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The DNA molecule contains genetic information in the form of sequences 
of nucleotides abbreviated A, T, C, and G. Therefore, genetic information 
is essentially a very long sequence of these four letters. In a single human 
individual, the genetic content amounts to about 3 billion letters. Further-
more, information in DNA is used to direct the production of proteins and 
RNAs. Sequences of nucleotides in DNA and RNA, as well as sequences of 
amino acids in proteins, are all examples of molecular sequences. This book 
attempts to present an accessible account of the molecular sequence infor-
mation contained in the human genome and how it is being used to direct the 
production of RNA and protein. It addresses the question of what important 
biological signals are found in the linear sequence of nucleotides in DNA and 
shows how specific DNA sequences have distinct functions. Such functional 
sequence elements, typically in a small size range like 3–20 nucleotides, 
may be classified into a number of different functional categories. Examples 
are the three-nucleotide sequences that specify amino acids, or short DNA 
sequences that are targets for proteins that regulate transcription.

To provide biological motivation, the importance of the DNA sequence 
for biological function is illustrated with a variety of inherited disorders or 
with other genetic disorders such as cancer. With such examples, different 
functional elements of a gene, as well as different aspects of genetic infor-
mation transfer within the cell, are introduced. For instance, a point muta-
tion in a coding sequence of a globin gene gives rise to sickle cell anemia, 
a splicing mutation results in a form of hemophilia, and a mutation in an 
untranslated region of an mRNA leads to an iron metabolism disorder.

When discussing the functional consequences of DNA sequence, it is 
also of interest to consider the molecular impact of mutations and sequence 
variation. For instance, changes in DNA sequence may affect the recogni-
tion by a nucleic acid, such as in the case of a codon being read by a tRNA 
anticodon. Alternatively, a DNA variant will affect the recognition by a pro-
tein, such as a protein regulating transcription. There are indeed through-
out the book several examples showing in structural detail the interaction 
of a nucleic acid with another nucleic acid or with a protein, illustrating the 
consequences of mutations at the level of molecular interactions.

In essence, therefore, this book has a molecular sequence perspective, 
and recurring themes are functional DNA sequence elements, illustration of 
functional impact with genetic disorders, and molecular interactions affected 
by sequence variation.

Why is it important to know about the different DNA sequence ele-
ments of the human genome and their functional impact? There are many 
medical areas where such knowledge is critical, as shown in this book. 
Examples include pharmacology, gene therapy, and the diagnosis of rare 
inherited disorders and cancer.

The book is organized such that a major part (Chapters 6 through 
12) discusses specific functional sequence elements of the human genome. 
The preceding chapters offer an introduction to basic concepts with regard 
to the human genome. Chapters 2 and 3 introduce human genes and their 
relationship to human disease using sickle cell anemia as an example. Pro-
teins and their structure are introduced (Chapter 2), and the focus is then 
on DNA structure, the flow of genetic information from DNA to protein, as 
well as the basic principles of translating an mRNA using the genetic code 
(Chapter 3). Human genome sequencing and the organization and overall 
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content of the human genome are topics of Chapter 4. Individual genetic 
variation, the phenotypic effects of mutations, as well as cancer are then 
discussed in the following chapter.

Chapters 6 through 12 provide details about functional sequence ele-
ments of the genome and their role in the flow of genetic information. The 
importance of these elements is illustrated with inherited disorders or cancer. 
First, the role of the coding regions of mRNA molecules is discussed in Chap-
ter 6. Chapter 7 covers repeat expansions in coding regions. Then  the role of 
mRNA untranslated regions (Chapter 8) and the process of splicing to form 
mature mRNA (Chapter 9) is considered. The complex but important area of 
transcriptional control is then discussed in Chapter 10. The noncoding RNAs 
are the subject of Chapter 11. The analysis of DNA and protein sequences 
requires a substantial amount of computing. Therefore, in Chapter 12, com-
putational methods used with biological sequences are briefly reviewed.

Chapters 13 through 15 provide additional biological motivation as they 
further illustrate why careful studies of the relationship between sequence and 
function are essential. These chapters deal with important medical applications 
of human genome sequencing. Thus, experimental methods to diagnose errors 
in DNA sequences are described, including successful efforts to reveal causative 
mutations in rare inherited disorders (Chapter 13). Furthermore, there is recent 
progress in the area of gene therapy. Some of the most important methods 
are covered, as well as a few cases of successful therapy for inherited disease 
(Chapter 14). Finally, some of the applications of human genome sequencing 
raise a number of ethical concerns, and these are discussed in the final chapter.

