1,i + 2). Type 
a and b outcomes have equal a priori weights. For three-body collisions we have 
(i, i + 2, i- 2) goes to (i + 3, i + 1, i- 1). In these rules, it is assumed that no 
incident link to a vertex is populated, other than the ones given as initial states. 
All other configurations remain unaffected by collisions. These rules are designed 
to conserve particle number and momentum at each vertex, i.e., a total of three 
scalar conservation relations. Without three-body collisions, there would be four 
scalar conservation relations, namely mass and momentum along each of the three 
lattice directions. 

Note that the HPP rules are invariant under duality (interchange of particles 
and holes), whereas the present rules are not. Duality can be restored by addition 
of suitable four-particle collision rules, but we will not use them here. 

We display a variant of this model where at most one particle is allowed to 
remain at rest at each vertex. The rest particles are labeled by an asterisk and the 
previous rules are supplemented with ( i, i + 2) goes to ( i - 2, *) and ( i, *) goes to 
(i + 2, i- 2). Additional variations on the model allow one to define a nontrivial 
temperature. The remainder of this discussion is concerned only with the basic 
(IILG) model. 

We briefly outline how the hexagonal lattice gas leads to the two-dimensional 
Navier-Stokes equations. A detailed derivation will be presented elsewhere.11 Let 
Ni be the average population at a vertex with velocity in the direction i. The average 

FIGURE 1 Triangular lattice with hexagonal symmetry and hexagonal lattice-gas rules. 
Particles at time t and t + 1 are marked by single and double arrows, respectively. 
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is over a macroscopic space-time region so that N; depends slowly on space and 
time variables. We define a slowly varying density p and momentum pu by 

(3) 

where c; is a unit vector in the direction i. Locally, for a given p and u, the Ni's 
can be computed from both these definitions and the detailed-balance equations at 
thermodynamic equilibrium, which are too involved to present here. This gives a 
Fermi-Dirac distribution: 

N; = { 1 + exp [a(p, u) + ,B(p, u)c; · u]} -l. (4) 

In general, a and ,8 satisfy equations with no simple solutions. However, when u = 0, 
it is obvious by symmetry that N; = p/6. Therefore, a and ,8 can be expanded in a 
Taylor series around u = 0. The result can be used to compute mass and momentum 
flux to first order in the macroscopic gradients. Second-order terms in the gradients 
(viscous terms) are obtained by Green-Kubo relations or by a Chapman-Enskog 
expansion.12 The following set of hydrodynamic equations is thus obtained: 

ap 
at + 'V 0 (pu) = 0, (5) 
a a 
at (pucr) +;;: axp [g(p)puaUfj + O(u4)] 

=- !.la p + 1Jl(p)'V2ua + 1J2(P) !.la 'V · u, 
UXcr UXcr 

(6) 

with g(p) = (p- 3)/(p- 6) and p = pj2. 'TJt(P) and 172(p) are the shear and bulk 
viscosities. 12 Deletion of the nonlinear and viscous terms gives the wave equation for 
sound waves propagating isotropically with a speed equal to the "velocity of light" 
(here set equal to 1) over .J2,just as for a two-dimensional photon gas. These sound 
waves have been observed in simulations on the MIT cellular automaton machine 
by Margolus, Toffoli, and VichniacP They used lattice-gas models that yield the 
same wave equation as above. 

The nonlinear system (5) and (6) goes over to the incompressible Navier-Stokes 
equation by the following limiting procedure: Let the Mach number M = u.J2 tend 
to zero, and the hydrodynamic scale L tend to infinity, while keeping their product 
fixed. As in the usual derivation of the incompressible limit, density fluctuations 
become irrelevant, except in the pressure term; also, the continuity equation (5) 
reduces to 'V · u = 0. Thus, the factor g(p) is to leading order a constant and may, 
for 0 < p < 3, be absorbed in a rescaled time. The resulting Reynolds number is 

(7) 
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Note that Galilean invariance, which does not hold at the lattice level, is restored 
macroscopically. 

A straightforward lift of the hexagonal lattice-gas model from two into three 
dimensions does not work. The reason is that the regular space-filling simplex with 
the greatest symmetry in three dimensions is the face centered cubic, with twelve 
equal-speed velocity directions out of each vertex. Unfortunately, the relevant ten-
sors such as Taf3-yf in Eq. (1) depend now on three constants. This induces a spurious, 
isotropy-breaking term in the N avier-Stokes equation, proportional to ({)/ax a )u~ 
(no summation on a). 

This obstacle may be removed by a splitting method. The nonlinear term in the 
three-dimensional N a vier-Stokes equation is recast as the sum of two terms, each 
containing spurious elements and each realizable on a different lattice (for example, 
a face-centered-cubic lattice and a regular cubic lattice). 

In lattice-gas models, as in general cellular automata (CA's), boundary condi-
tions are very easy to implement. Specular reflection of molecules gives so-called 
"free slip" boundary conditions for the hydrodynamic velocity u. "Rigid" bound-
ary conditions are obtained either by random scattering of particles back into the 
incoming half plane from a locally planar boundary, or by specular reflection from 
a microscale roughened version of the macroscopic boundary. 

We mention some practical limitations on lattice-gas models. For the hydrody-
namic description to hold, there must be a scale separation between the smallest 
hydrodynamic scale and the lattice link length; as we shall see, this requirement is 
automatically satisfied. Lattice-gas models must be run at moderate Mach numbers 
M (say, 0.3 to 0.5), to remain incompressible, and to avoid spurious high-order non-
linear terms. For fixed Mach numbers, the largest Reynolds number associated with 
a D-dimensionallattice with O(N) sites in each direction is O(N). This is because 
in our units, the kinematic viscosity ofthe hexagonal lattice gas is 0(1). From stan-
dard turbulence theory, 14 it follows that the dissipation scale is O(N112 ) in 2D and 
O(N114 ) in 3D. This insures the required scale separation at large Reynolds num-
bers. It would, however, be desirable to reduce the scale separation, especially in 
2D, to avoid excessive storage requirements compared to conventional incompress-
ible floating-point simulations (in the latter, the mesh can be taken comparable to 
the dissipation scale). 

