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Preface

The past few decades have witnessed tremendous development in the manu-
facture of computers and software, and scientific computing has become an
important tool for finding solutions to scientific problems that come from var-
ious branches of science and engineering. Nowadays, scientific computing has
become one of the most important means of research and learning in the fields
of science and engineering, which are indispensable to any researcher, teacher,
or student in the fields of science and engineering.

One of the most important branches of scientific computing is a numer-
ical analysis which deals with the issues of finding approximate numerical
solutions to such problems and analyzing errors related to such approximate
methods. Both the MATLAB® and Python programming languages provide
many libraries that can be used to find solutions of scientific problems visual-
izing them. The ease of use of these two languages became the most languages
that most scientists who use computers to solve scientific problems care about.

The idea of this book came after I taught courses of scientific computing for
physics students, introductory and advanced courses in mathematical software
and mathematical computer applications in many Universities in Africa and
the gulf area. I also conducted some workshops for mathematics and science
students who are interested in computational mathematics in some Sudanese
Universities. In these courses and workshops, MATLAB and Python were used
for the implementation of the numerical approximation algorithms. Hence, the
purpose of introducing this book is to provide the student with a practical
guide to solve mathematical problems using MATLAB and Python software
without the need for third-party assistance. Since numerical analysis is con-
cerned with the problems of approximation and analysis of errors of numerical
methods associated with approximation methods, this book is more concerned
with how these two aspects are applied in practice by software, where illustra-
tions and tables are used to clarify approximate solutions, errors and speed of
convergence, and its relations to some of the numerical method parameters,
such as step size and tolerance. MATLAB and Python are the most popular
programming languages for mathematicians, scientists, and engineers. Both
the two programming languages possess various libraries for numerical and
symbolic computations and data representation and visualization. Proficiency
with the computer programs contained in this book requires that the student
have prior knowledge of the basics of the programming languages MATLAB
and Python, such as branching, Loops, symbolic packages, and the graphical

xiii
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libraries. The MATLAB version used for this book is 2017b and the Python
version is 3.7.4.

The book consists of 11 chapters divided into three parts: the first part is
concerned with discussing numerical solutions for linear and nonlinear systems
and numerical difficulties facing these types of problems with how to overcome
these numerical difficulties. The second part deals with methods of completing
functions, differential and numerical integration, and solutions of differential
equations. The last part of the book discusses methods to solve linear and
nonlinear programming and optimal control problems. It also contains some
specialized software in Python language to solve some problems numerically.
These software packages must be downloaded from a third party, such as
Gekko which is used for the solutions of differential equations and linear and
nonlinear programming in addition to the optimal control problems. Also, the
Pulp package is used to solve linear programming problems and finally Pyomo
a package is used for solving linear and nonlinear programming problems. How
to install and run such a package is also presented in the book.

What distinguishes this book from many other numerical analysis books
is that it contains some topics that are not usually found in other books, such
as nonstandard finite difference methods for solving differential equations and
solutions of optimal control problems. In addition, the book discusses imple-
mentations of methods with high convergence rates, such as Gauss integration
methods discussed in the numerical differentiation and integration, exact finite
difference schemes for solving differential equations discussed in the nonstan-
dard finite differences Chapter. It also uses efficient python-based software for
solving some kinds of mathematical problems numerically.

The parts of the book are separate from each other so that the student
can study any part of it without having to read the previous parts of that
part. The exception to this is the optimal control chapter in the third part,
which requires studying numerical methods to solve the differential equations
discussed in the second part.

After reading this book and implementing the programs contained on it,
a student will be able to deal with and solve many kinds of mathematical
problems such as differential equations, static, and dynamical optimization
problems and apply the methods to real-life problems.
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1
Solving Linear Systems Using Direct Methods

Abstract
Linear systems of equations have many applications in mathematics and sci-
ence. Many of the numerical methods used for solving mathematics problems
such as differential or integral equations, polynomial approximations of tran-
scendental functions and solving systems of nonlinear equations arrive at a
stage of solving linear systems of equations. Hence, solving a linear system of
equations is a fundamental problem in numerical computing.

