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Preface 

The purpose of this book is to give an insight into the model theory of first­
order logic and its potential for algebraic applications. Acquaintance with 
logic-though useful-is not required. Only an undergraduate preparation 
in algebra (groups, rings, fields, and vector spaces) is assumed on the part 
of the reader. 

The book grew out of a first course in model theory taught at the 
Christian-Albrechts-Universitat in Kiel, Germany in the fall semester of 
1992-93. The manuscript for the original German version (published by 
Spektrum Akademischer Verlag in 1995) was produced in collaboration 
with one of the students and Word Perfectionists, Frank Reitmaier. Trans­
lating it into English and 1\\'IEX I enjoyed the assistance of my student 
Karsten Guhl. It is my great pleasure to thank them both for their enor­
mous efforts. A number of students, colleagues, and other friends have 
contributed to both versions of this book with valuable comments and 
corrections. I am especially indebted to my students Matthias Clasen and 
Thomas Rohwer. Further thanks are due to Joel Agee, Andreas Baudisch, 
Paul Moritz Cohn, Ulrich Felgner, Wilfrid Hodges, Rahim Moosa, Arnold 
Oberschelp, Anand Pillay, Klaus Potthoff, Hans Ri:ipke, Thomas Wilke 
and (last, but not least) Martin Ziegler. Preparing the final version of the 
translation I enjoyed the very pleasant hospitality of the Universita degli 
Studi di Trento, Italy, and I am most grateful to Stefano Baratella for 
this. Finally I would like to thank the editors, Rudiger Gobel and Angus 
Macintyre, for inviting me to publish a translation into this series. 

The English edition differs from the German original in three ways: 
naturally, corrections and revisions have been made and the bibliography 
has been updated, second, more exercises, as well as hints and solutions 
to a selection of them, have been added, and finally, the dimension theory 
for strongly minimal theories scattered over text and exercises in the orig­
inal has been made the topic of a separate (penultimate) chapter, which 
contains, as a particular case, Steinitz' dimension theory for algebraically 
closed fields. 

ix 





Introduction 

Attention! 
Kozma Prutkov (1803-1863) 
Fruits of Reflection (Aphorism 42) 

Model theory-like mathematical logic in general-is a relatively young 
field. It deals with the relationship between sets of formal sentences and 
their models, hence with the relationship between the syntax and semantics 
of a formal language. We restrict ourselves to the model theory of first­
order logic, since this has particularly nice features. In their full generality 
these depend on the axiom of choice, which we apply without much ado, 
mostly in the equivalent form of Zorn's lemma. 

The development of model theory went along with its applications to 
other mathematical disciplines, mainly to algebra, which we concentrate 
on. Hints to other fields of application and to the model theory of other 
logics can be found in the references listed at the end of the text. We try to 
make immediate use of introduced concepts and methods. Therefore the 
text does not fall into an abstract (theoretical) and a concrete (applied) 
part, but rather proceeds by letting these two alternate. Thus we present 
some non-trivial applications of the finiteness theorem (in Part II) before 
we turn to the central model-theoretic concepts and methods (in Part III). 

The table of contents, fairly detailed as it is, may serve as a guide 
for the beginner when entering new and possibly unfamiliar territory. Its 
order reflects to a large extent the history of the subject. There are only 
two exceptions, Cantor's fundamental order- and set-theoretic instruments 
(§§7.3-6); and the proof of the finiteness (compactness) theorem in §4.3, 
which is not derived from Godel's completeness theorem for first-order 
logic, as is usually the case, but rather uses the later developed ultraprod­
ucts. This allows us to completely avoid the necessary calculus of formal 
derivations and to argue only semantically. 1 Apart from this we get the 
following chronological picture. 

1 I thank Thomas Wilke for suggesting we banish formal derivations from such a 
course in model theory. 

XI 



Xll INTRODUCTION 

Part I deals with the basics that were developed in the 20s and 30s. These 
are the concept of structure (Ch.1), the corresponding first-order languages 
(Ch. 2), as well as their connection via Tarski's concept of truth (Ch. 3). 

Part II contains the fundamental finiteness theorem (Ch. 4) and first 
model-theoretic results of the 30s and 40s, which were obtained mainly us­
ing this theorem. It is interesting to note, however, that Malcev's deeper 
group-theoretic results (Ch. 6) (which for linguistic and political reasons 
were taken note of only later) already anticipated A. Robinson's diagrams 
and the method of interpretation that was developed in the 50s by Tarski, 
Mostowski and (R. M) Robinson for decidability theory and that today plays 
a central role in stability theory. Further, it is explained why the finiteness 
theorem is also called compactness theorem (§5. 7). 

Part III is dedicated to the machinery developed in the 50s and to the 
corresponding results about the relationship between models. One could 
say that this part deals with the category of models of a theory whose mor­
phisms are the elementary maps-however we will make no further reference 
to category theory. We then present two important algebraic applications 
of this material. One is Robinson's proof of Hilbert's Nullstellensatz as a 
consequence of the model completeness of the theory of algebraically closed 
fields. The other is a theorem of Chevalley about projections of constructible 
sets as a consequence of quantifier elimination of the same theory, proved 
by Tarski and Robinson (§9.5, cf. also §9.6). General model-theoretic appli­
cations are e.g. various preservation theorems (§§6.1 and 10.2-3). 

