Practical Numerical and Scientific Computing with MATLAB ${ }^{\text {® }}$ and Python

Eihab B. M. Bashier

Practical Numerical and Scientific
Computing with MATLAB ${ }^{\circledR}$ and Python

Practical Numerical and Scientific Computing with MATLAB ${ }^{\circledR}$ and Python

Eihab B. M. Bashier

MATLAB ${ }^{\oplus}$ is a trademark of The MathWorks, Inc. and is used with permission. The Mathworks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB ${ }^{\circledR}$ software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ${ }^{\circledR}$ software.

CRC Press

Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2020 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-0-367-07669-6 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bashier, Eihab Bashier Mohammed, author.
Title: Practical Numerical and Scientific Computing with MATLAB ${ }^{\oplus}$ and Python / Eihab B.M. Bashier.
Description: Boca Raton : CRC Press, 2020. | Includes bibliographical
references and index.
Identifiers: LCCN 2019052363 | ISBN 9780367076696 (hardback) | ISBN
9780429021985 (ebook)
Subjects: LCSH: Science--Data processing. | MATLAB. | Python (Computer
program language)
Classification: LCC Q183.9 B375 2020 | DDC 502.85/53--dc23
LC record available at https://lccn.loc.gov/2019052363

Visit the Taylor \& Francis Web site at
 http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my parents, family and friends.