This chapter discusses the direct methods for solving linear systems of
equations, using Gauss and Gauss-Jordan elimination techniques and the
matrix factorization approach. MATLAB® and Python implementations of
such algorithms are provided.

1.1 Testing the Existence of the Solution
A linear system consisting of m equations in n unknowns, can be written in
the matrix form:

Ax= b (1.1)

where,

A=


a11 a12 . . . a1n
a21 a21 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,x=


x1
x2
...
xn

 and b=


b1
b2
...
bm


Here, the coefficients aij of matrix A ∈ Rm×n are assumed to be real,

x ∈ Rn is the vector of unknowns and b ∈ Rm is a known vector. Depending
on the relationship between m and n three kinds of linear systems are defined
[30, 53]:

1. overdetermined linear systems: there are more equations than
unknown (m> n).

3



4 Solving Linear Systems Using Direct Methods

2. determined linear systems: equal numbers of equations and unknowns
(m= n).

3. underdetermined linear systems: there are more unknowns than equa-
tions (m< n).

Let Ã = [A | b] be the augmented matrix of the linear system Ax = b.
Then, the existence of a solution for the given linear system is subject to one
of the two following cases:

1. rank(Ã) = rank(A): in this case, there is at least one solution, and we
have two possibilities:

(a) rank(Ã) = rank(A) = n: in this case there is a unique solution.
(b) rank(Ã) = rank(A)< n: in this case there is infinite number of solu-

tions.

2. rank(Ã)> rank(A): in this case there is no solution and we can look for
a least squares solution.

If the linear system Ax= b has a solution, it is called a consistent linear
system, otherwise, it is an inconsistent linear system [30].

In MATLAB, the command rank can be used to test the rank of a given
matrix A.

>> A = [1 2 3; 4 5 6; 7 8 9]
A =
1 2 3
4 5 6
7 8 9
>> b = [1; 1; 1]
b =
1
1
1
>> r1 = rank(A)
r1 =
2
>> r2 = rank([A b])
r2 =
2

In python, the function matrix rank (located in numpy.linalg) is used to
compute the rank of matrix A and the augmented system [Ab].

In [1]: import numpy as np
In [2]: A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [3]: b = np.array([1, 1, 1])
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In [4]: r1, r2 = np.linalg.matrix_rank(A), np.linalg.matrix_rank
(np.c_[A, b])

In [5]: r1
Out[5]: 2
In [6]: r2
Out[6]: 2

In the special case when m= n (A is a squared matrix) and there is a unique
solution (rank(Ã) = rank(A) = n), this unique solution is given by:

x=A−1b.

Hence, finding the solution of the linear system requires the inversion of
matrix A.

1.2 Methods for Solving Linear Systems
This section considers three special types of linear systems which are linear
systems with diagonal, upper triangular and lower triangular matrices.

1.2.1 Special Linear Systems
We consider the linear system:

Ax= b,

where A ∈ Rn×n, x and b ∈ Rn. We consider two cases.

1. A is a diagonal matrix:
In this case, matrix A is of the form:

A=


a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann


which leads to the linear system:

a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann




x1
x2
x3
...
xn

=


b1
b2
b3
...
bn

 (1.2)
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The solution of the linear system (1.2) is given by:

xi = bi
aii

The MATLAB code to compute this solution is given by:

1 function x = SolveDiagonalLinearSystem(A, b)
2 % This function solves the linear system Ax = b, where ...

A is a diagonal matrix
3 % b is a known vector and n is the dimension of the ...

problem.
4 n = length(b) ;
5 x = zeros(n, 1) ;
6 for j = 1: n
7 x(j) = b(j)/A(j, j) ;
8 end

We can apply this function to solve the diagonal system:2 0 0
0 −1 0
0 0 3

x1
x2
x3

=

 4
1
−3


by using the following MATLAB commands:

>> A = diag([2, -1, 3])
A =
2 0 0
0 -1 0
0 0 3
>> b = [4; 1; 3]
b =
4
1
3
>> x = SolveDiagonalLinearSystem(A, b)
x =
2
-1
1

The python code of the function SolveDiagonalLinearSystem is as fol-
lows.