Part IV starts with work from the late 50s and early 60s, when the 
concept of type enriched and refined the theory considerably. This part 
leads more or less directly to, and culminates in Vaught's theorem saying 
that a countable and complete theory cannot have exactly two countable 
models. The theorem in itself may seem quite exotic, its proof, however, is 
intertwined with fundamental model-theoretic methods like saturated and 
atomic models, omitting types etc. (As often in mathematics, the proof is 
more consequential than the result.) §11.3 contains, as part of the exercises, 
a new definition of stability due to I. Herzog and the author. 

Part V deals with two rather different applications of the material pre­
sented before. They can be studied independently. 

The first of these, Ch. 14,2 concerns the models of the so-called strongly 
minimal theories-a natural generalization of that of algebraically closed 
fields, inasmuch as it admits a similar dimension theory. In fact, Steinitz' 

2This chapter is new. In the German original, some of the material was scattered over 
text and exercises. 
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well-known dimension theory for such fields is obtained as a special case of 
the more general model-theoretic theory here. The most recent result in the 
book is F. Wagner's confirmation of a conjecture of Podewski about strong 
minimality of certain fields, which constitutes part of the exercises of this 
chapter. 

The last chapter, Ch.l5, is devoted to the models of a concrete theory, 
the complete theory of the abelian group of the integers. In passing, some 
stability-theoretic notions are introduced and their relevance is pointed out 
by referring to the recent literature. 

Exercises are scattered about the text, mostly at the end of the sec­
tions. There is an appendix giving hints to some of them, and another one 
containing selected solutions. 

A separate appendix contains the bibliography and some hints to the 
literature. 

While a few historical comments are to be found in the text, for a more 
complete account the interested reader is referred to the illuminating com­
ments at the ends of chapters in Wilfrid Hodges' Model Theory. 

The logical structure of the text is largely linear. Only the last three 
chapters are more or less independent.3 Items marked by* can be skipped. 
One could also skip the field-theoretic applications. However, this would be 
against the author's intentions, for Steinitz' theory of (algebraically closed) 
fields can be seen as a paradigm for the model-theoretic classification (or 
stability) theory of Morley and Shelah, which constitutes one of the central 
parts of contemporary model theory and which the interested reader may 
want to go on studying next. 

-After all, nothing's ever said 
that wasn't said before, in olden times. 
Surely, therefore, you will forgive and understand 
if we, though modern, follow where the ancients trod. 
Listen well then, be nice and quiet, pay close attention, 
and it will all be clear ... 

P. Terentius Afer (195-159 B.C.) 
Eunuchus (Prologue)4 

3 Note, §11.5 is used only in Ch. 14, and one can pass to Ch.15 directly after §12.1, 
cf. the chart on p. xiv. 

4 Translation from the German translation of the Latin original by Joel Agee. 
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Notation 

This is a list of notation and terminology that will be assumed to be known. 

Xs;;;Y,Y;2X 
XcY,Y:=JX 
l,fJ(Y) 
X<SY 
XUY 
XUY 

XnY 
X"Y 
XxY 

lXI 
0 
YX or Xy 

(ai : i E I) 

(ao, ... 'an-1) 
a 
xn 
l(a) 
a'b 

j: X 1---+ y 
XI---+Y 

domf 
fIX 
f[X] 

![a] 

fg 

idx 

X is a subset of Y, Y contains X 
X is a proper subset of Y, Y contains X properly 
power set of Y, i.e. {X : X s;;; Y} 
X is a finite subset of Y 
union of X and Y 
disjoint union of X andY, i. e., formally, 
XUY =(X x {O})U(Y x {1}) 
intersection of X and Y 
difference of the sets X and Y 
cartesian product of X andY, 
i.e. {(x,y): x EX andy E Y} 
power (or cardinality) of X 
empty set 
set of all maps from Y to X 
family indexed by I, i. e., formally, a function from 
1 { ai : i E I} with i ~----+ ai 
(in case I is well-ordered, this is called a sequence) 
n-tuple, i. e. a sequence of length n 
tuple, i. e. a finite sequence 
set of all n-tuples with entries from X 
length of the tuple a, i. e. n if a E xn 
concatenation of the tuples a and b, 
i.e. (ao, ... 'an-1, bo, ... 'bm-1), if a= (ao, ... 'an-1) 
and b = (bo, ... , bm-1) 
f maps x toy 
x is mapped to y 
domain of the map f 
restriction of f to X s;;; dom f 
image of X s;;; domf under the map j, i.e. 
{f(x) : x EX} 
(f(ao), ... , f(an-1)), where a= (ao, ... , an-1) and 
ai E dom f ( i < n) 
composite of the maps f and g, 
i.e. (fg)(x) = f(g(x)) ('first g, then f') 
identical map on a set X 

XV 



XVl NOTATION 

id identical map if the domain is clear 
lN, Z, <Q, lR, <C sets of all natural numbers (including 0), all integers, 

all rational numbers, all real numbers, 
and all complex numbers, respectively 

lP set of all prime numbers 
R[x1, ... , xn] ring of all polynomials in the indeterminates x1, ... , Xn 

and coefficients from n 
11. <l Q 11. is a normal subgroup of the group g 
iff if and only if 



Part I 

Basics 

In this first part we fix our terminology concerning structures and see 
how languages can be used to talk about them. Anybody acquainted with 
the beginnings of mathematical logic will only have to leaf through this part 
in order to confirm terminology and notation. 