For this, we observe that the viscosity in the lattice gas is decreased by a factor 
P if we subdivide each cell into a sub lattice with links P times smaller. We note also 
that the sublattice need not be similar to the original lattice. It must have the same 
collision rules, to preserve local thermodynamic equilibria, but the geometry does 
not matter since macroscopic quantities may be considered uniform over the cell. 
Thus, all the sublattice vertices in a given cell may be regarded as indistinguishable 
and can be coded in O(ln P) rather than O(PD) bits; interactions occur between 
randomly chosen vertex pairs within cells and between neighboring cells, the latter 
being less frequent by a factor 0(1/ P). 

Simulations of the models discussed here, done on general-purpose computers 
and exhibiting a variety of known two-dimensional hydrodynamic phenomena, have 
been made by d'llumieres, Lallemand, and Shimomura.15 
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\Ve have given a concrete hydrodynamical example of how CA's can be used to 
simulate classical nonlinear fields. We expect that further CA implementations will 
be found for the N avier-Stokes equation and other problems, not necessarily based 
on thermalized lattice gases and possibly less constrained than ours. 

S. Wolfram stimulated our interest in cellular automata as a possible new ap-
proach to turbulence phenomena. Acknowledgments are also due to T. Bloch, R. 
Caflish, D. d'Humieres, R. Gatignol, R. Kraichnan, P. Lallemand, N. Margolus, 
D. Nelson, J. L. Oneto, S. A. Orszag, J. P. Rivet, T. Shimomura, Z. S. She, B. 
Shraiman, T. Toffoli, and G. Vichniac, as well as the following: Woods Hole Geo-
physical Fluid Dynamics Summer Program (U.F., Y.P.); Aspen Center for Physics, 
1985 Chaos Workshop (B.H.); and Service de Physique Theorique, Centre d'Etudes 
Nucleaires de Saclay (B.H.). This work was supported in part by National Science 
Foundation Grant No. 8442384. 
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Cellular Automaton Fluids 1 : Basic Theory 

This paper originally appeared in the Journal of Statistical Physics, volume 
45, nos. 3/4 (1986), pp. 471-526. 
Continuum equations are derived for the large-scale behavior of a class 
of cellular automaton models for fluids. The cellular automata are discrete 
analogues of molecular dynamics, in which particles with discrete velocities 
populate the links of a fixed array of sites. Kinetic equations for microscopic 
particle distributions are constructed. Hydrodynamic equations are then 
derived using the Chapman-Enskog expansion. Slightly modified Navier-
Stokes equations are obtained in two and three dimensions with certain 
lattices. Viscosities and other transport coefficients are calculated using 
the Boltzmann transport equation approximation. Some corrections to the 
equations of motion for cellular automaton fluids beyond the N avier-Stokes 
order are given. 
Key words: Cellular automata; derivation of hydrodynamics; molecular 
dynamics; kinetic theory; Navier-Stokes equations. 
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1. INTRODUCTION 
Cellular automata (e.g., Refs. 1 and 2) are arrays of discrete cells with discrete 
values. Yet sufficiently large cellular automata often show seemingly continuous 
macroscopic behavior (e.g., Refs. 1 and 3). They can thus potentially serve as mod-
els for continuum systems, such as fluids. Their underlying discreteness, however, 
makes them particularly suitable for digital computer simulation and for certain 
forms of mathematical analysis. 

On a microscopic level, physical fluids consist of discrete particles. But on a 
large scale, they, too, seem continuous, and can be described by the partial dif-
ferential equations of hydrodynamics (e.g., Ref. 4). The form of these equations is 
in fact quite insensitive to microscopic details. Changes in molecular interaction 
laws can affect parameters such as viscosity, but do not alter the basic form of 
the macroscopic equations. As a result, the overall behavior of fluids can be found 
without accurately reproducing the details of microscopic molecular dynamics. 

This paper is the first in a series which considers models of fluids based on cel-
lular automata whose microscopic rules give discrete approximations to molecular 
dynamics.[!] The paper uses methods from kinetic theory to show that the macro-
scopic behavior of certain cellular automata corresponds to the standard N avier-
Stokes equations for fluid flow. The next paper in the series16 describes computer 
experiments on such cellular automata, including simulations of hydrodynamic phe-
nomena. 

Figure 1 shows an example of the structure of a cellular automaton fluid model. 
Cells in an array are connected by links carrying a bounded number of discrete 
"particles." The particles move in steps and "scatter" according to a fixed set of 
deterministic rules. In most cases, the rules are chosen so that quantities such as 
particle number and momentum are conserved in each collision. Macroscopic vari-
ations of such conserved quantities can then be described by continuum equations. 

Particle configurations on a microscopic scale are rapidly randomized by colli-
sions, so that a local equilibrium is attained, described by a few statistical average 
quantities. (The details of this process will be discussed in a later paper.) A master 
equation can then be constructed to describe the evolution of average particle den-
sities as a result of motion and collisions. Assuming slow variations with position 
and time, one can then write these particle densities as an expansion in terms of 
macroscopic quantities such as momentum density. The evolution of these quan-
tities is determined by the original master equation. To the appropriate order in the 

[l]This work has many precursors. A discrete model of exactly the kind considered here was 
discussed in Ref. 6. A version on a hexagonal lattice was introduced in Ref. 7, and further studied 
in Refs. 8,9. Related models in which particles have a discrete set of possible velocities, but can 
have continuously variable positions and densities, were considered much earlier.10•14 Detailed 
derivations of hydrodynamic behavior do not, however, appear to have been given even in these 
cases (see, however, e.g., Ref. 15). 
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FIGURE 1 Two successive microscopic configurations in the typical cellular automaton 
fluid model discussed in Section 2. Each arrow represents a discrete "particle" on a 
link of the hexagonal grid. Continuum behavior is obtained from averages over large 
numbers of particles. 

expansion, certain cellular automaton models yield exactly the usual N a vier-Stokes 
equations for hydrodynamics. 