When it comes to level of difficulty, I have attempted to present the 
material at a basic level to make it understandable for a reader without 
previous studies of genetics and molecular biology. However, the reader 
will benefit from a basic knowledge about chemistry and biochemistry.  
Following the principle that a picture says more than a thousand words, 
the book is richly illustrated. Furthermore, a web supplement to the book 
that includes scientific updates and answers to selected chapter questions is 
available at http://toresamuelsson.se/hg.

Why did this book come about? We currently see a dramatic devel-
opment in terms of human genome sequencing. Research laboratories 
around the world generate a wealth of genomic sequence data. Sequenc-
ing is becoming widely used in the clinic to analyze a variety of genetic 
disorders, including cancer. In addition, you can order your own genome 
sequence from a company (“direct-to-consumer” sequencing). With this 
wealth of genetic information, it becomes increasingly important to know 
what the human genome sequence is all about, how the sequence should 
be understood in terms of biological function, and how particular variants 
in the genome should be interpreted. I wanted to write a book providing 
an introduction to these topics. In the early days of my scientific career, I 
worked as a molecular biologist. Eventually, I turned to bioinformatics with 
a focus on molecular sequences. For a long time I have been intrigued by 
the digital nature of genetic information, that the genome sequence can be 
handled with computers as a long string of letters, and that computing with 
molecular sequences may be used to address a variety of biological prob-
lems. There are already very good books dealing with the human genome, 
but this book has a focus on molecular sequences and it examines in a 
systematic manner the functional role of DNA sequence elements as illus-
trated with human genetic disorders.

http://toresamuelsson.se
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D NA, short for deoxyribonucleic acid, is a universal carrier of 
hereditary information. In all life forms—viruses, bacteria, fungi, 
plants, and animals—it carries important instructions for the 

design of the organism. And not only does it carry information—it is also 
a molecule designed so that it may be accurately copied to the next gen-
eration. DNA is built from simple units, referred to as nucleotides, that 
are joined to form very long molecules. Each nucleotide contains any of 
four different nitrogenous bases: adenine, thymine, cytosine, or guanine, 
abbreviated A, T, C, and G, respectively. It is the sequence of these bases 
that forms the actual genetic message. Thus, the information in DNA may 
be expressed as a long sequence of the letters A, T, C, and G—for an 
example, see Figure 1.1.

We refer to the complete genetic material of an organism as its 
genome. The human genome is an astounding three billion letters. An 
important milestone was reached in biomedical research in 2001 when, for 
the first time, a draft of the human genome was presented and the complete 
sequence of letters could be read. A small fraction of the human genome 
is shown in Figure 1.1. Consider the whole genome printed as a physical 
book. A total of 6,400 bases are in Figure 1.1. You would need in the order 
of 500,000 pages like this to cover the full human genome. That would 
correspond to more than 1,600 books, each with 300 pages. For more on 
printing the human genome on paper, see Figure 1.2.

The issues addressed by this textbook are related to the three billion 
letter sequence of the human genome. How are we to make sense of and 
understand this vast information? What different biological signals are con-
tained in the DNA? How important are different regions of the sequence? 
Are some regions more important than others? What are the effects in the 
event the sequence of letters in DNA is changed? In molecular biology labo-
ratories, scientists have carried out experiments to address these questions. 
In addition, as changes or mutations in DNA are natural components of 
evolution, nature has by itself carried out experiments during billions of 
years that may guide us in understanding the relationship between genetic 
information and biological function. For instance, mutations in DNA can 
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Figure 1.1  Portion of the human genome. Letters A, T, C, and G represent the DNA bases adenine, thymine, cytosine, and guanine, 
respectively. This page has 6,400 bases. It would take 500,000 pages like this to cover the full human genome. This would correspond to 
more than 1,600 books assuming one book contains 300 pages. The magnifying glass is to indicate that the object of research concerning 
the human genome is to associate sequence elements with biological functions. Scientists use experimental methods, as well as computa-
tional methods, to do this—a work in progress.
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give rise to specific inherited diseases as well as cancer. What are the 
changes in the DNA sequence that cause such deleterious effects?

To answer these questions, we need to understand the organization 
of the human genome, as well as the different functional sequence ele-
ments in that genome. The flow of genetic information is crucial. Hence, 
DNA specifies what RNA molecules are to be made. One subclass of these 
RNAs is subject to processing to form messenger RNA (mRNA) molecules. 
These mRNA molecules in turn act as templates for the production of pro-
teins. Another abundant class of RNA molecules has functions other than 
to specify proteins. Throughout the elaborate flow of genetic information 
that includes copying of DNA sequences to RNA, RNA processing, as well 
as the synthesis of protein using mRNA, specific nucleotide sequences have 
distinct functions.