Contents

Preface xiii
Author xvii
I Solving Linear and Nonlinear Systems of Equations 1
1 Solving Linear Systems Using Direct Methods 3
1.1 Testing the Existence of the Solution 3
1.2 Methods for Solving Linear Systems 5
1.2.1 Special Linear Systems 5
1.2.2 Gauss and Gauss-Jordan Elimination 9
1.2.3 Solving the System with the rref Function 10
1.3 Matrix Factorization Techniques 12
1.3.1 The $L U$ Factorization 12
1.3.2 The $Q R$ Factorization 16
1.3.3 The Singular Value Decomposition (SVD) 19
2 Solving Linear Systems with Iterative and Least Squares Methods 23
2.1 Mathematical Backgrounds 23
2.1.1 Convergent Sequences and Cauchi's Convergence 23
2.1.2 Vector Norm 25
2.1.3 Convergent Sequences of Vectors 25
2.2 The Iterative Methods 25
2.2.1 The General Idea 26
2.2.2 The Jacobi Method 28
2.2.3 The Jacobi Method in the Matrix Form 31
2.2.3.1 The Gauss-Seidel Iterative Method 33
2.2.4 The Gauss-Seidel Method in the Vector Form 35
2.2.5 The Relaxation Methods 36
2.3 The Least Squares Solutions 39
2.3.1 Some Applications of Least Squares Solutions 43
3 Ill-Conditioning and Regularization Techniques in Solutions of Linear Systems 57
3.1 Ill-Conditioning in Solutions of Linear Systems 57
3.1.1 More Examples of Ill-Posed System 63
3.1.2 Condition Numbers and Ill-Conditioned Matrices 67
3.1.3 Linking the Condition Numbers to Matrix Related Eigenvalues 71
3.1.4 Further Analysis on Ill-Posed Systems 75
3.2 Regularization of Solutions in Linear Systems 78
3.2.1 The Truncated SVD (TSVD) Method 78
3.2.2 Tikhonov Regularizaton Method 82
3.2.3 The L-curve Method 87
3.2.4 The Discrepancy Principle 87
4 Solving a System of Nonlinear Equations 89
4.1 Solving a Single Nonlinear Equation 89
4.1.1 The Bisection Method 89
4.1.2 The Newton-Raphson Method 91
4.1.3 The Secant Method 93
4.1.4 The Iterative Method Towards a Fixed Point 94
4.1.5 Using the MATLAB and Python solve Function 96
4.2 Solving a System of Nonlinear Equations 97
II Data Interpolation and Solutions of Differential Equations 103
5 Data Interpolation 105
5.1 Lagrange Interpolation 105
5.1.1 Construction of Lagrange Interpolating Polynomial 105
5.1.2 Uniqueness of Lagrange Interplation Polynomial 107
5.1.3 Lagrange Interpolation Error 108
5.2 Newton's Interpolation 109
5.2.1 Description of the Method 109
5.2.2 Newton's Divided Differences 113
5.3 MATLAB's Interpolation Tools 116
5.3.1 Interpolation with the interp1 Function 116
5.3.2 Interpolation with the Spline Function 117
5.3.3 Interpolation with the Function pchip 119
5.3.4 Calling the Functions spline and pchip from interp1 120
5.4 Data Interpolation in Python 120
5.4.1 The Function interp1d 121
5.4.2 The Functions pchip_interpolate and CubicSpline 122
5.4.3 The Function lagrange 123
6 Numerical Differentiation and Integration 125
6.1 Numerical Differentiation 125
6.1.1 Approximating Derivatives with Finite Differences 125
6.2 Numerical Integration 133
6.2.1 Newton-Cotes Methods 134
6.2.2 The Gauss Integration Method 143
7 Solving Systems of Nonlinear Ordinary Differential Equations 165
7.1 Runge-Kutta Methods 165
7.2 Explicit Runge-Kutta Methods 167
7.2.1 Euler's Method 168
7.2.2 Heun's Method 171
7.2.3 The Fourth-Order Runge-Kutta Method 174
7.3 Implicit Runge-Kutta Methods 176
7.3.1 The Backward Euler Method 176
7.3.2 Collocation Runge-Kutta Methods 180
7.3.2.1 Legendre-Gauss Methods 180
7.3.2.2 Lobatto Methods 184
7.4 MATLAB ODE Solvers 191
7.4.1 MATLAB ODE Solvers 191
7.4.2 Solving a Single IVP 191
7.4.3 Solving a System of IVPs 193
7.4.4 Solving Stiff Systems of IVPs 195
7.5 Python Solvers for IVPs 197
7.5.1 Solving ODEs with odeint 197
7.5.2 Solving ODEs with Gekko 201
8 Nonstandard Finite Difference Methods for Solving ODEs 207
8.1 Deficiencies with Standard Finite Difference Schemes 207
8.2 Construction Rules of Nonstandard Finite Difference Schemes 213
8.3 Exact Finite Difference Schemes 217
8.3.1 Exact Finite Difference Schemes for Homogeneous Linear ODEs 218
8.3.1.1 Exact Finite Difference Schemes for a Linear Homogeneous First-Order ODE 218
8.3.1.2 Exact Finite Difference Scheme for Linear Homogeneous Second Order ODE 220
8.3.1.3 Exact Finite Difference Scheme for a System of Two Linear ODEs 223
8.3.2 Exact Difference Schemes for Nonlinear Equations 230
8.3.3 Exact Finite Difference Schemes for Differential Equations with Linear and Power Terms 234
8.4 Other Nonstandard Finite Difference Schemes 236
III Solving Linear, Nonlinear and Dynamic Optimization Problems 241
9 Solving Optimization Problems: Linear and Quadratic Programming 243
9.1 Form of a Linear Programming Problem 243
9.2 Solving Linear Programming Problems with linprog 246
9.3 Solving Linear Programming Problems with fmincon MATLAB's Functions 249
9.4 Solving Linear Programming Problems with pulp Python 250
9.5 Solving Linear Programming Problems with pyomo 252
9.6 Solving Linear Programming Problems with gekko 254
9.7 Solving Quadratic Programming Problems 255
10 Solving Optimization Problems: Nonlinear Programming 261
10.1 Solving Unconstrained Problems 261
10.1.1 Line Search Algorithm 263
10.1.2 The Steepest Descent Method 264
10.1.3 Newton's Method 266
10.1.4 Quasi Newton's Methods 269
10.1.4.1 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method 269
10.1.4.2 The Davidon-Fletcher-Powell (DFP) Algorithm 272
10.1.5 Solving Unconstrained Optimization Problems with MATLAB 274
10.1.6 Solving an Unconstrained Problem with Python 275
10.1.7 Solving Unconstrained Optimization Problems with Gekko 276
10.2 Solving Constrained Optimization Problems 278
10.2.1 Solving Constrained Optimization Problems with MATLAB fmincon Function 280
10.2.2 Solving Constrained Minimization Problems in Python 284
10.2.3 Solving Constrained Optimization with Gekko Python 286
11 Solving Optimal Control Problems 289
11.1 Introduction 289
11.2 The First-Order Optimality Conditions and Existence of Optimal Control 290
11.3 Necessary Conditions of the Discretized System 293
11.4 Numerical Solution of Optimal Control 294
11.5 Solving Optimal Control Problems Using Indirect Methods 295
11.5.1 Numerical Solution Using Indirect Transcription Method 295
11.6 Solving Optimal Control Problems Using Direct Methods 306
11.6.1 Statement of the Problem 307
11.6.2 The Control Parameterization Technique 307
11.6.2.1 Examples 309
11.6.3 The Gekko Python Solver 313
Bibliography 321
Index 327