Chapter 1 

Structures 

Let us first look at some examples. By specifying certain neutral elements 
and operations, we may view the set Z of integers as an additive group, as a 
multiplicative semigroup, or as a ring. In the three cases given these would 
be (0; +), (1; ·), or (0, 1; +, ·), respectively. We could also add the inverse 
operation - or the ordering relation <. It is this choice of signature, as we 
say, that determines which structure on Z we are dealing with. 

1.1 Signatures 

A signature a is a quadruple (C, F, R, a') consisting of a set C of constant 
symbols, a set F of function symbols, a set R of relation symbols, and 
a signature function a': FUR-+ N "- {0}, where we assume the sets C, 
F, and R to be pairwise disjoint. The elements of CUFUR are also known as 
the non-logical symbols. For simplicity we often identify a signature with 
its set of non-logical symbols. Accordingly, by the cardinality or power 
of a, in symbols lal, we simply mean the cardinality of the set C U FUR. 
Unary relation symbols are also called predicates. A signature with C = 0, 
F = 0, or R = 0 is said to be without constants, without functions, 
or without relations, respectively. A signature that has neither constants 
nor functions, is called (purely) relational. 

The signature function assigns to each symbol from F U R its arity, 
i.e. f E F is a a'(f)-ary function symbol andRE R is a a'(R)-ary relation 
symbol. Since a constant symbol c E C may be viewed as a (constant) 
function with unique value c, we may think of c as a 0-place function. Ac­
cordingly the signature function can be extended to all non-logical symbols 
by setting a'(c) = 0 for all c E C. 

3 



4 CHAPTER 1. STRUCTURES 

When explicitly writing down a signature we separate the sets e, F, 
and R by a semicolon. E. g. writing u = (0, 1; +, ·;<)and u'(+) = u'(·) = 
u'( <) = 2 fixes a signature with the constant symbols 0 and 1, two binary 
function symbols + and ·, and a binary relation symbol <. If the arities are 
understood (e. g. by some suggestive choice of symbols as above), we omit 
the signature function altogether. 

1.2 Structures 

Let u = (e, F, R, u') be a signature. 
Given a set M, we may give u a 'meaning' in M by choosing elements 

from M and functions and relations on M which are to be denoted by 
the non-logical symbols from u. Every such choice determines a so-called 
structure of that signature on M, which assigns to each constant, function, 
or relation symbol a well-defined interpretation in M meeting the constraints 
given by the signature function. 

A u-structure M is a quadruple (M, eM' FM' RM) consisting of an 
arbitrary set M (the underlying set or universe of M), families eM = 
(eM : c E C), FM = (JM : f E F), and RM = (RM : R E R), where 
eM E M for all c E e, JM is a u'(f)-ary function from M to M for all 
f E F, and RM is a u'(R)-ary relation on M (hence a subset of Ma'(R)) for 
all R E R. The cardinality or power IMI of au-structure M is simply 
the cardinality IMI of the underlying set M. For P, a non-logical symbol 
from u, the object pM is said to be the interpretation of Pin M. Given 
a signature u without constants, 0a is used to denote the empty u-structure. 

Note that empty u-structures exist precisely when e is empty, i. e. when 
u is without constants. 

The notation for structures follows the guidelines fixed for signatures 
in the previous subsection. Further, if R E R is an n-ary relation sym-
bol and (aa, ... ,an-1) E RM, we also write RM(aa, ... ,an-d or even 
M f= R(a0 , ... , an-1), this referring to the satisfaction relation to be defined 
below. In case of ann-place function f, we write JM(ao, ... , an-1) = b or 
M f= f ( ao, ... , an-d = b, accordingly. As usual, tuples are denoted e. g. by 
a; writing f(a) or R(a) then tacitly assumes f and R to have the arity cor­
responding to the length of ii. 

Example. Consider u = (0,1;+,·;<), where u'(+) = 0"1(·) = u'(<) = 2. 
Every ordered ring R (see §5.5 below) can be regarded as a u-structure 
(R; OR, 1R; +R, .R; <R), where the non-logical symbols from u are inter­
preted by the corresponding constants, functions, and relations, respectively. 
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Then, for example, R F 0 < 1 or, equivalently, oR <R 1R. 

Exercise 1.2.1. Find a signature appropriate for the description of vector spaces 
over a given field K. 

1.3 Homomorphisms 

In order to compare two a-structures M and N we need maps between them 
that preserve certain features of these structures. 