1 import numpy as np
2 def SolveDiagonalLinearSystem(A, b):
3 n = len(b)
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4 x = np.zeros((n, 1), 'float')
5 for i in range(n):
6 x[i] = b[i]/A[i, i]
7 return x

In [7]: A = np.diag([2, -1, 3])
In [8]: b = np.array([4, -1, 3])
In [9]: x = SolveDiagonalLinearSystem(A, b)
In [10]: print(’x = \n’, x)
x =
[[ 2.]
[ 1.]
[ 1.]]

2. A is an upper triangular matrix:
In this case, matrix A is of the form:

A=


a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann


Therefore, we have the linear system:

a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann




x1
x2
x3
...
xn

=


b1
b2
b3
...
bn

 (1.3)

In this case we use the back substitution method for finding the solution
of system 1.3. The MATLAB function SolveUpperSystem.m solves the
linear system 1.3 using the back-substitution method.

1 function x = SolveUpperLinearSystem(A, b)
2 % This function uses the backward substitution method ...

for solving
3 % the linear system Ax = b, where A is an upper ...

triangular matrix
4 % b is a known vector and n is the dimension of the ...

problem.
5 n = length(b) ;
6 x = zeros(n, 1) ;
7 x(n) = b(n)/A(n, n) ;
8 for j = n-1: -1 : 1
9 x(j) = b(j) ;
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10 for k = j+1 : n
11 x(j) = x(j) - A(j, k)*x(k) ;
12 end
13 x(j) = x(j)/A(j, j) ;
14 end

The python code for the SolveUpperSystem, is as follows.

1 import numpy as np
2 def SolveUpperLinearSystem(A, b):
3 n = len(b)
4 x = np.zeros((n, 1), 'float')
5 x[n-1] = b[n-1]/A[n-1, n-1]
6 for i in range(n-2, -1, -1):
7 x[i] = b[i]
8 for j in range(i+1, n):
9 x[i] -= A[i, j]*x[j]

10 x[i] /= A[i, i]
11 return x

3. A is a lower triangular system:
In this case, matrix A is of the form:

A=


a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0
...

...
...

. . .
...

an1 an2 an3 . . . ann


Therefore, we have the linear system:

a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0
...

...
...

. . .
...

an1 an2 an3 . . . ann




x1
x2
x3
...
xn

=


b1
b2
b3
...
bn

 (1.4)

The forward substitution method is used to find the solution of system 1.4.
The MATLAB function SolveLowerSystem.m solves the linear system 1.4
using the forward-substitution method.

1 function x = SolveLowerLinearSystem(A, b)
2 % This function uses the forward substitution method ...

for solving
3 % the linear system Ax = b, where A is an lower ...

triangular matrix
4 % b is a known vector and n is the dimension of the ...

problem.
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5 n = length(b) ;
6 x = zeros(n, 1) ;
7 x(1) = b(1)/A(1, 1) ;
8 for j = 2 : n
9 x(j) = b(j) ;

10 for k = 1 : j-1
11 x(j) = x(j) - A(j, k)*x(k) ;
12 end
13 x(j) = x(j)/A(j, j) ;
14 end

The python code of the function SolveLowerSystem is as follows.

1 def SolveLowerLinearSystem(A, b):
2 import numpy as np
3 n = len(b)
4 x = np.zeros((n, 1), 'float')
5 x[0] = b[0]/A[0, 0]
6 for i in range(1, n):
7 x[i] = b[i]
8 for j in range(i):
9 x[i] -= A[i, j]*x[j]

10 x[i] /= A[i, i]
11 return x

1.2.2 Gauss and Gauss-Jordan Elimination
Gauss and Gauss-Jordan elimination methods are related to each other. If
given a matrix A ∈ Rn×n, then both Gauss and Gauss-Jordan apply ele-
mentary row operations through consequent steps over matrix A. The Gauss
method stops after obtaining the row echelon form of matrix A (If A is non-
singular, then its row echelon form is an upper triangular matrix), whereas
Gauss-Jordan continuous until reaching the reduced row echelon form (If
A is nonsingular, then its reduced row echelon form is the identity matrix).