Preface

The past few decades have witnessed tremendous development in the manufacture of computers and software, and scientific computing has become an important tool for finding solutions to scientific problems that come from various branches of science and engineering. Nowadays, scientific computing has become one of the most important means of research and learning in the fields of science and engineering, which are indispensable to any researcher, teacher, or student in the fields of science and engineering.

One of the most important branches of scientific computing is a numerical analysis which deals with the issues of finding approximate numerical solutions to such problems and analyzing errors related to such approximate methods. Both the MATLAB ${ }^{\circledR}$ and Python programming languages provide many libraries that can be used to find solutions of scientific problems visualizing them. The ease of use of these two languages became the most languages that most scientists who use computers to solve scientific problems care about.

The idea of this book came after I taught courses of scientific computing for physics students, introductory and advanced courses in mathematical software and mathematical computer applications in many Universities in Africa and the gulf area. I also conducted some workshops for mathematics and science students who are interested in computational mathematics in some Sudanese Universities. In these courses and workshops, MATLAB and Python were used for the implementation of the numerical approximation algorithms. Hence, the purpose of introducing this book is to provide the student with a practical guide to solve mathematical problems using MATLAB and Python software without the need for third-party assistance. Since numerical analysis is concerned with the problems of approximation and analysis of errors of numerical methods associated with approximation methods, this book is more concerned with how these two aspects are applied in practice by software, where illustrations and tables are used to clarify approximate solutions, errors and speed of convergence, and its relations to some of the numerical method parameters, such as step size and tolerance. MATLAB and Python are the most popular programming languages for mathematicians, scientists, and engineers. Both the two programming languages possess various libraries for numerical and symbolic computations and data representation and visualization. Proficiency with the computer programs contained in this book requires that the student have prior knowledge of the basics of the programming languages MATLAB and Python, such as branching, Loops, symbolic packages, and the graphical
libraries. The MATLAB version used for this book is 2017b and the Python version is 3.7.4.

The book consists of 11 chapters divided into three parts: the first part is concerned with discussing numerical solutions for linear and nonlinear systems and numerical difficulties facing these types of problems with how to overcome these numerical difficulties. The second part deals with methods of completing functions, differential and numerical integration, and solutions of differential equations. The last part of the book discusses methods to solve linear and nonlinear programming and optimal control problems. It also contains some specialized software in Python language to solve some problems numerically. These software packages must be downloaded from a third party, such as Gekko which is used for the solutions of differential equations and linear and nonlinear programming in addition to the optimal control problems. Also, the Pulp package is used to solve linear programming problems and finally Pyomo a package is used for solving linear and nonlinear programming problems. How to install and run such a package is also presented in the book.

What distinguishes this book from many other numerical analysis books is that it contains some topics that are not usually found in other books, such as nonstandard finite difference methods for solving differential equations and solutions of optimal control problems. In addition, the book discusses implementations of methods with high convergence rates, such as Gauss integration methods discussed in the numerical differentiation and integration, exact finite difference schemes for solving differential equations discussed in the nonstandard finite differences Chapter. It also uses efficient python-based software for solving some kinds of mathematical problems numerically.

The parts of the book are separate from each other so that the student can study any part of it without having to read the previous parts of that part. The exception to this is the optimal control chapter in the third part, which requires studying numerical methods to solve the differential equations discussed in the second part.

After reading this book and implementing the programs contained on it, a student will be able to deal with and solve many kinds of mathematical problems such as differential equations, static, and dynamical optimization problems and apply the methods to real-life problems.

Acknowledgment

I am very grateful to the African Institute of Mathematical Sciences (AIMS), Cape Town, South Africa, which hosted me on a research visit during which some parts of this book have been written. I would also like to thank the editorial team of this book under the leadership of publisher, Randi Cohen, for their continuous assistance in formatting, coordinating, editing, and directing the book throughout all stages. Special thanks go to all professors who taught me the courses of numerical analysis in the various stages of my under- and postgraduate studies, and, in particular, I thank Dr. Mohsin Hashim University of

Khartoum, Professor Arieh Iserles African Institute of Mathematical Sciences, Professor Kailash Patidar University of the Western Cape in Cape Town, and the spirit of my great teacher Professor David Mackey (Cambridge University and the African Institute for Mathematical Sciences) who passed away four years ago. Finally, I am also grateful to my family for continuous encouragement and patience while writing this book.