A homomorphism from M to N is a map h : M ---+ N satisfying 

(i) h(c"A) = d'f, for all c E C, 
(ii) JN (h(ao), ... , h(an~I)) = h(JM(ao, ... , an~I)), for all n EN, 

all ao, ... , an~ I EM, and all f E F with a' (f)= n, 
(iii) RM(ao, ... , an~ I)=} RN (h(ao), ... , h(an~I)), for all n EN, 

all ao, ... , an~ I EM, and all R E R with a'(R) = n. 

We write h: M---+ N for short. 
A homomorphism h: M---+ N is said to be strong if for all n EN, all 

R E R with a'(R) = n, and all bo, ... , bn~l E h[M] with RN (bo, ... , bn~l), 
there are ao, ... ,an~l EM such that RM(ao, ... ,an~l) and h(ai) = bi for 
all i < n. 

The structure N is a (strong) homomorphic image of the structure 
M if there is a (strong) homomorphism from M onto N. 

The difference between the notations g : M ---+ N and h : M ---+ N thus 
is that g is merely a map between the universes (as sets), while h is a 
homomorphism of structures. 

Using the notation h[(ao, ... , an~ I)] = (h(ao), ... , h(an~I)) from the list 
before Chapter 1, we can rewrite (ii) and (iii) more concisely as follows. 

(ii') JN(h[a]) = h(JM(a)) for all f E F and a E Ma'Ul, 
(iii') RM(a) =} RN(h[a]) for all R E Rand a E Ma'(R). 

A monomorphism from M to N is, by definition, an injective and 
strong homomorphism, i. e. an injective homomorphism that satisfies also 
the inverse implication of (iii). We use h: M '----+ N to denote that h is a 
monomorphism from M to N. 

An isomorphism from M to N (or between M and N) is, by definition, 
a surjective monomorphism from M onto N. We write h : M ~ N if h is 
such an isomorphism. If h fixes a set X<;;; M n N pointwise (i.e. h extends 
the map idx), we write h: M ~x Nand speak of an isomorphism over 
X or just an X-isomorphism. The structures M and N are said to be 
isomorphic (over X), and N is called an isomorphic image of M (over 
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X), if there is an isomorphism between M and N (over X). The notation 
M ~ N (or M ~ x N) is used to indicate this. An isomorphism type of 
u-structures is an equivalence class of u-structures modulo the equivalence 
relation ~. 

Remark. That ~ is indeed an equivalence relation is easy to see. 

Isomorphic structures have of course the same cardinality. 

Warning. A bijective homomorphism need not be an isomorphism! 

Example. Consider two sets M and N of the same power and a signature 
u that consists of a unique predicate symbol R only. Turn these sets into 
u-structures M and N by setting RM = 0 and RN = N. Any bijection 
h : M --+ N is clearly a homomorphism but not a strong one, hence it cannot 
be an isomorphism. 

Remark. In case R = 0, any bijective homomorphism is already an iso­
morphism, since then every homomorphism is strong. 

Lemma 1.3.1. Let M and N be u-structures and let h: M--+ N be a bi­
jection. 

Then h : M --+ N and h -l : N --+ M hold if and only if h : M ~ N and 
h -l : N ~ M hold. 

Proof. ====?. The homomorphic condition (iii) for h-1 implies that h is an 
isomorphism. 
¢==. Any isomorphism is a homomorphism. 0 

Remark. Let M and N be u-structures. 
Then h : M --+ N is an isomorphism if and only if there is h' : N --+ M 

such that hh' = idN and h' h = idM. 

An endomorphism of M is, by definition, a homomorphism from M 
to itself. The endomorphisms of M form~with respect to composition of 
maps~a semigroup (see §5.2 below) whose identity element is idM. An 
automorphism of M is an isomorphism of M onto itself. Given X~ M, 
an X-isomorphism from M onto itself is called automorphism over X 
or just X-automorphism of M. The automorphisms of M form a group 
with respect to composition of maps, the so-called automorphism group 
of M, denoted by AutM. Given X~ M, AutxM denotes the subgroup 
formed by the X -automorphisms. A monomorphism h : M '----+ N is also 
called isomorphic embedding of M inN (cf. the end of §1.4 below). In 
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case h f X = idx for some X ~ M, we speak of embeddings over X or 
X-embeddings, denoted h: M '---+x N. M is said to be (isomorphically) 
embeddable (over X) inN, if there is an embedding (over X) of M in N. 
We then write M '---+ N (resp. M '---+x N). 

Thus every automorphism is a surjective and injective endomorphism, 
and again, the converse need not be true (check!). 

As in group theory or other algebraic theories known to the reader, every homo­
morphic image of a structure M is (isomorphic to) a factor structure of M modulo 
a congruence relation on M. In order to have a 1-1 correspondence between the 
isomorphism types of homomorphic images and factor structures, one needs to re­
strict oneself to strong homomorphisms (which, of course, is irrelevant if there are 
no relation symbols around). See §2.4 of Malcev's Algebraic Systems for this. 

Exercise 1.3.1. Given X~ M, letAut{x}M be the set {hE AutM : h[X] =X}. 
Show that AutxM is a normal subgroup of Aut{x}M· What happens if, instead 
of h[X] =X, we require only h[X] ~ X? 

Exercise 1.3.2. Find a structure with a bijective endomorphism that is not an 
automorphism. 