The form of such macroscopic equations is in fact largely determined simply 
by symmetry properties of the underlying cellular automaton. Thus, for example, 
the structure of the nonlinear and viscous terms in the Navier-Stokes equations 
depends on the possible rank three and four tensors allowed by the symmetry 
of the cellular automaton array. In two dimensions, a square lattice of particle 
velocities gives anisotropic forms for these terms.6 A hexagonal lattice, however, has 
sufficient symmetry to ensure isotropy.7 In three dimensions, icosahedral symmetry 
would guarantee isotropy, but no crystallographic lattice with such a high degree 
of symmetry exists. Various structures involving links beyond nearest neighbors on 
the lattice can instead be used. 

Although the overall form of the macroscopic equations can be established by 
quite general arguments, the specific coefficients which appear in them depend on 
details of the underlying model. In most cases, such transport coefficients are found 
from explicit simulations. But, by using a Boltzmann approximation to the master 
equation, it is possible to obtain some exact results for such coefficients, potentially 
valid in the low-density limit. 

This paper is organized as follows. Section 2 describes the derivation of ki-
netic and hydrodynamic equations for a particular sample cellular automaton fluid 
model. Section 3 generalizes these results and discusses the basic symmetry condi-
tions necessary to obtain standard hydrodynamic behavior. Section 4 then uses the 
Boltzmann equation approximation to investigate microscopic behavior and obtain 
results for transport coefficients. Section 5 discusses a few extensions of the model. 
The Appendix gives an SMP program17 used to find macroscopic equations for 
cellular automaton fluids. 
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2. MACROSCOPIC EQUATIONS FOR A SAMPLE MODEL 
2.1. STRUCTURE OF THE MODEL 

The model7 is based on a regular two-dimensional lattice of hexagonal cells, as 
illustrated in Figure 1. The site at the center of each cell is connected to its six 
neighbors by links corresponding to the unit vectors e1 through e6 given by 

ea = ( cos(27ra/6),sin(w7ra/6)). (2.1.1) 

At each time step, zero or one particle lie on each directed link. Assuming unit 
time steps and unit particle masses, the velocity and momentum of each particle is 
given simply by its link vector ea. In this model, therefore, all particles have equal 
kinetic energy, and have zero potential energy. 

The configuration of particles evolves in a sequence of discrete time steps. At 
each step, every particle first moves by a displacement equal to its velocity ea. Then 
the particles on the six links at each site are rearranged according to a definite set 
of rules. The rules are chosen to conserve the number and total momentum of the 
particles. In a typical case, pairs of particles meeting head on might scatter through 
60°, as would triples of particles 120° apart. The rules may also rearrange other 
configurations, such as triples of particles meeting asymmetrically. Such features 
are important in determining parameters such as viscosity, but do not affect the 
form of the macroscopic equations derived in this section. 

To imitate standard physical processes, the collision rules are usually chosen 
to be microscopically reversible. There is therefore a unique predecessor, as well as 
a unique successor, for each microscopic particle configuration. The rules for colli-
sions in each cell thus correspond to a simple permutation of the possible particle 
arrangements. Often the rules are self-inverse. But, in any case, the evolution of a 
complete particle configuration can be reversed by applying inverse collision rules 
at each site. 

The discrete nature of the cellular automaton model makes such precise reversal 
in principle possible. But the rapid randomization of microscopic particle configura-
tions implies that very complete knowledge of the current configuration is needed. 
With only partial information, the evolution may be effectively irreversible.8•19 

2.2. BASIS FOR KINETIC THEORY 

Cellular automaton rules specify the precise deterministic evolution of microscopic 
configurations. But if continuum behavior is seen, an approximate macroscopic 
description must also be possible. Such a description will typically be a statistical 
one, specifying not, for example, the exact configuration of particles, but merely 
the probabilities with which different configurations appear. 

A common approach is to consider ensembles in which each possible microscopic 
configuration occurs with a particular probability (e.g., Ref. 18). The reversibility 
of the microscopic dynamics ensures that the total probability for all configurations 
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in the ensemble must remain constant with time. The probabilities for individual 
configurations may, however, change, as described formally by the Liouville equa-
tion. 

An ensemble is in "equilibrium" if the probabilities for configurations in it 
do not change with time. This is the case for an ensemble in which all possible 
configurations occur with equal probability. For cellular automata with collision 
rules that conserve momentum and particle number, the subsets of this ensemble 
that contain only those configurations with particular total values of the conserved 
quantities also correspond to equilibrium ensembles. 

If the collision rules effectively conserved absolutely no other quantities, then 
momentum and particle number would uniquely specify an equilibrium ensemble. 
This would be the case if the system were ergodic, so that starting from any initial 
configuration, the system would eventually visit all other microscopic configurations 
with the same values of the conserved quantities. The time required would, how-
ever, inevitably be exponentially long, making this largely irrelevant for practical 
purposes. 

A more useful criterion is that starting from a wide range of initial ensembles, 
the system evolves rapidly to ensembles whose statistical properties are determined 
solely from the values of conserved quantities. In this case, one could assume for 
statistical purposes that the ensemble reached contains all configurations with these 
values of the conserved quantities, and that the configurations occur with equal 
probabilities. This assumption then allows for the immediate construction of kinetic 
equations that give the average rates for processes in the cellular automaton. 

The actual evolution of a cellular automaton does not involve an ensemble of 
configurations, but rather a single, specific configuration. Statistical results may 
nevertheless be applicable if the behavior of this single configuration is in some 
sense "typical" of the ensemble. 

This phenomenon is in fact the basis for statistical mechanics in many differ-
ent systems. One assumes that appropriate space or time averages of an individual 
configuration agree with averages obtained from an ensemble of different configu-
rations. This assumption has never been firmly established in most practical cases; 
cellular automata may in fact be some of the clearest systems in which to investigate 
it. 

The assumption relies on the rapid randomization of microscopic configurations, 
and is closely related to the second law of thermodynamics. At least when statistical 
or coarse-grained measurements are made, configurations must seem progressively 
more random, and must, for example, show increasing entropies. Initially ordered 
configurations must evolve to apparent disorder. 