MATLAB ${ }^{\circledR}$ is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Author

Eihab B. M. Bashier obtained his PhD in 2009 from the University of the Western Cape in South Africa. His permanent job is in the Department of Applied Mathematics on the faculty of mathematical sciences and information technology, University of Khartoum. Currently, he is an Associate Professor of Applied Mathematics at the College of Arts and Applied Sciences at Dhofar University, Oman. His research interests are mainly in numerical methods for differential equations with applications to biology and in information and computer security with a focus in cryptography. In 2011, Dr. Bashier won the African Union and the Third World Academy of Science (AU-TWAS) Young Scientists National Award in Basic sciences, Technology and Innovation. Dr. Bashier is a reviewer for some international journals and a member of the IEEE and the EMS. (Email: eihabbashier@gmail.com, eihabbash@aims.ac.za).

Part I

Solving Linear and Nonlinear Systems of Equations

1

Solving Linear Systems Using Direct Methods

Abstract

Linear systems of equations have many applications in mathematics and science. Many of the numerical methods used for solving mathematics problems such as differential or integral equations, polynomial approximations of transcendental functions and solving systems of nonlinear equations arrive at a stage of solving linear systems of equations. Hence, solving a linear system of equations is a fundamental problem in numerical computing.

This chapter discusses the direct methods for solving linear systems of equations, using Gauss and Gauss-Jordan elimination techniques and the matrix factorization approach. MATLAB ${ }^{\circledR}$ and Python implementations of such algorithms are provided.

1.1 Testing the Existence of the Solution

A linear system consisting of m equations in n unknowns, can be written in the matrix form:

$$
\begin{equation*}
A \boldsymbol{x}=\boldsymbol{b} \tag{1.1}
\end{equation*}
$$

where,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{21} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right), \boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Here, the coefficients $a_{i j}$ of matrix $A \in \mathbb{R}^{m \times n}$ are assumed to be real, $\boldsymbol{x} \in \mathbb{R}^{n}$ is the vector of unknowns and $\boldsymbol{b} \in \mathbb{R}^{m}$ is a known vector. Depending on the relationship between m and n three kinds of linear systems are defined [30, 53]:

1. overdetermined linear systems: there are more equations than unknown $(m>n)$.
2. determined linear systems: equal numbers of equations and unknowns $(m=n)$.
3. underdetermined linear systems: there are more unknowns than equations $(m<n)$.

Let $\tilde{A}=[A \mid \boldsymbol{b}]$ be the augmented matrix of the linear system $A \boldsymbol{x}=\boldsymbol{b}$. Then, the existence of a solution for the given linear system is subject to one of the two following cases:

1. $\operatorname{rank}(\tilde{A})=\operatorname{rank}(A)$: in this case, there is at least one solution, and we have two possibilities:
(a) $\operatorname{rank}(\tilde{A})=\operatorname{rank}(A)=n$: in this case there is a unique solution.
(b) $\operatorname{rank}(\tilde{A})=\operatorname{rank}(A)<n$: in this case there is infinite number of solutions.
2. $\operatorname{rank}(\tilde{A})>\operatorname{rank}(A):$ in this case there is no solution and we can look for a least squares solution.

If the linear system $A \boldsymbol{x}=\boldsymbol{b}$ has a solution, it is called a consistent linear system, otherwise, it is an inconsistent linear system [30].

In MATLAB, the command rank can be used to test the rank of a given matrix A.

```
>> A = [1 2 3; 4 5 6; 7 8 9]
A =
1 2 
4 5
7 8 9
>> b = [1; 1; 1]
b =
1
1
1
>> r1 = rank(A)
r1 =
2
>> r2 = rank([A b])
r2 =
2
```

In python, the function matrix_rank (located in numpy. linalg) is used to compute the rank of matrix A and the augmented system $[A b]$.