In essence, this book explores the information in the human genome 
and all of the important biological signals that are present. It illustrates 
various functions of DNA sequences. Examples include protein coding 
sequences and sequences that regulate the flow of genetic information. For 
all of the different sequence elements, the relationship between sequence 
and function is illustrated with disorders of a genetic background.

Figure 1.2  Human genome printed on paper. 
Scientists at the University of Leicester printed 
the whole human genome on paper. It resulted 
in 130 book volumes that would take 95 years to 
read. (Published under CC BY-SA 2.0.)
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T he theme of this book is the information contained within the human 
genome as outlined in Chapter 1. As a first element of information, 
we consider regions in the genome that specify the proteins to be 

made. Proteins are molecules built from amino acids, and the sequence of 
amino acids is determined by the sequence of nucleotides in the genome. 
Regions specifying proteins make up only a minute portion of the entire 
genome but are nevertheless significant.

We first consider how amino acid sequences are related to inherited 
disorders. As an example, we discuss the disorder sickle cell anemia. It 
is caused by a mutation that gives rise to a replacement of the amino acid 
glutamic acid to valine in the protein hemoglobin. There are multiple reasons 
why we discuss this particular disorder in some detail in the first book chap-
ters. Early studies of sickle cell anemia were based on nonmolecular clinical 
observations, and it seemed likely that the disease is inherited. But as research 
progressed, we eventually obtained a detailed molecular understanding of 
sickle cell anemia from the changes in DNA to detailed structural information 
about the hemoglobin protein. Sickle cell anemia is historically significant as 
it was the first disease to be characterized where a genetic change is asso-
ciated with a well-defined change in a protein molecule. This finding gave 
an early clue as to the power of molecular medicine. In addition, very few 
inherited disorders have been so thoroughly examined as sickle cell anemia, 
and information about the disease is still being collected today. There is a 
significant medical impact from this knowledge, which is why we return to 
this disorder also in other contexts such as gene therapy (Chapter 14).

THE DISCOVERY OF SICKLE CELL ANEMIA

Abotutuo. Chwechweechwe. Nwiiwii. Nuiduidui. These are all names of a 
disease common in Western Africa—a disease we now know also as sickle 
cell anemia. Its history in Africa may be tracked as far back as the seven-
teenth century. Classification of the disease was difficult on this continent, 
because the symptoms were closely related to those of other diseases in 
tropical areas. It was not until the early twentieth century that sickle cell 
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anemia was first described in a medical publication. The affected individual 
was Walter Clement Noel.

Noel was born in 1884 on a large estate on Grenada. At this time, 
this island was a British colony. Noel was from a wealthy black family. He 
suffered from sickle cell anemia but was still able to attend school, and he 
completed his undergraduate studies in 1904. The same year, he sailed to 
New York. During this week-long journey, he developed a leg ulcer, a com-
mon complication of sickle cell anemia. When he arrived in New York, he 
immediately sought medical attention. His ulcer was treated with iodine—
this chemical had the effect of killing the bacteria of the ulcer. Noel was thus 
cured and then traveled to Chicago, Illinois, where he was to study dentistry 
at the Chicago College of Dental Surgery. Noel was an unusual student at 
this time in the sense that it was uncommon for students of African descent 
to reach higher studies. In November 1904, his disease unfortunately got 
more severe as he developed respiratory problems. These problems per-
sisted for more than 1 month. He finally sought medical attention at the Pres-
byterian Hospital in Chicago and was examined by an intern, Ernest Irons. 
Among other tests, Irons examined a blood sample from Noel. Under the 
microscope he could see that the sample contained, as he phrased it, “many 
pear-shaped and elongated forms—some small.” Iron discussed these find-
ings with his supervisor James Brian Herrick. Despite further investigations, 
Herrick and Irons could not reveal the cause of these unusual cells.

Noel eventually recovered from his respiratory problems and returned 
to continue his studies at the dentistry school. However, he experienced 
additional illnesses during a period of more than two years of studies. 
Thus, he once was hospitalized for bronchitis and once for painful mus-
cular crises and gallstones. He was then under the care of Irons who kept 
dutiful notes. When Irons was done with his training, he gave these notes 
to Herrick. Herrick then took care of Noel for two years.

Herrick was at a national meeting in 1910 and there presented the case 
of Noel—incidentally without giving credit to Irons. He published a report 
the same year. To describe the blood cells of the disease, Herrick used the 
term “sickle shaped cells” (Figure 2.1).