The reversibility of the microscopic dynamics nevertheless implies that ordered 
initial configurations can always in principle be reconstructed from a complete 
knowledge of these apparently disordered states. But just as in pseudorandom se-
quence generators or cryptographic systems, the evolution may correspond to a 
sufficiently complex transformation that any regularities in the initial conditions 
cannot readily be discerned. One suspects in fact that no feasibility simple compu-
tation can discover such regularities from typical coarse-grained measurements.19•20 
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As a result, the configurations of the system seem random, at least with respect to 
standard statistical procedures. 

While most configurations may show progressive randomization, some special 
configurations may evolve quite differently. Configurations obtained by computing 
time-reversed evolution from ordered states will, for example, evolve back to ordered 
states. Nevertheless, one suspects that the systematic construction of such "an-
tithermodynamic" states must again require detailed computations of a complexity 
beyond that corresponding to standard macroscopic experimental arrangements. 

Randomization requires that no additional conserved quantities are present. For 
some simple choices of collision rules, spurious conservation laws can nevertheless 
be present, as discussed in Section 4.5. For most of the collision rules considered in 
this paper, however, rapid microscopic randomization does seem to occur. 

As a result, one may use a statistical ensemble description. Equilibrium en-
sembles in which no statistical correlations are present should provide adequate 
approximations for many macroscopic properties. At a microscopic level, however, 
the deterministic dynamics does lead to correlations in the detailed configurations 
of particles.£21 Such correlations are crucial in determining local properties of the 
system. Different levels of approximation to macroscopic behavior are obtained by 
ignoring correlations of different orders. 

Transport and hydrodynamic phenomena involve systems whose properties are 
not uniform in space and time. The uniform equilibrium ensembles discussed above 
cannot provide exact descriptions of such systems. Nevertheless, so long as macro-
scopic properties vary slowly enough, collisions should maintain approximate local 
equilibrium, and should make approximations based on such ensembles accurate. 

2.3. KINETIC EQUATIONS 

An ensemble of microscopic particle configurations can be described by a phase 
space distribution function which gives the probability for each complete configu-
ration. In studying macroscopic phenomena, it is, however, convenient to consider 
reduced distribution functions, in which an average has been taken over most de-
grees of freedom in the system. Thus, for example, the one-particle distribution 
function fa(x, t) gives the probability of finding a particle with velocity ea at po-
sition x and time t, averaged over all other features of the configuration (e.g., Ref. 
23). 

Two processes lead to changes in fa with time: motion of particles from one 
cell to another, and interactions between particles in a given cell. A master equation 
can be constructed to describe these processes. 

[2]The kinetic theory approach used in this paper concentrates on average particle distribution 
functions. An alternative but essentially equivalent approach concentrates on microscopic corre-
lation functions (e.g., Refs. 21, 22}. 
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In the absence of collisions, the cellular automaton rules imply that all particles 
in a cell at position X with velocity ea move at the next time step to the adjacent 
cell at position X+ ea. As a result, the distribution function evolves according to 

fa(X + ea, T + 1) = fa(X, T). (2.3.1) 

For large lattices and long time intervals, position and time may be approx-
imated by continuous variables. One may define, for example, scaled variables 
x = 8xX and t = OtT, where Ox, Ot ~ 1. In terms of these scales variables, the 
difference equation (2.3.1) becomes 

(2.3.2) 

In deriving macroscopic transport equations, this must be converted to a differential 
equation. Carrying out a Taylor expansion, one obtains24 

If all variations in the fa are assumed small, and certainly less than 0(1/8x, 1f8t), 
it suffices to keep only first-order terms in Ox, Ot. In this way one obtains the basic 
transport equation 

8tfa(x, t) + ea · "V fa(x, t) = 0. (2.3.4) 

This has the form of a collisionless Boltzmann transport equation for fa (e.g., Ref. 
25). It implies, as expected, that fa is unaffected by particle motion in a spatially 
uniform system. 

Collisions can, however, change fa even in a uniform system, and their effect 
can be complicated. Consider, for example, collisions that cause particles in direc-
tions e1 and e4 to scatter in directions e2 and es. The rate for such collisions is 
determined by the probability that particles in directions e1 and e4 occur together 
in a particular cell. This probability is defined as the joint two-particle distribution 
function Pi;). The collisions deplete the population of particles in direction e1 at a 
rate Pi;). Microscopic reversibility guarantees the existence of an inverse process, 
which increases the population of particles in direction e1 at a rate given in this 
case by PJi). Notice that in a model where there can be at most one particle on 
each link, the scattering to directions e2 and e 5 in a particular cell can occur only 
if no particles are already present on these links. The distribution function P is 
constructed to include this effect, which is mathematically analogous to the Pauli 
exclusion principle for fermions. 

The details of collisions are, however, irrelevant to the derivation of macroscopic 
equations given in this section. As a result, the complete change due to collisions 
in a one-particle distribution function fa will for now be summarized by a simple 
"collision term" na, which in general depends on two-particle and higher-order 
distribution functions. (In the models considered here, Oa is always entirely local, 
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and cannot depend directly on, for example, derivatives of distribution functions.) 
In terms of Oa, the kinetic equation (2.3.3) extended to include collisions becomes 

(2.3.5) 

With the appropriate form for Oa, this is an exact statistical equations for Ia (at 
least to first order in 8). 

But the equation is not in general sufficient to determine Ia. It gives the time 
evolution of Ia in terms of the two-particle and higher-order distribution functions 
that appear in Oa. The two-particle distribution function then in turn satisfies an 
equation involving three-particle and higher-order distribution functions, and so on. 
The result is the exact BBGKY hierarchy of equations,23 of which Eq. (2.3.5) is 
the first level. 

The Boltzmann transport equation approximates (2.3.5) by assuming that Oa 
depends only on one-particle distribution functions. In particular, one may make a 
"molecular chaos" assumption that all sets of particles are statistically uncorrelated 
before each collision, so that multiple-particle distribution functions can be written 
as products of one-particle ones. The distribution function Pi~) is thus approxi-
mated as 11/4(1- 12)(1- /3)(1- ls)(1- 16)· The resulting Boltzmann equations 
will be used in Section 4. In this section, only the general form (2.3.5) is needed. 