To illustrate the differences between the row echelon and the reduced row
echelon forms, the two forms are computed for the matrix:

A=

 4 −1 −1
−1 4 −1
−1 −1 4


Starting by finding the row echelon form for the given matrix.

A=

 4 −1 −1
−1 4 −1
−1 −1 4

 R2←4R2+R1=========⇒
R3←4R3+R1

4 −1 −1
0 15 −5
0 −5 15

 R3←3R3+R2=========⇒

4 −1 −1
0 15 −5
0 0 40
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The upper triangular matrix4 −1 −1
0 15 −5
0 0 40


is the row echelon form of matrix A.

Gauss-Jordan elimination continues above the pivot elements, to obtain
the reduced row echelon form.4 −1 −1

0 15 −5
0 0 40

 R3←R3/40=======⇒

4 −1 −1
0 15 −5
0 0 1

 R1←R1+R3=========⇒
R2←R2+5R3

4 −1 0
0 15 0
0 0 1


R2←R2/15=======⇒

4 −1 0
0 1 0
0 0 1

 R1←R1+R2========⇒

4 0 0
0 1 0
0 0 1

 R1←R1/4======⇒

1 0 0
0 1 0
0 0 1


1.2.3 Solving the System with the rref Function
The Gauss and Gauss-Jordan methods are two familiar approaches for solv-
ing linear systems. Both begin from the augmented matrix, obtain the row
echelon form or the reduced row echelon form, respectively. Then, the Gauss
method uses the back-substitution technique to obtain the solution of the lin-
ear system, whereas in Gauss-Jordan method the solution is located in the
last column.

The MATLAB code below, reads a matrix A and a vector b from the user,
then it applies the Gauss-Seidel elimination through applying the rref to the
augmented system [A b]

1 clear ; clc ;
2 A = input('Enter the matrix A: ') ; % Reading matrix A from ...

the user
3 b = input('Enter the vector b: ') ; % Reading vector b from ...

the user
4 [m, n] = size(A) ; % m and n are the matrix ...

dimensions
5 r1 = rank(A) ; % the rank of matrix A is ...

assigned to r1
6 r2 = rank([A b]) ; % the rank of the ...

augmented system [A b] is assigned to r2
7 if r1 , r2 % testing whether rank(A) ...

not equal rank([A b])
8 disp(['Rank(A) = ' num2str(r1) ' , ' num2str(r2) ' = ...

Rank([A b]).']) ;
9 fprintf('There is no solution.\n') ; % No solution in this ...

case
10 end
11 if r1 == r2 % testing whether rank(A) = ...

rank([A b])
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12 if r1 == n % if yes, testing whether the ...
rank equals n

13 R = rref([A b]) ; % the reduced row echelon form ...
of [A b]

14 x = R(:, end) ; % the solution is at the last ...
column of the reduced

15 % row echelon form
16 disp(['Rank(A) = Rank([A b]) = ' num2str(r1) ' = ...

#Col(A).']) ;
17 disp('There is a unique solution, given by: ') ; ...

disp(x) ;
18 %displaying the solution of the linear system
19 else % rank(A) = rank([A b]) < n
20 disp(['Rank(A) = Rank([A b]) = ' num2str(r1) ' < ' ...

num2str(n) ' = #Col(A).']) ;
21 fprintf('Infinite number of solutions.\n') ;
22 end
23 end

The result of executing the above MATLAB script is:

Enter the matrix A: [1 2 3; 4 5 6; 7 8 9]
Enter the vector b: [1;3;5]
Rank(A) = Rank([A b]) = 2 < 3 = #Col(A).
Infinite number of solutions.

Enter the matrix A: [1 3 5; 2 4 6; 7 8 9]
Enter the vector b: [1;1;1]
Rank(A) = 2 ˜= 3 = Rank([A b]).
There is no solution.