Despite his illnesses, Noel graduated from dental school. He then went 
back to Grenada where he set up a general dentistry practice in St. George’s, 
the capital of Grenada. Not much is known of him from then on. However, 
in 1916, he overexerted himself. He attended a horse race on Grenada a 
long way from home and traveled home, all on the same day. As a result of 
this, he developed a serious respiratory infection. Only a few weeks after 
the horse race, he died from pneumonia at 32 years old. Noel is buried in a 
churchyard with a view of the Caribbean Sea. He is next to his sister Jane, 
who also died young of respiratory problems.

Only three months after Herrick published the case of Noel in 1910, a sec-
ond case of the same disorder was described. Blood samples from a 25-year-
old woman, Ellen Anthony, a resident of Virginia, showed the same strange 
shape of red blood cells as was observed in Noel. As more cases were identified 
in the 1920s, it was noted that all individuals with the disease were of African 
origin. The disease was eventually to be named sickle cell anemia (SCA).

A RECESSIVE INHERITED DISORDER

Significant advances in understanding sickle cell anemia were made by the end 
of the 1940s—both with respect to genetic inheritance and as to the molecular 
basis of the disease. Already in 1923, John Huck studied families with sickle cell 
anemia and noted that the disease was probably inherited, although his stud-
ies did not provide any firm evidence of this theory. Studies were complicated 

Figure 2.1  Sickle or crescent shape of red 
blood cells characteristic of sickle cell ane-
mia. A sickle cell is shown (to the left) along 
with normal red blood cells. (Published under 
CC BY 3.0.)
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by the fact that some individuals had symptoms related to sickle cell anemia 
but had a much milder form of the disease that did not shorten their lives. 
These individuals were said to have the sickle cell trait. It was often difficult to 
distinguish between these two categories of patients. But in 1949, James Neel 
carried out a careful examination of families affected by sickle cell anemia and 
was able to conclude that the disorder is indeed hereditary.

How is sickle cell anemia inherited? We turn to basic principles of 
genetics and inheritance, first elucidated by Gregor Mendel in the nineteenth 
century. The genetic makeup of an individual is referred to as the geno-
type, whereas the phenotype is the collection of observable characteristics. 
The phenotype is determined by the genotype and/or environmental fac-
tors. Human individuals—like all other animals—have two copies of each 
gene, one of paternal and one of maternal origin. A gene may have two or 
more variants—in the language of genetics, such variants are referred to as 
alleles. If two individuals have the same allele, they are said to be homozy-
gous for that allele, and if they have two different alleles, they are heterozy-
gous. From the perspective of an allele, one basic principle of inheritance is 
outlined in Figure 2.2. In this example, two different alleles “A” and “a” are 
considered, and the two parents are heterozygous, since they both have the 
allele configuration (genotype) Aa. During the formation of sperm and egg 
cells that occurs during meiosis, each cell ends up with any one of the two 
alleles. During fertilization, alleles are combined, and a child of the two par-
ents may in this case have any of the genotypes AA, Aa, and aa.

For the discussion of sickle cell anemia, the two different alleles we 
consider are the sickle cell variant and the normal form not associated with 
disease. Individuals with two copies of the sickle gene develop sickle cell 
anemia, whereas patients with one copy of the sickle gene and one normal 
copy of the hemoglobin gene have milder symptoms and express the sickle 
cell trait. This is illustrated by the pedigree (family tree) with members 
affected by the disorder in Figure 2.3.

The inheritance of sickle cell anemia follows the rules of a recessive 
disorder. In such a disorder, two copies of the disease allele are required 
to develop the disease. The rules of inheritance also inform us on prob-
abilities on inheriting disorders as explained in the diagram in Figure 2.4, 

Aa

aA
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aA

Meiosis

Fertilization

aa

Male parent

Sperm cells

Female parent

Offspring

Egg cells

Figure 2.2  Inheritance of alleles. Two dif-
ferent alleles (gene variants) “A” and “a” are 
considered. In this example, both parents have 
the same setup of these alleles. The sperm 
and egg cells formed during meiosis have only 
one copy of each allele. The probability that a 
certain sperm or egg cell has a specific allele 
is about 50%. The fertilized egg will have two 
copies of each autosomal chromosome, and in 
the example shown here, “a” from the father is 
combined with the same allele from the mother. 
However, other outcomes are possible given 
the parent genotypes. Thus, offspring may be 
of three different genotypes: AA, Aa, or aa.