The derivation of Eq. (2.3.5) has been discussed here in the context of a cellular 
automaton model in which particles are constrained to lie on the links of a fixed 
array. In this case, the maintenance of terms in (2.3.3) only to first order in 8x, 8t is 
an approximation, and corrections can arise, as discussed in Section 2.5. 24 Equation 
(2.3.5) is, however, exact for a slightly different class of models, in which particles 
have a discrete set of possible velocities, but follow continuous trajectories with ar-
bitrary spatial positions. Such "discrete velocity gases" have often been considered, 
particularly in studies of highly rarefied fluids, in which the mean distance between 
collisions is comparable to the overall system size.11 •14 

2.4. CONSERVATION LAWS 

The one-particle distribution functions typically determine macroscopic average 
quantities. In particular, the total particle density n is given by 

Lla = n. (2.4.1) 
a 

while the momentum density nu, where u is the average fluid velocity, is given by 

Leala= nu. 
a 

(2.4.2) 

The conservation of these quantities places important constraints on the behavior 
of the Ia· 
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In a uniform system Y' fa = 0, so that Eq. (2.3.5) becomes 

Ot/a = Oa 

and Eqs. (2.4.1) and (2.4.2) imply 

a 

Using the kinetic equation (2.3.5), Eq. (2.4.4) implies 

a a 
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(2.4.3) 

(2.4.4) 

(2.4.5) 

(2.4.6) 

With the second term in the form Y' · 0::: eafa), Eq. (2.4.6) can be written exactly 
in terms of macroscopic quantities as 

8tn + Y' · (nu) = 0, (2.4.7) 

this is the usual continuity equation, which expresses the conservation of fluid. It 
is a first example of a macroscopic equation for the average behavior of a cellular 
automaton fluid. 

Momentum conservation yields the slightly more complicated equation 

(2.4.8) 
a a 

Defining the momentum flux density tensor 

IIij = L(ea)i(ea);/a. (2.4.9) 
a 

Eq. (2.4.8) becomes 
(2.4.10) 

No simple macroscopic result for IIij can, however, be obtained directly from the 
definitions (2.4.1) and (2.4.2). 

Equations (2.4.7) and (2.4.10) have been derived here from the basic transport 
equation (2.3.5). However, as discussed in Section 2.3, this transport equation is 
only an approximation, valid to first order in the lattice scale parameters Oz;, Ot.24 

Higher-order versions of (2.4.7) and (2.4.10) may be derived from the original Taylor 
expansion (2.3.3), and in some cases, correction terms are obtained.24 

Assuming Cz: = Ct = 6, Eq. (2.4.6) to second order becomes 

I: [u~t +ea. v) + ~c(at +ea. v)2] = o. 
a 

(2.4.11) 
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Writing the 0( 6) term in the form 

(2.4.12) 
a a 

this term is seen to vanish for any Ia that satisfies the first-order equations (2.4.7) 
and (2.4.10). Lattice discretization effects thus do not affect the continuity equation 
(2.4.7), at least to second order. 

Corrections do, however, appear at this order in the momentum equation 
(2.4.10). To second order, Eq. (2.4.8) can be written as 

1 
~)8t + ea · 'V)eala + 268t ~)8t + ea · 'V)eala 

a a 

+ ~6L [ea · 'V8t + (ea · 'V) 2]eala = 0. 
(2.4.13) 

a 

The second term vanishes if Ia satisfies the first-order equation (2.4.8). The third 
term, however, contains piece trilinear in the ea, which gives a correction to the 
momentum equation (2.4.10).24 

2.5. CHAPMAN·ENSKOG EXPANSION 

If there is local equilibrium, as discussed in Section 2.2., then the microscopic dis-
tribution functions !a(x, t) should depend, on average, only on the macroscopic 
parameters u(x, t) and n(x, t) and their derivatives. In general, this dependence 
may be very complicated. But in hydrodynamic processes, u and n vary only slowly 
with position and time. In addition, in the subsonic limit, lui ~ 1. 

With these assumptions, one may approximate the Ia by a series or Chapman-
Enskog expansion in the macroscopic variables. To the order required for standard 
hydrodynamic phenomena, the possible terms are 

Ia =I{ 1 + c<l)ea · u + c< 2) [(ea · u)2 - ~lu12] 

+ c~) [(ea. 'V)(ea. u)- ~'V. u] + ... } 
(2.5.1) 

where the c(i) are undetermined coefficients. The first three terms here represent the 
change in microscopic particle densities as a consequence of changes in macroscopic 
fluid velocity; the fourth term accounts for first-order dependence of the particle 
densities on macroscopic spatial variations in the fluid velocity. The structures of 
these terms can be deduced merely from the need to form scalar quantities Ia from 
the vectors ea, u and 'V. 

The relation 
(2.5.2) 
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where here M = 6 and d = 2, and i and j are space indices, has been used in Eq. 
(2.5.1) to choose the forms of the lul2 and \7u terms so as to satisfy the constraints 
(2.4.1) and (2.4.2), independent of the values of the coefficients c<2) and c~)· In 
terms of (2.5.1), Eq. (2.4.1) yield immediately 

I= n/6 (2.5.3) 

while (2.4.2) gives 
c(l) = 2. (2.5.4) 

The specific values of c(2) and c~) can be determined only by explicit solution of 
the kinetic equation (2.3.5) including collision terms. (Some approximate results 
for these coefficients based on the Boltzmann transport equation will be given in 
Section 4.) Nevertheless, the structure of macroscopic equations can be derived 
from (2.5.1) without knowledge of the exact values of these parameters. 

For a uniform equilibrium system with u = 0, all the Ia are given by 

Ia =I= n/6. (2.5.5) 

In the case, the momentum flux tensor (2.4.9) is equal to the pressure tensor, given, 
as in the standard kinetic theory of gases, by 

(2.5.6) 

where the second equality follows from Eq. (2.5.2). Note that this form is spatially 
isotropic, despite the underlying anisotropy of the cellular automaton lattice. This 
result can be deduced from general symmetry considerations, as discussed in Section 
3. Equation (2.5.6) gives the equation of state relating the scalar pressure to the 
number density of the cellular automaton fluid: 

p = n/2. (2.5.7) 

When u ::P 0, IIij can be evaluated in the approximation (2.5.1) using the 
relations 

(2.5.8) 
a 

and 

:l)ea)i(ea)j(ea)~c(ea)l = d(d~ 2) (6ijbkl + bikbjl + 6ilbjk). 
a 

(2.5.9) 

The result is 

(2.5.10) 
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Substituting the result into Eq. (2.4.10), one obtains the final macroscopic equation 

a,(nu) + ~nc<2) { (u. V')u + [u(V'. u)- ~lul 2]} 
1 1 (2) 2 1_ = -2V'n- sncv V' u- 4.::. 