In [1]: import numpy as $n p$
In [2]: $A=n p . \operatorname{array}([[1,2,3],[4,5,6],[7,8,9]])$
In [3]: b = np.array ([1, 1, 1])

In [4]: r1, r2 = np.linalg.matrix_rank(A), np.linalg.matrix_rank (np.c_[A, b])
In [5]: r1
Out [5]: 2
In [6]: r2
Out[6]: 2
In the special case when $m=n$ (A is a squared matrix) and there is a unique solution $(\operatorname{rank}(\tilde{A})=\operatorname{rank}(A)=n)$, this unique solution is given by:

$$
\boldsymbol{x}=A^{-1} \boldsymbol{b} .
$$

Hence, finding the solution of the linear system requires the inversion of matrix A.

1.2 Methods for Solving Linear Systems

This section considers three special types of linear systems which are linear systems with diagonal, upper triangular and lower triangular matrices.

1.2.1 Special Linear Systems

We consider the linear system:

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

where $A \in \mathbb{R}^{n \times n}, \boldsymbol{x}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$. We consider two cases.

1. A is a diagonal matrix:

In this case, matrix A is of the form:

$$
A=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
0 & a_{22} & 0 & \ldots & 0 \\
0 & 0 & a_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

which leads to the linear system:

$$
\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \tag{1.2}\\
0 & a_{22} & 0 & \ldots & 0 \\
0 & 0 & a_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right)
$$

The solution of the linear system (1.2) is given by:

$$
x_{i}=\frac{b_{i}}{a_{i i}}
$$

The MATLAB code to compute this solution is given by:

```
function x = SolveDiagonalLinearSystem(A, b)
    % This function solves the linear system Ax = b, where ...
        A is a diagonal matrix
    % b is a known vector and n is the dimension of the ...
        problem.
    n = length(b) ;
    x = zeros(n, 1) ;
    for j = 1: n
        x(j) = b(j)/A(j, j) ;
    end
```

We can apply this function to solve the diagonal system:

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
4 \\
1 \\
-3
\end{array}\right)
$$

by using the following MATLAB commands:

```
>> A = diag([2, -1, 3])
A =
2 0}
0
0 0 3
>> b = [4; 1; 3]
b =
4
1
3
>> x = SolveDiagonalLinearSystem(A, b)
x =
2
-1
1
```

The python code of the function SolveDiagonalLinearSystem is as follows.

```
import numpy as np
def SolveDiagonalLinearSystem(A, b):
    n = len(b)
```

```
4 x = np.zeros((n, 1), 'float')
5 for i in range(n):
    x[i] = b[i]/A[i, i]
    return x
```

In [7]: $A=\operatorname{np} \cdot \operatorname{diag}([2,-1,3])$
In [8]: b = np.array([4, -1, 3])
In [9]: x = SolveDiagonalLinearSystem(A, b)
In [10]: print('x $=\backslash n$ ', x)
$\mathrm{x}=$
[[2.]
[1.]
[1.]]
2. A is an upper triangular matrix:

In this case, matrix A is of the form:

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

Therefore, we have the linear system:

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \tag{1.3}\\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right)
$$

In this case we use the back substitution method for finding the solution of system 1.3. The MATLAB function SolveUpperSystem.m solves the linear system 1.3 using the back-substitution method.

```
function x = SolveUpperLinearSystem(A, b)
    % This function uses the backward substitution method ...
            for solving
    % the linear system Ax = b, where A is an upper ...
        triangular matrix
    % b is a known vector and n is the dimension of the ...
        problem.
    n = length(b) ;
    x = zeros(n, 1) ;
    x(n) = b(n)/A(n, n) ;
    for j = n-1: -1 : 1
        x(j) = b(j) ;
```

```
10 for k = j+1 : n
11 x(j) = x(j) - A(j, k)*x(k) ;
12 end
    x(j) = x(j)/A(j, j) ;
end
```

The python code for the SolveUpperSystem, is as follows.

```
import numpy as np
def SolveUpperLinearSystem(A, b):
    n = len(b)
    x = np.zeros((n, 1), 'float')
    x[n-1] = b[n-1]/A[n-1, n-1]
    for i in range(n-2, -1, -1):
        x[i] = b[i]
        for j in range(i+1, n):
            x[i] -= A[i, j]*x[j]
        x[i] /= A[i, i]
    return x
```

3. A is a lower triangular system:

In this case, matrix A is of the form:

$$
A=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
a_{21} & a_{22} & 0 & \ldots & 0 \\
a_{31} & a_{32} & a_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)
$$