Homozygous for
sickle cell variant
(express sickle-cell 
anemia)

Heterozygous for
sickle cell variant
(express sickle-cell 
trait)

Figure 2.3  Sickle cell anemia is a recessive 
inherited disorder. The pedigree illustrates 
inheritance of sickle cell anemia. Males are 
represented by squares, females by circles. The 
disease gene is indicated in red. In recessive 
disorders, two copies of the affected allele are 
required to develop the disease.
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known as a Punnett square. For instance, if one parent is homozygous for 
the sickle variant and the other parent is heterozygous, the probability that 
a child of these parents develops sickle cell anemia is 50%. If both parents 
are heterozygous, the probability is instead 25%.

As opposed to recessive disorders, in dominant disorders, only one dis-
ease gene is sufficient to develop the disease. Recessive and dominant dis-
eases may be distinguished because they have different inheritance patterns 
(for an example of a dominant disorder and its inheritance, see Chapter 7).

SICKLE CELL ANEMIA AND MALARIA

Sickle cell anemia affects many hundreds of thousands around the world. In 
particular, it is common among individuals of Sub-Saharan African descent. 
In the United States, it occurs among about 1 out of every 365 black Ameri-
can births, and about 1 in 13 black American babies is born with sickle cell 
trait. In Africa, sickle cell disease is even more common—in some parts of 
Sub-Saharan Africa, up to 1 in 30 of all newborns are affected by the disease.

Why is sickle cell anemia such a common inherited disorder in parts 
of Africa? It was demonstrated in the 1950s that people with the sickle 
cell trait are more resistant against malaria caused by the protozoan para-
site Plasmodium falciparum. Therefore, in areas of malaria, the sickle cell 
gene has a selective advantage. It is still not clear why the sickle cell gene 
protects against malaria.

CHARACTERIZING SICKLE CELL ANEMIA 
FURTHER: THE ROLE OF HEMOGLOBIN

What is actually the cause of sickle cell anemia? Research eventually 
zoomed in on hemoglobin, a protein.

Proteins are important molecules in biology, as they carry out many criti-
cal functions. For instance, they act as enzymes, transporters, and receptors 
mediating hormonal response. By the turn of the twentieth century, it was 
shown that proteins are composed of amino acids. All amino acids have 
a carboxyl group and an amino group in addition to a side chain specific 
to the amino acid (Figure 2.5). The chemical structures of selected amino 
acids are shown in Figure 2.6 (see Appendix Figure A.1 for the structure of 
all 20 amino acids). In proteins, the amino acids are joined through peptide 
bonds (Figure 2.7).

Hemoglobin belongs to the family of transporter proteins. It is an 
important protein responsible for transporting oxygen from the lungs to the 
tissues; in addition, it carries carbon dioxide back to the lungs. The oxygen-
binding properties of hemoglobin had already been discovered in the nine-
teenth century. Could the amino acid composition of hemoglobin somehow 
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Figure 2.4  Probabilities related to sickle 
cell anemia. Squares have been arranged to 
discover all possible genotypes that occur in 
children, given the genotypes of their parents. 
From this diagram, we may also infer the prob-
ability of each offspring genotype. The sickle 
cell allele is represented by “S” and the normal 
allele as “N.” The top row has the genotype of 
one parent, and the leftmost column the geno-
type of the other parent. The other boxes are 
obtained by copying the parent letters across 
or down. In this way, we get the predicted 
frequencies of all the potential genotypes. (a) 
This is a case where one parent has sickle cell 
anemia (genotype SS) and the other parent 
is heterozygous. As the SS genotype occurs 
in two of the four cells, we estimate that the 
probability that a child has sickle cell anemia 
is 50%. In (b) both parents are heterozygous. 
Here, the SS genotype occurs in one of the 
four cells, and we estimate that the probability 
is 25% that a child is affected by the disease. 
The example shows sickle cell anemia, a reces-
sive disorder, but the method of inferring prob-
abilities may be used to examine just about 
any case of recessive or dominant inheritance.
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Figure 2.5  Chemical structure of an amino 
acid. All amino acids contain a carbon atom to 
which is connected an amino group, a carboxyl 
group, a hydrogen atom, and a side chain (R) 
specific to the amino acid.
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Figure 2.6  Chemical structures of selected 
amino acids. Glycine is the smallest amino 
acid with a hydrogen as its side chain. Lysine 
and glutamic acid are amino acids that are 
charged because of their amino and carboxyl 
groups, respectively. Valine belongs to a group 
of nonpolar amino acids.
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be changed in sickle cell anemia? In one classic experiment in 1949, Linus 
Pauling compared hemoglobin from healthy individuals to that of sickle cell 
patients. It turned out that sickle cell globin had a different electrophoretic 
mobility—that is, when the proteins were subjected to an electric field, the 
sickle cell hemoglobin moved as a positively charged protein, in contrast to 
the normal hemoglobin (Figure 2.8). Pauling suggested that the difference 
was due to a change in the number of charged amino acids in the sickle 
cell version of the protein. The amino acids glutamic acid and aspartic acid 
are negatively charged because they carry a carboxyl group, and lysine and 
arginine are positively charged as they have an amino group (see Appendix 
Figure A.1). It seemed likely that sickle cell hemoglobin was affected in one 
or more of these amino acids. In the context of this finding, Pauling also 
used the term “molecular disease.” This expression referred to the fact that 
for the first time the molecular background to a disease was identified.