(2.5.11) 

where 

S = u(u· V') ( nc<2))- ~lui2 V' ( nc<2)) +(u· V') ( nc~))- ~(V' ·u)V' ( nc~)) . (2.5.12) 

The form (2.5.10) for Ilij follows exactly from the Chapman-Enskog expansion 
(2.5.1). But to obtain Eq. (2.5.11), one must use the momentum equation (2.4.10). 
Equation (2.4.13) gives corrections to this equations that arise at second order 
in the lattice size parameter 6. These corrections must be compared with other 
effects included in Eq. (2.5.11). The rescaling x = 6:r:X implies that spatial gradient 
terms in the Chapman-Enskog expansion can be of the same order as the 0(6:r:) 
correction terms in Eq. (2.4.13). When the ea · u term in the Chapman-Enskog 
expansion (2.5.1) for the fa is substitute into the last term of Eq. (2.4.13), it gives 
a contribution24 

(2.5.13) 

to the right-hand side of Eq. (2.5.11). Note that W depends solely on the choice of 
ea, and must, for example, vary purely linearly with the particle density f. 

2.6. NAVIER-STOKES EQUATION 

The standard Navier-Stokes equation for a continuum fluid in d dimensions can be 
written in the form 

(2.6.1) 

where p is pressure, and 17 and ( are, respectively, shear and bulk viscosities (e.g., 
Ref. 27). The coefficient p. of the convective term is usually constrained to have 
value 1 by Galilean invariance. Note that the coefficient of the last term in Eq. 
(2.6.1) is determined by the requirement that the term in IIi; proportional to 17 be 
traceless. 27•57 

The macroscopic equation (2.5.11) for the cellular automaton fluid is close to 
the Navier-Stokes form (2.6.1). The convective and viscous terms are present, and 
have the usual structure. The pressure term appears according to the equation of 
state (2.5.7). There are, however, a few additional terms. 

Terms proportional to uV'n must be discounted, since they depend on features 
of the microscopic distribution functions beyond those included in the Chapman-
Enskog expansion (2.5.1). The continuity equation (2.4.7) shows that terms pro-
portional to u(V' · u) must also be neglected. 
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The term proportional to V'lul2 remains, but can be combined with the V'n term 
to yield an effective pressure term which includes fluid kinetic energy contributions. 

The form of the viscous terms in (2.5.11) implies that for the cellular automaton 
fluid, considered here, the bulk viscosity is given by 

( = 0. (2.6.2) 

The value of TJ is determined by the coefficient c~) that appears in the microscopic 
distribution function (2.5.1), according to 

(2.6.3) 

where 11 is the kinematic viscosity. An approximate method of evaluating c~) is 
discussed in Section 4.6. 

The convective term in Eq. (2.5.11) has the same structure as in the Navier-
Stokes equation (2.6.1), but includes a coefficient 

1 J.l. = -c(2) 
4 (2.6.4) 

which is not in general equal to 1. In continuum fluids, the covariant derivative 
usually has the form D, = 8t + u · V' implied by Galilean invariance. The cellular 
automaton fluid acts, however, as a mixture of components, each with velocities ea, 
and these components can contribute with different weights to the covariant deriva-
tives of different quantities, leading to convective terms with different coefficients. 

The usual coefficient of the convective term can be recovered in Eq. (2.6.1) and 
thus Eq. (2.5.11) by a simple rescaling in velocity: setting 

U=J.I.U (2.6.5) 

the equation for ii has coefficient 1 for the (ii · V')ii term. 
Small perturbations from a uniform state may be represented by a linearized 

approximation to Eqs. (2.4.7) and (2.5.11), which has the standard sound wave 
equation form, with a sound speed obtained from the equation of state (2.5.7) as 

c= 1/-/2. (2.6.6) 

The form of the Navier-Stokes equation (2.6.1) is usually obtained by sim-
ple physical arguments. Detailed derivations suggest, however, that more elaborate 
equations may be necessary, particularly in two dimensions (e.g., Ref. 28). The 
Boltzmann approximation used in Section 4 yields definite values for c<2) and c~). 
Correlation function methods indicate, however, that additional effects yield log-
arithmically divergent contributions to c~) in two dimensions (e.g., Ref. 29). The 
full viscous term in this case may in fact be of the rough form V'2 log(V'2)u. 
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2.7. HIGHER-ORDER CORRECTIONS 

The derivation of the Navier-Stokes form (2.5.11) neglects all terms in the Chapman-
Enskog expansion beyond those given explicitly in Eq. (2.5.1). This approximation 
is expected to be adequate only when lui ~ c. Higher-order corrections may be 
particularly significant for supersonic flows involving shocks (e.g., Ref. 30). 

Since the dynamics of shocks are largely determined just by conservation laws 
(e.g., Ref. 27), they are expected to be closely analogous in cellular automaton fluids 
and in standard continuum fluids. For lulfc;(;2, however, shocks become so strong 
and thin that continuum descriptions of physical fluids can no longer be applied in 
detail (e.g., Ref. 14). The structure of shocks in such cases can apparently be found 
only through consideration of explicit particle dynamics.11•14 

In the transonic flow regime lui ~ c, however, continuum equations may be 
used, but corrections to the Navier-Stokes form may be significant. A class of such 
corrections can potentially be found by maintaining terms 0( u3 ) and higher in the 
Chapman-Enskog expansion (2.5.1). 