Therefore, we have the linear system:

$$
\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \tag{1.4}\\
a_{21} & a_{22} & 0 & \ldots & 0 \\
a_{31} & a_{32} & a_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right)
$$

The forward substitution method is used to find the solution of system 1.4. The MATLAB function SolveLowerSystem.m solves the linear system 1.4 using the forward-substitution method.

```
function x = SolveLowerLinearSystem(A, b)
    % This function uses the forward substitution method ...
        for solving
    % the linear system Ax = b, where A is an lower ...
        triangular matrix
    % b is a known vector and n is the dimension of the ...
    problem.
```

```
n = length(b) ;
x = zeros(n, 1) ;
x(1) = b(1)/A(1, 1) ;
for j = 2 : n
    x(j) = b(j) ;
    for k = 1 : j-1
            x(j) = x(j) - A(j, k)*x(k) ;
    end
    x(j) = x(j)/A(j, j) ;
end
```

The python code of the function SolveLowerSystem is as follows.

```
def SolveLowerLinearSystem(A, b):
    import numpy as np
    n = len(b)
    x = np.zeros((n, 1), 'float')
    x[0] = b[0]/A[0, 0]
    for i in range(1, n):
        x[i] = b[i]
        for j in range(i):
            x[i] -= A[i, j]*x[j]
        x[i] /= A[i, i]
    return x
```


1.2.2 Gauss and Gauss-Jordan Elimination

Gauss and Gauss-Jordan elimination methods are related to each other. If given a matrix $A \in \mathbb{R}^{n \times n}$, then both Gauss and Gauss-Jordan apply elementary row operations through consequent steps over matrix A. The Gauss method stops after obtaining the row echelon form of matrix A (If A is nonsingular, then its row echelon form is an upper triangular matrix), whereas Gauss-Jordan continuous until reaching the reduced row echelon form (If A is nonsingular, then its reduced row echelon form is the identity matrix).

To illustrate the differences between the row echelon and the reduced row echelon forms, the two forms are computed for the matrix:

$$
A=\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right)
$$

Starting by finding the row echelon form for the given matrix.

$$
A=\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right) \xlongequal[R_{3} \leftarrow 4 R 3+R_{1}]{R_{2} \leftarrow 4 R 2+R_{1}}\left(\begin{array}{ccc}
4 & -1 & -1 \\
0 & 15 & -5 \\
0 & -5 & 15
\end{array}\right) \xlongequal{R_{3} \leftarrow 3 R 3+R_{2}}\left(\begin{array}{ccc}
4 & -1 & -1 \\
0 & 15 & -5 \\
0 & 0 & 40
\end{array}\right)
$$

The upper triangular matrix

$$
\left(\begin{array}{ccc}
4 & -1 & -1 \\
0 & 15 & -5 \\
0 & 0 & 40
\end{array}\right)
$$

is the row echelon form of matrix A.
Gauss-Jordan elimination continues above the pivot elements, to obtain the reduced row echelon form.

$$
\begin{aligned}
& \quad\left(\begin{array}{ccc}
4 & -1 & -1 \\
0 & 15 & -5 \\
0 & 0 & 40
\end{array}\right) \stackrel{R_{3} \leftarrow R 3 / 40}{R_{3}}\left(\begin{array}{ccc}
4 & -1 & -1 \\
0 & 15 & -5 \\
0 & 0 & 1
\end{array}\right) \stackrel{R_{2} \leftarrow R 2+5 R_{3}}{R_{1} \leftarrow R_{1}+R_{3}}\left(\begin{array}{ccc}
4 & -1 & 0 \\
0 & 15 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{R_{2} \leftarrow R 2 / 15}\left(\begin{array}{ccc}
4 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1} \leftarrow R_{1}+R_{2}}\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \stackrel{R_{1} \leftarrow R_{1} / 4}{\longrightarrow}\left(\begin{array}{lcc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

1.2.3 Solving the System with the rref Function

The Gauss and Gauss-Jordan methods are two familiar approaches for solving linear systems. Both begin from the augmented matrix, obtain the row echelon form or the reduced row echelon form, respectively. Then, the Gauss method uses the back-substitution technique to obtain the solution of the linear system, whereas in Gauss-Jordan method the solution is located in the last column.