Exercise 1.3.3. Find an infinite structure M with a trivial automorphism group, 
i.e. AutM = {idM}· 

1.4 Restrictions onto subsets 

Often one wants to think of a subset of a given structure as a structure of 
the same signature, in its own right. This is possible only if the subset meets 
the following requirement. 

Let M = (M, eM, FM, RM) be a a-structure and N a subset of M. 
We say N is closed in M under functions1 (from a) if eM ~ Nand 
FM[N] ~ N (i.e., eM EN, for all c E e, and JM(a) EN, for all f E F 
and all a' (f)-tuples a in N). If this is the case, we can turn N into a a­
structure N by setting dif =eM, JN(a) = JM(a), and RN(b) precisely if 
RM(b), for all c E e, all f E F, and all a' (f)-tuples a from N, as well as all 
R E Rand all a'(R)-tuples b from N. 

Remark. If the signature of M is purely relational, i. e. e = F = 0, every 
subset N ~ M can be made such a uniquely determined structure N. If 
the signature of M is without constants, i. e. e = 0, the empty set can be 
made such a structure (isomorphic to 0u from §1.2). 

1This terminology is justified by the aforementioned fact that constants can be regarded 
as nullary functions. 
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For this relationship between M and N we introduce the following ter­
minology. 

N is called a restriction (or relativisation) of M onto N, denoted 
M f N. The structure N is said to be a substructure of M, if N ~ M 
and N is the restriction of M onto N. We write N ~ M for short. 

M is said to be a superstructure or an extension of N, if N is a 
substructure of M. We write M ::2 N then. 

Remark. The image h[M] of any homomorphism h: M-+ N of a-struc­
tures is closed under functions in N and thus the universe of a canonical 
substructure of N. Hence such an image is itself a a-structure and as such 
a homomorphic image of M. This structure on h[M] is denoted by h(M). 
The homomorphism h is a monomorphism if and only if it is an isomorphism 
between M and h(M). 

Exercise 1.4.1. Describe the difference between substructures of 7l according to 
whether 7l is considered in the signature (0; +) or in the signature (0; +,-). 

1.5 Reductions onto subsignatures 

We obtain a different kind of canonical structure, if, instead of shrinking the 
universe, we make the signature smaller and just 'forget' the interpretation 
of the symbols left out from the signature. As in the preceding section, we 
consider also the reverse process-which is no longer canonical-where we 
have to assign interpretations to symbols added to the signature. 

Let ao and a1 be signatures such that ao ~ a1 (i. e. with Co ~ C1, 
Fa ~ F1, Ro ~ R1, and a~ = a~ f dom a~). Then every a1-structure M 
can be canonically regarded as a ao-structure. More precisely, the reduct 
of M onto ao (or the ao-reduct of M) is the structure M f ao =def 

(M,Cfl,Fci'\Rfl) (where Cfl ={eM : c E Co} and similarly for Ffl 
and Rfl). Given a ao-structure Nand a a 1-structure M, the structure M 
is said to be an expansion of the structure N to a 1, if N is the reduct of 
M onto ao. 

The relationship between these concepts is illustrated by the following. 

restriction +--+ extension 
reduct+-+ expansion 

changing universes 
changing signatures 

Exercise 1.5.1. Given a signature a, find a signature a1 ~ a such that all a­
structures M and N with N ~ M have expansions M' and N' to a1 such that 
N' ~ M' and AutM' = Aut{N}M (cf. notation from Exercise 1.3.1). 
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1.6 Products 

Here we see how one can, in a canonical way, patch various structures to­
gether, provided all of them have the same signature. 

Let I be a nonempty set and (Mi : i E I) a family of a--structures. We 
define the direct (or cartesian) product M = TiiEI Mi of this family to 
be the following a--structure M. The universe M of M is the set of all maps 
a: I---+ uiEI Mi that have the property that a(i) E Mi for all i E I. We 
often write a as (a(i) : i E I). 

Given c E C, we let eM be the element a EM for which a(i) = cMi for 
alliEI. 

Given ann-place function symbol f E F and a tuple a= (ao, ... , an-I) 
from M, we let JM(a) be the element bE M such that, for all i E I, we 
have b(i) = fMi(ao(i), ... , an-I(i)). 

Given ann-place relation symbol R E Rand a tuple a= (ao, ... , an-I) 
from M, set RM(a) in case RMi(a0 (i), ... ,an-l(i)) holds for all i E I. 

For Ili<n Mi we also write Mo x ... x Mn-l· Given i E I, the structure 
Mi is called the ith (direct) factor of the direct product M. If Mi = N 
for all i E I, the product TiiEI Mi is also called Ith direct power of N, in 
symbols Nr. 

Remark. The axiom of choice ensures that TiiEI Mi "I- 0 if none of the Mi 
is empty. (In case I is finite, the axiom of choice is not necessary for this.) 

In connection with the above direct product we have the following canon­
ical homomorphisms. 

Given j E I, the map Pi : TiiEI Mi---+ Mj defined by Pj(a) = a(j) is, by 
definition, the projection onto the jth factor. 

Remark. Any such projection Pi is a homomorphism of M = TiiEI Mi to 
Mj, which is surjective if M -=f. 0. 