In the homogeneous fluid approximation Vu = 0, one may take 

Ia =!{ 1 + c(l)ea · u + c(2) ((ea · u)2 + u2lul2] 

+ c<3) ((ea · u)3 + ualul2(ea · u)] 

+ c<4>[(ea · u)4 + 0"4,llul2(ea · u)2 + 0"4,2lul4] + · · ·} 

The constraints (2.4.1) and (2.4.2) imply 

c(l) = d 
1 

0"2 = -d 
3 

O"g = ---d+2 
3 1 

d(d + 2) + d0"4,1 + 0"4,2 = 0 

where d is the space dimension, equal to two for the model of this section. 

(2.7.1) 

(2.7.2) 

(2.7.3) 

(2.7.4) 

(2.7.5) 

Corrections to (2.5.11) can be found by substituting (2.7.1) in the kinetic equa-
tion (2.4.8). For the hexagonal lattice model, one obtains, for example, 

Ot(nu,;) + ~nc<2>(u,;O,;U,; + u,;811 u11 + u11 811 uz- u11 8,;u11 ) 

+ ~nc<4>{ ((5 + 4u4,1)u~- 3u,;u;]ozUz 

+ ((3 + 2u4,1)u; + (3 + 6u4,i)u;u11 ]811 uz 
- ((3 + 4u4,1)u; + 3u;u11 ]8zu11 

+ ((1 + 2u4,1)u~ + (9 + 6u4,1)uzu;]o11 u11 } = 0. 

(2.7.6) 
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The O(u2) term in Eq. (2.7.6) has the isotropic form given in Eq. (2.5.11). The 
0( u4 ) term is, however, anisotropic. 

To obtain an isotropic 0( u4 ) term, one must generalize the model, as discussed 
in Section 3. One possibility is to allow vectors ea corresponding to corners of an 
M-sided polygon with M > 6. In this case, the continuum equation deduced from 
the Chapman-Enskog expansion (2.7.1) becomes 

Ot(nu) + ~nc<2) [(u · V')u + u(V' · u)- ~Y'Iul2] 
1 + 4nc(4)(1 + 0'4,1) { lul2 [(u · V')u + u(V' · u)- Y'ul2] + u(u · Y')lul2} = 0. 

(2.7.7) 
This gives a definite form for the next-order corrections to the convective part of 
the N avier-Stokes equation. 

Corrections to the viscous part can be found by including terms proportional 
to V'u in the Chapman-Enskog expansion (2.7.1). The possible fourth-order terms 
are given by contractions of Uiu;6~cul with products of (ea)m or 6mn· They yield a 
piece in the Chapman-Enskog expansion of the form 

c~) (rl(ea · u)2(ea · Y')(ea · u) + r2lul2(ea · V')(ea · u) 
+ T3(ea · u)(u · V')(ea · u) + T4(ea · u)2(Y' · u) + rslui2(V' · u)] 

where Eq. (2.4.1) implies the constraints (ford= 2) 

T1 + 2r3 =0, 
T1 + 4T2 + 4T4 + 8Ts =0 . 

(2.7.8) 

(2.7.9) 
(2.7.10) 

The resulting continuum equations may be written in terms of vectors formed by 
contractions of UiUjO~cOzUm and UiOjU~cOzUm. The complete result is 
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Ot(nu) + ~nc<2 ) [(u · V')u + u(V' · u)- ~ Y'lul 2] 

1 + 4nc<4)(1 + 0"4,!) { lul 2 [(u · V')u + u(V' · u)- Y'lul 2] + u(u · Y')lul2 } 

= ~nc~)V'2u 
8 

- 312 nc~) [ ( ( T1 - 4r2 + 12r4)u(V' · u)2 - ( r1 - 4r2 + 4r4) 

x u{ V' [(u · Y')u] - (u · V')(V' · u)} + 8r4 { [(u · Y')u] · V' }u 
1 + 2(r1 + 4r2)[(Y'Iul2) · Y']u 

+ 2rlu [~V' · (V'Iul2)- u · (Y'2u)] - 4r4(V' · u)Y'Iul2) 

+ { 8r4 [ u(u · V')(V' · u) - ~ JuJ'V'(V' · u)] 

+ 2r1 u [ u · (V'2u) J + 4r2 JuJ'V''u}] 

(2.7.11) 

where, on the right-hand side, the first group of terms are all O((V'u)2), while the 
second group are O(V'V'u). Further corrections involve higher derivative terms, such 
as UiOjOkO!Um. For a channel flow with Ux = ax2, Uy = 0, the time time-independent 
terms in Eq. (2.7.11) have an x component 

and zero y component. 
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3. SYMMETRY CONSIDERATIONS 
3.1. TENSOR STRUCTURE 
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The form of the macroscopic equations (2.4.7) and (2.5.11) depends on few specific 
properties of the hexagonal lattice cellular automaton model. The most important 
properties relate to the symmetries of the tensors 

(3.1.1) 

These tensors are determined in any cellular automaton fluid model simply from 
the choice of the basic particle directions ea. The momentum flux tensor (2.4.9) is 
given in terms of them by 

(3.1.2) 

where repeated indices are summed, and to satisfy the conditions (2.4.1) and (2.4.2) 

(3.1.3) 

The basic condition for standard hydrodynamic behavior is that the tensors E(n) 
for n s 4 which appear in (3.1.2) should be isotropic. From the definition (3.1.1), 
the tensors must always be invariant under the discrete symmetry group of the 
underlying cellular automaton array. What is needed is that they should in addition 
be invariant under the full continuous rotation group. 

The definition (3.1.1) implies that the E(n) must be totally symmetric in their 
space indices. With no further conditions, the E(n) could have ("+~-l) indepen-
dent components in d space dimensions. Symmetries in the underlying cellular au-
tomaton array provide constraints which can reduce the number of independent 
components. 

Tensors that are invariant under all rotations and reflections (or inversions) 
can have only one independent component. Such invariance is obtained with a 
continuous set of vectors ea uniformly distributed on the unit sphere. Invariance 
up to finite n can also be obtained with certain finite sets of vectors ea. 