MAPPING A DELETERIOUS CHANGE 
IN HEMOGLOBIN

Further details as to the molecular basis of the disease were elucidated in 
the 1950s. Vernon Ingram did one crucial experiment in 1956. A protein 
may be cut up into smaller pieces—peptides—using an enzyme that is able 
to break up peptide bonds. One such enzyme is trypsin that cuts on the 
carboxyl-terminal side of lysine and arginine residues. Ingram used this 
enzyme to fragment hemoglobin and was able to separate the resulting 
peptides with a newly developed technique of two-dimensional separation 
by electrophoresis and chromatography. When comparing normal hemo-
globin to the sickle cell variant, it turned out that one single peptide was 
different (Figure 2.9a). The peptide in sickle cell hemoglobin was more 
positively charged than that of normal hemoglobin. Analysis of its amino 
acid composition showed that it had less glutamic acid and more of valine, 
suggesting that in sickle cell anemia, glutamic acid had been replaced by 
valine. The exact sequence of amino acids in the peptide was soon after 
determined. In the sickle cell protein, the peptide had valine instead of 
glutamic acid in one position (Figure 2.9b).

The analysis by Pauling and Ingram of sickle cell hemoglobin in the 
1940s and 1950s was an important milestone in molecular biology. For the 
first time, a genetic inherited disorder was explained in terms of a specific 
amino acid substitution in a protein. We now know many more examples 
of inherited disorders associated with amino acid replacements as will be 
apparent in forthcoming chapters.

A PROTEIN FOLDS INTO A THREE-
DIMENSIONAL SHAPE BASED ON ITS 
AMINO ACID SEQUENCE

To understand properly the molecular basis of sickle cell anemia, we also 
need to know the structural consequences of the amino acid substitution. 
Proteins are built from one or more polypeptide chains—each such chain 
is a string of amino acids joined by peptide bonds. The sequence of amino 
acids in each of the polypeptide chains will determine the three-dimen-
sional shape of the protein. We commonly refer to four different levels of 
protein structure: primary, secondary, tertiary, and quaternary (Fig-
ure 2.10). The primary structure refers to the amino acid sequence of 
the polypeptide chain (Figure 2.10a). Noncovalent interactions between 
amino acids in the same polypeptide chain give rise to structures known 
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Figure 2.7  Amino acids are connected 
through peptide bonds. A unit with CONH 
represents the peptide bond. R1, R2, and R3 
represent amino acid side chains.
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Figure 2.8  Electrophoretic mobility of nor-
mal hemoglobin and its sickle cell variant 
as studied by Linus Pauling. Pauling used a 
method of electrophoresis where the protein 
samples to be separated are in solution. By 
applying a current, the proteins will move in 
the solution dependent on their charge. The 
position with respect to the electric field is 
on the x-axis, and the peak height (y-axis) is 
proportional to protein concentration. The 
vertical line represents the position of an 
electrically neutral molecule. The results of 
Pauling’s experiment demonstrated that the 
sickle cell hemoglobin moved as a positively 
charged molecule, whereas the normal protein 
migrated as a negatively charged molecule. 
The four different samples are (1) normal 
hemoglobin, (2) sickle cell hemoglobin, (3) 
hemoglobin prepared from individuals with the 
sickle cell trait (such individuals have approxi-
mately equal proportions of sickle and normal 
protein), and (4) a synthetic mixture with equal 
amounts of normal and sickle cell protein.
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as α-helices and β-sheets. These are secondary structure elements  
(Figure 2.10b). The tertiary structure of a protein refers to the global 
folding of the entire polypeptide chain of a protein. This structure may 
contain α-helices and/or β-sheets, as well as loop regions in between 
(Figure 2.10c). In the event the protein has at least two polypeptide 
chains, also known as subunits, we also need to consider the number 
and arrangement of these polypeptide chains—the quaternary structure 
(Figure 2.10d).