Enter the matrix A: [2 2 -1; 1 2 1; -1 -1 2]
Enter the vector b: [2;4;1]
Rank(A) = Rank([A b]) = 3 = #Col(A).
There is a unique solution, given by:
0.6667
1.0000
1.3333

In Python, the built-in function sympy.Matrix is used to construct a
matrix. The Matrix class has a method rref to compute the reduced row
echelon from of the matrix.

1 import sympy as smp
2 A = smp.Matrix([[2, 2, -1], [1, 2, 1], [-1, -1, 2]])
3 b = smp.Matrix([[2], [4], [1]])
4 m, n = A.rows, A.cols
5 r1 = A.rank()
6 C = A.copy()
7 r2 = (C.row join(b)).rank()
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8 if r1 != r2: # testing whether rank(A) ...
not equal rank([A b])

9 print('Rank(A) = ' +str(r1) +' != ' +str(r2) +' = Rank([A ...
b]).')

10 print('There is no solution.\n') ; # No solution in this case
11 if r1 == r2: # testing whether rank(A) = ...

rank([A b])
12 if r1 == n: # if yes, testing whether the ...

rank equals n
13 R = (A.row join(b)).rref() # the reduced row ...

echelon form of [A b]
14 x = R[0][:, -1] # the solution is at the last ...

column of the reduced
15 # row echelon form
16 print('Rank(A) = Rank([A b]) = '+str(r1) +' = #Col(A).')
17 print('There is a unique solution, given by: ') ; ...

print(x) ;
18 #displaying the solution of the linear system
19 else: # rank(A) = rank([A b]) < n
20 print('Rank(A) = Rank([A b]) = ' +str(r1) +' < ' ...

+str(n) +' = #Col(A).')
21 print('Infinite number of solutions.\n')

By executing the code, the following results are shown:

Rank(A) = Rank([A b]) = 3 = #Col(A).
There is a unique solution, given by:
Matrix([[2/3], [1], [4/3]])

1.3 Matrix Factorization Techniques
Matrix factorization means to express a matrix A as a multiplication of two
or more matrices, each is called a factor [34, 21]. That is, to write:

A=A1 ·A2 · . . . ·An

In this section, three important matrix factorization techniques will be
discussed; namely, the LU factorization, the QR factorization and the
singular value decomposition (SVD). Then, the use of those factorization
methods in solving linear systems of equations will be discussed.

Because cases of solving linear systems with upper or lower triangular
matrices will be encountered, this section will start by writing MATLAB and
Python codes for solving such a linear system.

1.3.1 The LU Factorization
In this factorization, the matrix A is expressed as a multiplication of two
matrices L and U , where L is an lower triangular matrix and U is an upper
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triangular matrix. That is:

A=L ·U =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . lnn

 ·

u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn

 (1.5)

where ljj = 1 for j = 1,2, . . . ,n.
The function lu can be used for finding the L and U factors of matrix S.
In MATLAB, this can be done as follows:

>> A = [4 -1 -1; -1 4 -1; -1 -1 4]
A =
4 -1 -1

-1 4 -1
-1 -1 4

>> [L, U] = lu(A)
L =
1.0000 0 0

-0.2500 1.0000 0
-0.2500 -0.3333 1.0000

U =
4.0000 -1.0000 -1.0000
0 3.7500 -1.2500
0 0 3.3333

In Python, the function lu is located in the scipy.linalg sub-package
and can be used to find the LU factors of matrix A.

In [1]: import numpy as np, scipy.linalg as lg
In [2]: A = np.array([[4, -1, -1], [-1, 4, -1], [-1, -1, 4]])
In [3]: P, L, U = lg.lu(A)
In [4]: print(’L = \n’, L, ’\nU = \n’, U)
L =
[[ 1. 0. 0. ]
[-0.25 1. 0. ]
[-0.25 -0.33333333 1. ]]
U =
[[ 4. -1. -1. ]
[ 0. 3.75 -1.25 ]
[ 0. 0. 3.33333333]]