The MATLAB code below, reads a matrix A and a vector \boldsymbol{b} from the user, then it applies the Gauss-Seidel elimination through applying the rref to the augmented system $\left[\begin{array}{ll}A & b]\end{array}\right.$

```
clear ; clc ;
\(A=\) input('Enter the matrix \(A: ')\); \(\%\) Reading matrix A from ...
    the user
```



```
    the user
\([m, n]=\operatorname{size}(A) ; \quad \% m\) and \(n\) are the matrix \(\ldots\)
    dimensions
\(r 1=\operatorname{rank}(A) ; \quad\) \% the rank of matrix \(A\) is \(\ldots\)
    assigned to r1
\(r 2=\operatorname{rank}([\mathrm{A} . \mathrm{b}])\); \(\quad\) o the rank of the..
    augmented system [A b] is assigned to r2
if r1 \(\neq\) r2 \(\quad\) \% testing whether rank (A) ...
    not equal \(\operatorname{rank}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{b}\end{array}\right]\right)\)
    disp(['Rank(A) = ' num2str(r1) ' \(\neq\) ' num2str(r2) ' = ...
        Rank([A b]).']) ;
    fprintf('There is no solution. \(\mathrm{n}^{\prime \prime}\) ) ; \% No solution in this ...
        case
end
if \(r 1==r 2 \quad\) \% testing whether rank \((A)=\ldots\)
        rank ([A b])
```

```
    if r1 == n % if yes, testing whether the ...
    rank equals n
    R = rref([A b]) ; % the reduced row echelon form ...
        of [A b]
        x = R(:, end) ; % the solution is at the last ...
            column of the reduced
        % row echelon form
        disp(['Rank(A) = Rank([A b]) = ' num2str(r1) ' = ...
            #Col(A).']) ;
        disp('There is a unique solution, given by: ') ; ...
            disp(x) ;
        %displaying the solution of the linear system
    else % rank(A) = rank([A b]) < n
        disp(['Rank(A) = Rank([A b]) = ' num2str(r1) ' < ' ...
            num2str(n) ' = #Col(A).']) ;
        fprintf('Infinite number of solutions.\n') ;
        end
end
```

The result of executing the above MATLAB script is:
Enter the matrix A: [1 2 3; 45 6; 78 9]
Enter the vector b : $[1 ; 3 ; 5]$
$\operatorname{Rank}(A)=\operatorname{Rank}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{b}\end{array}\right)=2<3=\# \operatorname{Col}(\mathrm{~A})\right.$.
Infinite number of solutions.

Enter the matrix A: [1 3 5; $246 ; 789]$
Enter the vector b : [1;1;1]
$\operatorname{Rank}(A)=2{ }^{\sim}=3=\operatorname{Rank}([A \mathrm{~b}])$.
There is no solution.
Enter the matrix A: [2 $2-1 ; 121 ;-1-12]$
Enter the vector b: [2;4;1]
$\operatorname{Rank}(A)=\operatorname{Rank}([A \quad b])=3=\# C o l(A)$.
There is a unique solution, given by:
0.6667
1.0000
1.3333

In Python, the built-in function sympy.Matrix is used to construct a matrix. The Matrix class has a method rref to compute the reduced row echelon from of the matrix.

```
import sympy as smp
A = smp.Matrix([[2, 2, -1], [1, 2, 1], [-1, -1, 2]])
b = smp.Matrix([[2], [4], [1]])
m, n = A.rows, A.cols
r1 = A.rank()
C = A.copy()
r2 = (C.row_join(b)).rank()
```

```
if r1 != r2: # testing whether rank(A) ...
    not equal rank([A b])
    print('Rank(A) = ' +str(r1) +' !=' +str(r2) +'= Rank([A ...
        b] ). ')
    print('There is no solution.\n') ; # No solution in this case
    if r1 == r2: # testing whether rank (A) = ...
        rank([A b])
    if r1 == n: # if yes, testing whether the ...
    rank equals n
    R = (A.row_join(b)).rref() # the reduced row...
        echelon form of [A b]
        x = R[0][:, -1] # the solution is at the last ...
                column of the reduced
                    # row echelon form
        print('Rank(A) = Rank([A b]) = '+str(r1) +' = #Col(A).')
        print('There is a unique solution, given by: ') ; ...
            print(x) ;
        #displaying the solution of the linear system
    else: # rank(A) = rank([A b]) < n
        print('Rank(A) = Rank([A b]) = ' +str(r1) +'<' '..
            +str(n) +' = #Col(A).')
        print('Infinite number of solutions.\n')
```