There are three major experimental methods whereby the three-
dimensional structure of a protein may be inferred. In x-ray crystallog-
raphy, the protein is in the form of a crystal. The crystal is irradiated 
with x-rays, and the diffraction pattern obtained is used to calculate 
the electron density of the crystal. The electron density is finally used 
to elucidate the coordinates of the different atoms in the protein. Most 
available protein structures have been determined with x-ray crystallog-
raphy. Second, nuclear magnetic resonance (NMR) is a method for 
protein structure determination where the protein is in solution. Third, 
cryo-electron microscopy is a more recent method used for structural 
studies of large proteins or complexes involving proteins and other large 
molecules. Structure may also be predicted from the sequence of amino 
acids using computational tools, although this is much less reliable than 
the experimental methods.

SICKLE CELL DISEASE MAY NOW BE 
UNDERSTOOD IN THE CONTEXT OF 
PROTEIN STRUCTURE

In 1959, the structure of hemoglobin was elucidated by Max Perutz using 
the technique of x-ray crystallography (Figure 2.11). The hemoglobin 
molecule is built from two different polypeptides, α-globin and β-globin. In 
one molecule of hemoglobin, there are two α-chains and two β-chains. It is 
the β-chain that is affected in sickle cell anemia.

Hemoglobin and a related protein myoglobin were in fact the first pro-
tein structures ever to be presented. The structure of hemoglobin, as well as 
that of the sickle cell variant, have been further refined in later work.
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Figure 2.9  Two-dimensional separation of 
hemoglobin peptides. (a) Normal hemo-
globin and sickle cell globin were treated with 
trypsin to generate a number of peptides. 
These peptides were separated in two dimen-
sions using paper electrophoresis and paper 
chromatography. The patterns obtained are 
identical except for one peptide (N and S, for 
normal and sickle cell hemoglobin, respec-
tively). (b) Determination of the peptide 
sequences showed that glutamic acid in posi-
tion 6 of the normal protein had been replaced 
by valine in the sickle cell protein.
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The tertiary structure of a protein is its global fold, including α-helices (blue), β-sheets (orange), and loop regions without ordered structure. 
The protein shown is a subunit of the enzyme Akt2 with both α-helical and β-sheet structures. (d) The quaternary structure of Akt2 is shown—
a dimer of two identical polypeptide chains.
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The replacement in sickle cell anemia of glutamic acid—a negatively 
charged amino acid (see Figure 2.6 and Figure 2.12a)—with valine has a sig-
nificant effect on the properties of hemoglobin. Valine is a hydrophobic amino 
acid and interacts with a pair of hydrophobic amino acids—phenylalanine 
in  position 85 and leucine in position 88 of the protein chain—that are 
located in the β-chain of a neighboring globin molecule (Figure 2.12b). As 
a result, an aggregation process is initiated where globin molecules form fib-
ers. These fibers extend through the red blood cells such that the cells are 
distorted. Because of this alteration in shape and because sickle cells tend to 
stick to the wall of blood vessels, normal blood flow is prevented. Pain may 
arise when blood flow is restricted. Sickled cells have a shorter life span, giv-
ing rise to a lowered amount of red blood cells and poor oxygen transport 
(anemia).

A MOLECULAR SEQUENCE: PROTEINS CAN 
BE DEPICTED AS A STRING OF AMINO ACID 
SYMBOLS

Whereas Ingram focused on the amino acid sequence of selected peptides, 
the complete amino acid sequences of the human α- and β-globins were 
elucidated in the early 1960s. The sequence of the β-chain is shown in 
Figure 2.13, where the amino acids are shown with a background color 
based on their physical and chemical properties. A polypeptide chain built 
from amino acids has a distinct polarity, where one end of the polypeptide 
has a free amino-terminal group (the N-terminus) and the other end has 
a free carboxyl terminal group (C-terminus). Amino acid sequences are, 
as a rule, displayed with the N-terminus to the left and the C-terminus to 
the right. The amino acids are typically abbreviated with one letter code 
(see Figure 2.13) or three letter codes. The reader is referred to Figure A.1 
for details of these codes.

Amino acid sequences of proteins may be compared using a com-
putational procedure of alignment. Such an alignment is shown in 
Figure 2.14, where α- and β-chains of five different vertebrates are com-
pared. From this alignment, we observe that all the globin sequences 
are similar, reflecting the fact that they have been well conserved during 
evolution. We also identify features that distinguish the α- and β-chains, 
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Figure 2.11  Three-dimensional structure 
of hemoglobin. Hemoglobin is built from two 
α-chains (orange) and two β-chains (cyan). Each 
of the four subunits contains heme groups 
(shown in ball-and-stick representation). 
(Adapted from Paoli M et al. 1996. J Mol Biol 
256:775. PDB ID: 1GZX.)
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such as an insertion of five amino acids in the β-chains, as compared to 
the α-chains. However, there is a lot of additional information that we 
may extract from amino acid sequences and alignments as further dis-
cussed in Chapter 12.