Isotropic tensors E(n) obtained with sets of M vectors ea in d space dimensions 
must take the form 

E(2n+l) =0 

E(2n) = M .6_(2n) 
d(d + 2) ... (d + 2n- 2) 

(3.1.4) 

(3.1.5) 
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where 
a~;) =oij 

.6.~Jl1 =OijOTr:r + oilr:Ojr + oi,ojk 

(3.1.6) 

(3.1.7) 
and in general .6,(2n) consists of a sum of all the (2n- 1)!! possible products of 
Kronecker delta symbols of pairs on indices, given by the recursion relation 

2n 
a~:;;. .. j 2 ,. =I: oi 1 i;a~:~.i2lji+1 ... j 2 ,. • (3.1.8) 

j=2 

The form of the .6,(2n) can also be specified by giving their upper simplicial 
components (whose indices form a nonincreasing sequence). Thus, in two dimen-
sions, 

.6_(4) = [3,0,1,0,3) (3.1.9) 
where the 1111, 2111, 2211, 2221, and 2222 components are given. In three dimen-
s10ns, 

.6. (4) = [3, 0, 1, 0, 3, 0, 0, 0, 0, 1, 0, 1, 0, 0, 3) 0 (3.1.10) 
Similarly, 

.6_(6) = [5, 0, 1, 0, 1, 0, 5) (3.1.11) 
and 

.6. (6) = [15, 0, 3, 0, 3, 0, 15, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 3, 0, 3, 0, 0, 15) (3.1.12) 
in two and three dimensions, respectively. 

For isotropic sets of vectors ea, one finds from (3.1.5) 
1 ~( . )(2n) _ Q I 12n _ (2n- 1)!! I 12n 

M L.t ea v - 2n v - d(d + 2) · · · (d + 2n- 2) v 
a 

so that for d = 2 

while ford= 3 

Similarly, 

1 
Q2= 2' 

5 
Q6 = 16' 

35 
Qs = 128 

~ L(ea · v)2ne4 • V = Q2nlvl2nv. 
a 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 

In the model of Section 2, all the particle velocities e 4 are fundamentally equiv-
alent, and so are added with equal weight in the tensor (3.1.1). In some cellular 
automaton fluid models, however, one may, for example, allow particle velocities ea 
with unequal magnitudes (e.g., Ref. 31). The relevant tensors in such cases are 

E~~{2 ... j,. =I: w(leal2)(e4 )it · · · (e4 }i,. (3.1.17) 
a 

where the weights w(leal2) are typically determined from coefficients in the Chap-
man-Enskog expansion. 
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3.2. POLYGONS 

As a first example, consider a set of unit vectors ea corresponding to the vertices 
of a regular M -sided polygon: 

( 27ra . 27ra) 
ea = cos M ,sm M (3.2.1) 

For sufficiently large M, any tensor E(n) constructed from these ea must be isotropic. 
Table 1 gives the conditions on M necessary to obtain isotropic E(n)_ In general, it 
can be shown that E(n) is isotropic if and only if M does not divide any integers 
n, n- 2, n- 4, .... 32 Thus, for example, E(n) must be isotropic whenever n > M. 

In the case M = 6, corresponding to the hexagonal lattice considered in Section 
2, the E(n) are isotropic up to n = 5. The macroscopic equations obtained in this 
case thus have the usual hydrodynamic form. However, a square lattice, with M = 4, 
yields an anisotropic E( 4), given by 

(3.2.2) 

where c(n) is the Kronecker delta symbol with n indices. The macroscopic equation 
obtained in this case is 

TABLE 1 Conditions for the Tensors E(n) of Eq. (3.1.1) 
to be Isotropic with the Lattice Vectors ea chosen to 
Correspond to the Vertices of Regular M -Sided Poly-
gons 

E(2) M > 2 
E(3) M ~ 2,M -:f; 3 
E(4) M > 2,M -:f; 4 
E(5) M ~ 2, M -:f; 3, 5 
E(6) M > 4,M -:f; 6 
E(7) M ~ 2, M -:f; 3, 5, 7 
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TABLE 2 Isotropy of the Tensors E(n) with ea Chosen as the M Vertices of Regular 
Polyhedra1 

ea M E(2) E(3) E(4) E(5) E(6) 

Tetrahedron (1, 1, 1), eye: (1, -1, -1) 4 y N N N N 
Cube (±1,±1,±1) 8 y y N y N 
Octahedron eye: {±1, 0, 0) 6 y y N y N 
Dodecahedron (±1, ±1, ±1), eye: {0, ±¢-1, ±¢) 20 y y y y N 
Icosahedron eye: {0, ±¢, ±1) 12 y y y y N 

1 In the forms for e4 (which are given without normalization), the notation "eye:" 
indicates all cyclic permutations. {All possible combinations of signs are chosen 
in all cases.) 4> is the golden ratio (1 + .../5)/2 ~ 1.618. 

which does not have the standard Navier-Stokes forms.6[31 
On a hexagonal lattice, E(4) is isotropic, but E(6) has the component form 

(6) I 1 [ l E M=6= 16 33,0,3,0,9,0,27 {3.2.4) 

which differs from the isotropic result {3.1.11). The corrections (2.7.6) to the Navier-
Stokes equation are therefore anisotropic in this case. 

3.3. POLYHEDRA 

As three-dimensional examples, one can consider vectors e4 corresponding to the 
vertices of regular polyhedra. Only for the five Platonic solids are all the leal2 

equal. Table 2 gives results for the isotropy of the E(n) in these cases. Only for 
the icosahedron and dodecahedron is E(4) found to be isotropic, so that the usual 
hydrodynamic equations are obtained. As in two dimensions, the E(2n) for the cube 
are all proportional to a single Kronecker delta symbol over all indices. 

In five and higher dimensions, the only regular polytopes are the simplex, and 
the hypercube and its dual.34 These give isotropic E(n) only for n < 3, and for 
n < 4 and n < 4, respectively. 

In four dimensions, there are three additional regular polytopes,34 specified 
by Schlafi symbols {3, 4, 3}, {3, 3, 5}, and {5, 3, 3}. (The elements of these lists 

[31Note that even the linearized equation for sound waves is anisotropic on a square lattice. The 
waves propagate isotropically, but are damped with an effective viscosity that varies with direction, 
and can be negative. 33 