However, python can compact both the L and U factors of matrix A using
the function lu factor.
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In [5]: LU = lg.lu_factor(A)
In [6]: print(’LU = \n’, LU)
LU =
(array([[ 4. , -1. , -1. ],
[-0.25 , 3.75 , -1.25 ],
[-0.25 , -0.33333333, 3.33333333]]), array([0, 1, 2],

dtype=int32))

Now, the linear system 1.1 becomes:
1 0 0 . . . 0
l21 1 0 . . . 0
l31 l32 1 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . 1

 ·

u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn




x1
x2
x3
...
xn

=


b1
b2
b3
...
bn


(1.6)

The solution of the linear system 1.6 is found in three stages:

1. First: we let y = Ux, that is

y =


u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn




x1
x2
x3
...
xn


Then, solving system 1.6 is equivalent to solving the linear system

Ly = b

2. Second: we solve the system Ly = b using the function SolveLower
System.m to find y.

3. Finally: we solve the linear system Ux = y using the back-substitution
method, implemented by the MATLAB function SolveUpperSystem.

Example 1.1 In this example, the LU-factors will be used to solve the linear
system:  4 −1 −1

−1 4 −1
−1 −1 4

x1
x2
x3

=

2
2
2


In MATLAB, the following commands can be used:

>> A = [4 -1 -1; -1 4 -1; -1 -1 4] ;
>> b = [2; 2; 2] ;
>> [L, U] = lu(A)



Matrix Factorization Techniques 15

L =
1.0000 0 0
-0.2500 1.0000 0
-0.2500 -0.3333 1.0000

U =
4.0000 -1.0000 -1.0000
0 3.7500 -1.2500
0 0 3.3333
>> y = SolveLowerLinearSystem(L, b, 3)
y =
2.0000
2.5000
3.3333
>> x = SolveUpperLinearSystem(U, y, 3)
x =
1.0000
1.0000
1.0000

In Python, similar steps can be followed to solve the linear system Ax= b
using the LU factors of matrix A.

In [7]: y = lg.solve(L, b)
In [8]: x = lg.solve(U, y)
In [9]: print(’x = \n’, x)
x =
[[ 0.5]
[ 0.5]
[ 0.5]]

Python has the LU solver lu solve located in scipy.linalg sub-package.
It receives the matrix LU obtained by applying the lu solve function, to
return the solution of the given linear system.

In [10]: x = lg.lu_solve(LU, b)
In [11]: print(x)
[[ 0.5]
[ 0.5]
[ 0.5]]

The Python’s symbolic package sympy can also be used to find the LU
factors of a matrix A. This can be done as follows:

In [10]: import sympy as smp
In [11]: A = smp.Matrix([[4., -1., -1.], [-1., 4., -1.],

[-1., -1., 4.]])
In [12]: LU = B.LUdecomposition()
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In [13]: LU
Out[13]:
(Matrix([
[ 1, 0, 0],
[-0.25, 1, 0],
[-0.25, -0.333333333333333, 1]]), Matrix([
[4.0, -1.0, -1.0],
[ 0, 3.75, -1.25],
[ 0, 0, 3.33333333333333]]), [])
In [14]: LU[0]
Out[14]:
Matrix([
[ 1, 0, 0],
[-0.25, 1, 0],
[-0.25, -0.333333333333333, 1]])

In [15]: LU[1]
Out[15]:
Matrix([
[4.0, -1.0, -1.0],
[ 0, 3.75, -1.25],
[ 0, 0, 3.33333333333333]])

The symbolic package sympy can be also used to solve a linear system, using
the LU factors.

In [16]: b = [[2.0], [2.0], [2.0]]
In [17]: A.LUSolve(b)
Out[17]:
Matrix([
[1.0],
[1.0],
[1.0]])

1.3.2 The QR Factorization
In this type of factorization, the matrix A is expressed as a multiplication of
two matrices Q and R. The matrix Q is orthogonal (its columns constitute an
orthonormal set) and the matrix R is an upper triangular.

From the elementary linear algebra, an orthogonal matrix satisfies the
following two conditions:

1. Q−1 =QT , and

2. if Q= [q1q2 . . .qn], then,

(qi,qj) = qTi ·qj =
{

1 i= j
0 i , j