Exercise 1.6.1. Show that M = IliEI Mi is uncountable as soon as no Mi is 
empty and infinitely many of the Mi have at least two elements. 

Exercise 1.6.2. Find an embedding e: M---> M 1 such that pie = idM for all 
i E I. 





Chapter 2 

Languages 

In the first three sections of this chapter we build a formal language for 
each signature CJ = (C, F, R, CJ1). More precisely, we build a first-order (also 
called an elementary) language L = L(CJ), whose building blocks are the 
symbols from a certain alphabet, which depends on the signature CJ, and 
whose syntactic categories are terms and formulas. (What we here simply 
call a language, logicians also call an object language-as opposed to the 
metalanguage, in which the main text of this book is written and in which 
we usually argue.) 

Fix an arbitrary signature CJ = (C, F, R, CJ1). 

2.1 Alphabets 

The language L(CJ) we are going to define will consist of certain strings of 
symbols. The set of these symbols is called the alphabet of L( CJ). It consists 
of the following. 
Logical symbols: the connectives -, [read: not] for negation, 1\ [read: 
and] for conjunction, the existential quantifier 3 [read: there exists or 
there is], and the equality symbol = ; 
countably many variables (see below); 
the non-logical symbols from the signature CJ (i.e. the constant, function, 
and relation symbols from CJ); 
the parentheses ( and ) . 

(Thus alphabets can differ only in their non-logical symbols.) Some 
symbols may seem to be missing in the above, however we will see in due 
course that this choice suffices. 

Although the alphabet contains a fixed (countable) set of variables, 

11 
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there will be no need to know their formal names. We denote them by 
xo, x1, x2, ... or x, y, z, or the like. These symbols thus serve as (meta) 
variables for variables from the alphabet and are formally not part of the 
alphabet. 

2.2 Terms 

The terms of signature a (also called a-terms) are defined recursively as 
follows. 

(i) All variables are terms. 
(ii) All constant symbols are terms. 
(iii) If to, ... , tn-1 are terms and f E F with a' (f) = n, then f(to, ... , tn-1) 

is a term too. 
(iv) t is a term, if it can be built in finitely many steps using (i)-(iii). 

An example of a term in the language with two binary function symbols 
/1 and his h(h(h(z,h(x,h(x,y))),h(x,x)),h(x,x)). If /1 is+ and h 
is ·,then this term can be regarded as the polynomial (z · (x · (x · y)) + (x · 
x)) + (x · x). Be aware that a term is a syntactic object with no meaning 
attached initially. So we cannot drop the parentheses 'assuming associa­
tivity or commutativity of the operations', for terms 'know' nothing about 
operations, they are just built from function symbols that will later, on the 
semantic level of Chapter 3, be interpreted as operations in structures. In 
such a structure any term will then be interpreted as an element of that 
structure. 

Given a set X of variables, the term algebra of L over X (or with basis X, is 
the £-structure TermL(X) defined as follows. The domain of TermL(X) is the set 
of all £-terms whose variables are in X. We interpret the constant and the func­
tion symbols of L by themselves, i.e., cTermL(X) = c and JTermL(Xl(t1 , ... ,tn) = 

f(t1 , ... , tn) for each c E C and f E F. The relational symbols of L are inter­
preted trivially, that is we let them have empty domains, i. e., RTermL(X) = 0 for 
allRER. 

Exercise 2.2.1. Show that any map h0 from X to an £-structure M can be 
uniquely extended to a homomorphism h from TermL(X) toM. 

Exercise 2.2.2. Let h0 and h be as above and let t(x) be an £-term whose variables 
x are in X. Prove that tM(h0 [x]) = h(t(x)). 

Exercise 2.2.3. (About unique legibility) Prove that no proper initial segment of 
a term (regarded as a string of symbols of the alphabet) can be a term. Derive 
that for every term there is a unique way of building it up from its constituents 
according to the above recursion. 
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2.3 Formulas 

Next we build formulas from terms. While terms will later (in Chapter 
3) be interpreted as elements of structures, formulas will be interpreted as 
statements about these elements. Thus formulas will turn out to be the 
objects of our languages, whose interpretations have a truth value. But, as 
for terms, formulas themselves are syntactical objects that 'know' nothing 
about elements or structures. 

We define formulas of signature u (or u-formulas) recursively as fol­
lows. 

(i) If t1 and t2 are u-terms, then t1 = t2 is a formula. 
(ii) If to, ... , tn-1 are u-terms andRE R with u'(R) = n, then 

R(to, ... , tn-1) is a formula too. 
(iii) If <p and 'ljJ are formulas and xis a variable, then ...,<p, (<p 1\ '1/J), and :Jx <p 

are formulas too. 
(iv) <pis a formula if it can be obtained from (i)-(iii) in finitely many steps. 

The formulas from (i) and (ii) are said to be atomic. We denote the class 
of atomic formulas by at. The formulas from (i) are also known as term 
equations and those from (ii) as relational atomic formulas. Atomic for­
mulas and their negations are called literals. The only proper subformula 
of the formulas '</) and :Jx <p is the formula <p, the only proper subformulas 
of (<p 1\ '1/J) are its two conjuncts, <p and '1/J. 