Amino acids in proteins are our first instance of a molecular 
sequence. There will be more of these as we enter into the world of 
nucleic acids—DNA and RNA—in the next chapter. We then address the 
important problem of how, at a molecular level, glutamic acid was changed 
into valine in sickle cell anemia.
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Figure 2.12  Sickle cell hemoglobin 
molecules interact with each other in an 
abnormal manner. (a) Space-filling model 
of normal β-chain of hemoglobin showing 
surface location of glutamic acid (colored 
with side-chain carboxyl oxygen atoms in red) 
in position 6 of the polypeptide chain. For 
comparison is shown the structure of valine, 
the amino acid replacing glutamic acid in 
sickle cell anemia. (b) Two molecules of sickle 
cell hemoglobin showing interaction between 
hydrophobic amino acids in neighboring subu-
nits. The β-chains are in green and α-chains in 
red (wireframe representation). Highlighted 
in space-fill representation is an interaction 
between valine 6 in one polypeptide with 
a pair of two other hydrophobic amino 
acids—phenylalanine 85 and leucine 88—in 
a neighboring polypeptide. This interaction 
initiates aggregation of globin molecules into 
harmful fibers. (Adapted from Tame J, Vallone 
B. 2000. Acta Crystallogr 56:805–811. PBD ID: 
1A3N. Harrington DJ et al. 1997. J Mol Biol 
272:398–407. PDB ID: 2HBS.)

Figure 2.13  Amino acid sequence of the 
β-chain of hemoglobin. Amino acids are colored 
according to their physical and chemical proper-
ties. For instance, the basic (positively charged) 
amino acids arginine (R) and lysine (K) have a red 
background. Cleavage sites for trypsin as used in 
the experiment of Figure 2.9 are indicated with 
arrows.
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SUMMARY

•	 Sickle cell anemia is a recessive inherited disorder. For the disease to 
be expressed, individuals must carry two copies of the sickle cell allele. 
Individuals with only one copy have the sickle cell trait with less severe 
symptoms.

•	 Protein structure may be described at the four levels: primary, second-
ary, tertiary, and quaternary.

•	 Hemoglobin is built from two chains of α-globin and two chains of 
β-globin.

•	 In sickle cell anemia, the amino acid glutamic acid of β-globin is replaced 
by the hydrophobic amino acid valine, resulting in an aggregation  
process.

•	 Sickle cell anemia was the first disease to be characterized where a 
genetic change is associated with a well-defined change in a protein 
molecule.

•	 The primary structure of a protein—the amino acid sequence—may be 
depicted as a string of amino acid symbols. Amino acid sequences may 
be compared using a computational procedure of alignment.

QUESTIONS

	 1.	 What is characteristic of recessive and dominant inheritance, respectively?
	 2.	 What is the difference between sickle cell trait and sickle cell anemia?
	 3.	 Explain the concepts genotype and phenotype.
	 4.	 Explain what is meant when we say that an individual is homozygous 

for a specific genetic variant (allele).
	 5.	 Use a Punnett square to show the offspring when one parent is homozygous 

for the sickle cell allele and one parent has two normal globin alleles.
	 6.	 Why is the sickle cell gene variant (allele) fairly common in specific 

populations?
	 7.	 Draw the chemical structure of an amino acid. Also draw a dipeptide 

(two amino acids joined with a peptide bond).
	 8.	 What are the acidic and basic amino acids, respectively?
	 9.	 Give examples of hydrophobic amino acids.
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Figure 2.14  Alignment of vertebrate hemoglobin amino acid sequences. Coloring of amino acids is as in Figure 2.13.
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	10.	 What were the experiments carried out in the 1940s and 1950s to 
elucidate the molecular basis of sickle cell anemia?

	11.	 Explain what is meant by primary, secondary, tertiary, and quaternary 
structures of proteins.

	12.	 What are the methods used to infer the three-dimensional structure of 
proteins and other large molecules?

	13.	 In sickle cell anemia, one amino acid is replaced with another in 
the β-globin subunit of hemoglobin. What are the consequences in 
terms of amino acid interactions and protein structure? What are the 
physiological consequences?

	14.	 What is meant by a molecular sequence?
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