Sometimes we are interested only in atomic formulas in which no vari­
ables have been replaced by terms other than variables. These are called 
unnested and defined formally as follows. Variables Xi and constant sym­
bols c E Care unnested terms, as well as terms of the form f(xo, ... , xn), 
where the Xi are variables (and f E F). No other terms are unnested. An 
atomic formula is said to be unnested if it is either an unnested term equa­
tion (i. e. an equation of unnested terms) or else a relational formula of the 
form R(xo, ... , Xn-1), where R E Rand the Xi are variables. 

An example of an atomic formula in L(+, ·) is (z · (x · (x · y))) + y = 
(z · (x · (x · y)) + (x · x)) + (x · x); it is not unnested. 

The terms and formulas of the signature u together form the expres­
sions of L(u) (or L(u)-expressions). Formally we define the language 
L(u) to be the set of all u-formulas. All concepts from Chapter 1 cor­
responding to signatures (like reducts, signatures without constants, 
purely relational signatures etc.) can thus be applied to languages as 
well. 

Note that all the expressions of the language are finite strings of symbols, 
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hence one can check in finitely many steps and effectively if a string of 
symbols is a term or a formula of the given language. 

The correspondence between signatures and languages being one-to-one 
(in fact, uniquely determined by the set of non-logical symbols), we may 
write IJ = iJ(L) instead of L = L(iJ). 

Given a language L without constants, 0£ denotes the empty £-structure 
(cf. §1.2). 

Exercise 2.3.1. Verify that there are only finitely many unnested atomic sentences 
in L, provided the signature of L is finite. 

Exercise 2.3.2. (About unique legibility) 
Prove that no proper initial segment of a formula (regarded as a string of 

symbols of the alphabet) can be a formula. Derive that for every formula there is a 
unique way of building it up from its constituents according to the above recursion. 

2.4 Abbreviations 

We now introduce some common notation as abbreviations, like the nullary 
connectives T [read: true or verum] and ..L [read: false or falsum], the 
binary connectives V [read: or] for the disjunction, --+ [read: if, then] 
for the implication or subjunction, and +-? [read: if and only if] for the 
equivalence or equijunction, the many-place connectives 1\ and V for 
multiple conjunction and disjunction, and the universal quantifier V 
[read: for all]. 

The formal definitions are as follows. Given terms t1 and t2, formulas <p 
and 7/J, and a natural number n > 0 we write 
t1 -I t2 for ...,t1 = t2, 
..L for 3x x -I x, 
T for ...,_L, 

<p V 7/J for ..., ( '<fJ 1\ -,'lj;), 
<p --+ 7/J for '<fJ V 7/J, 
<p +-? 7/J for ( <p --+ 7/J) 1\ ( 7/J --+ <p), V x <p for -,::Jx '<fJ, 
3xo ... Xn-l <p (also 3x <pin case x = (xo, ... , Xn-I)) for 3xo ... 3xn-1 <p, 
A<n <fJi for ( ... ( <po 1\ <fJ1) 1\ ... ) 1\ <fJn-1 (here <po, ... , <fJn-1 are arbitrary 
formulas), 
vi<n <fJi for ( ... (<po v <pi) v ... ) v <fJn-1, 
3~nx <p for 3xo . .. Xn-l (A<j<n Xi "I Xj 1\ 1\i<n <p(xi) ), 
3<:::n- 1x <p for ...,3~nx <p, 
3=nx <p for 3~nx <p 1\ ::J<C:nx <p. 
Sometimes we also write 3>n for 3~n+l (similarly for ::J<n) and 3! for 3=1 . 
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The disjuncts of a disjunction <p V 'lj; are the subformulas <p and 'lj;. 
The subformulas of an implication <p ----t 'lj; are the premise <p and the 
conclusion 'lj;. 

Parentheses are used in formulas (and terms) to indicate their syntactic 
structure. However, in order to avoid too many, we adopt the rule that 
the unary connective -, binds more strongly than the binary connectives 1\ 

and V, and the latter bind more strongly than ----t and ~. Further, outer 
parentheses around formulas may also be omitted (as we have already done 
in the above abbreviations). On the other hand, parentheses may be added 
if this serves their readability. 

Note that the abbreviations introduced are not formally part of the lan­
guage. This has the advantage of avoiding many cases when doing proofs by 
induction on the complexity of a formula, in which case we have to deal only 
with •, 1\, and 3. However, we do use the other connectives and quantifier 
for the following syntactical classification of formulas. 

Let 1: be a set of formulas. A boolean combination of formulas from 
1: is, by definition, a formula that can be obtained from formulas from 1: by 
using V, 1\ and • only. (Obviously, we may also allow ----t and ~, and we 
could do without V.) A positive boolean combination of formulas from 
1: is a formula that can be obtained from formulas from 1: by using only 1\ 

and V. The boolean closure of 1: is the set of all boolean combinations of 
formulas from 1:, denoted by .Li. 

A formula is positive if it can be obtained from atomic formulas using 
only /\, V, 3, and V. The class of all positive formulas (of all possible 
languages) is denoted by +. 

A negative formula is a negated positive formula. The class of all such 
is denoted by -. 

A formula is quantifier-free if it contains no quantifiers, where, for 
technical reasons, we assume T and ..l to be quantifier-free too.1 

The class of all quantifier-free formulas (of arbitrary signature) is denoted 
by qf. 

Thus qf is the class of all boolean combinations of atomic formulas. The 
class of all positive formulas from qf is the class of all positive boolean 
combinations of atomic formulas. 

1This is relevant only in case of quantifier-free sentences in languages without constants, 
cf. Remark (3) in §3.3. 



16 CHAPTER 2. LANGUAGES 

2.5 Free and bound variables 

A main ingredient of our formal language are the placeholders for elements 
of a structure-the variables. (Note that the term first-order indicates that 
only variables for elements occur, as opposed to second-order logic, which 
also has variables for sets of elements.) They allow us, as common in math­
ematics, to formulate in our formal language relations between elements 
without naming them concretely. Accordingly, we have to distinguish be­
tween two different kinds of occurrences of variables in a formula-an oc­
currence as such a placeholder and an occurrence as an operator variable for 
a quantifier. 

More formally, we make the following definition. In the formula :Jx r.p, 
the subformula r.p is said to be the scope of the quantifier. The occurrence 
of x after the quantifier is x's occurrence as operator variable. This 
occurrence as well as each occurrence of x in the scope of the quantifier 
is a bound occurrence of this variable, while any occurrence that is not 
bound is said to be a free occurrence of this variable. A free variable 
of a formula is, by definition, a variable that has a free occurrence in this 
formula. 

Example. All occurrences of x in the formula 'Vx(x = y V 3y(x f:. y)) are 
bound, while the first of the occurrences of y is free and the other two are 
bound. Hence y is the only free variable of this formula. 

A particular role play expressions without free variables. A term t is 
said to be constant if it contains no variables at all. A formula r.p is said to 
be a sentence if it contains no free variables. 

Remark. 
(1) (i) Every constant symbol is a constant term. 

(2) 

(3) 

(ii) If to, ... , tn-l are constant terms and f E F with cr'(f) = n, then 
!(to, ... , tn-l) is also a constant term. 

(iii) Obviously, a term t is constant iff it can be obtained in finitely 
many steps from (i) and (ii). 

Atomic sentences, i. e. atomic formulas that are sentences, are ei­
ther equations of constant terms or relational sentences of the form 
R(to, ... , tn- 1 ), where the ti are constant terms. 
Languages without constants thus have no atomic sentences. According 
to our convention about T and l. (from §2.4) the only quantifier-free 
sentences in this case are T and l. and their boolean combinations. 
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For technical reasons we introduce the following division among formulas 
of a given language L. Given a tuple x of variables, Lx is to denote the set 
of L-formulas, whose free variable are among the variables from x. Further, 
Ln is used to denote the collection of all L-formulas that have precisely n 
free variables (no matter which). For Uk<n Lk we also write L~n· 

Thus, Lo is the set of L-sentences, and L = UnElN Ln. Further, Lx is the 
set of all L-formulas whose free variables are from x, while Lz(x) contains 
only those formulas from Lx in which all entries of x occur free (however, 
Lz(x) also contains all other L-formulas with precisely l(x) free variables). 
If, for instance, x = (xo, ... , X7 ), then xo = x1 is in Lx ~ L~s, but X7 = X27 
is not, while for arbitrary variables x and y the formula x = y is in L2, but 
not in L 8• This notational difference is rather technical, for one can always 
add so-called dummy variables, as we will see in §3.2 below. 

The cardinality or power of the language L is, by definition, the cardi­
nal2 number ILl. In §7.6 we will see that ILl = ILnl = ILol = max{~o, lui} = 
max{No, ICUFURI}. Hence a language is countably infinite3 precisely ifthe 
set of symbols from the signature is countable (that is, finite or countably 
infinite). 

Exercise 2.5.1. Find a recursive definition of free variable that is according to the 
syntactical complexity of the formula under consideration. 

2.6 Substitutions 

An important syntactic operation on expressions of the language is that of 
substitution of variables by terms. For example, in the language L(+, ·), 
substituting x by z · z in the term x + z we obtain the term (z · z) + z. 
Similarly in polynomial equations (which are formulas in that language). 
Care has to be taken only in the case of bound variables, e. g., substituting 
x by z · z in the formula :lz(x + z = 0) would bring the variable z of the 
term z · z under the scope of :lz. This phenomenon is called collision of 
variables. Renaming is a remedy for this: in the above example replace 
first z by y, say, which yields :ly(x + y = 0), and only then substitute. The 
resulting formula would then be :ly((z · z) + y = 0). 

The reader will have no great difficulty to understand how to perform this 
renaming of bound variables in general (but note, the result is not unique, 

2We introduce cardinals only in Chapter 6. For the time being it suffices to replace 
every statement about cardinals by a statement about sets having the same power (which 
is defined, as usual, by the existence of a bijection). 

3 Every language being infinite anyway (due to infinite supply of variables at the least), 
we may simply say 'countable' here. 