By executing the code, the following results are shown:
$\operatorname{Rank}(A)=\operatorname{Rank}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{b}\end{array}\right)=3=\# \operatorname{Col}(\mathrm{~A})\right.$.
There is a unique solution, given by:
Matrix([[2/3], [1], [4/3]])

1.3 Matrix Factorization Techniques

Matrix factorization means to express a matrix A as a multiplication of two or more matrices, each is called a factor [34, 21]. That is, to write:

$$
A=A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}
$$

In this section, three important matrix factorization techniques will be discussed; namely, the LU factorization, the QR factorization and the singular value decomposition (SVD). Then, the use of those factorization methods in solving linear systems of equations will be discussed.

Because cases of solving linear systems with upper or lower triangular matrices will be encountered, this section will start by writing MATLAB and Python codes for solving such a linear system.

1.3.1 The $L U$ Factorization

In this factorization, the matrix A is expressed as a multiplication of two matrices L and U, where L is an lower triangular matrix and U is an upper
triangular matrix. That is:

$$
A=L \cdot U=\left(\begin{array}{ccccc}
l_{11} & 0 & 0 & \ldots & 0 \tag{1.5}\\
l_{21} & l_{22} & 0 & \ldots & 0 \\
l_{31} & l_{32} & l_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \ldots & l_{n n}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
0 & 0 & u_{33} & \ldots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right)
$$

where $l_{j j}=1$ for $j=1,2, \ldots, n$.
The function lu can be used for finding the L and U factors of matrix S. In MATLAB, this can be done as follows:

```
>> A = [4 [4 -1 -1; -1 4 -1; -1 -1 4
A =
    4 -1 -1
-1 4 -1
-1 -1 4
>> [L, U] = lu(A)
L =
\begin{tabular}{rrr}
1.0000 & 0 & 0 \\
-0.2500 & 1.0000 & 0 \\
-0.2500 & -0.3333 & 1.0000
\end{tabular}
\begin{tabular}{lrr}
\(U=\) & & \\
4.0000 & -1.0000 & -1.0000 \\
0 & 3.7500 & -1.2500 \\
0 & 0 & 3.3333
\end{tabular}
```

In Python, the function lu is located in the scipy.linalg sub-package and can be used to find the LU factors of matrix A.

In [1]: import numpy as $n p$, scipy.linalg as $l g$
In [2]: $A=n p . \operatorname{array}([[4,-1,-1],[-1,4,-1],[-1,-1,4]])$
In [3]: P, L, U = lg.lu(A)
In [4]: print('L = \n', L, ' $\backslash n U=\backslash n ', ~ U)$
$\mathrm{L}=$

$\left[\begin{array}{lll}{[1 .} & 0 . & 0 .\end{array}\right]$			
$[-0.25$	1.	0.	$]$
$[-0.25$	-0.33333333	1.	$]$
$\mathrm{U}=$			
$[[4$.	-1.	-1.	$]$
$[0$.	3.75	-1.25	$]$
$[0$.	0.	$3.33333333]]$	

However, python can compact both the L and U factors of matrix A using the function lu_factor.

In [5]: LU = lg.lu_factor (A)
In [6]: print('LU = \n', LU)
LU =
(array ([$4 . \quad,-1 . \quad,-1 . \quad]$,
[-0.25 , 3.75 , -1.25 ,
[-0.25 , -0.33333333, 3.33333333]]), $\operatorname{array}([0,1,2]$, dtype=int32))

Now, the linear system 1.1 becomes:

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{1.6}\\
l_{21} & 1 & 0 & \ldots & 0 \\
l_{31} & l_{32} & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \ldots & 1
\end{array}\right) \cdot\left(\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
0 & 0 & u_{33} & \ldots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right)
$$

The solution of the linear system 1.6 is found in three stages:

1. First: we let $\boldsymbol{y}=U \boldsymbol{x}$, that is

$$
\boldsymbol{y}=\left(\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
0 & 0 & u_{33} & \ldots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Then, solving system 1.6 is equivalent to solving the linear system

$$
L \boldsymbol{y}=\boldsymbol{b}
$$

2. Second: we solve the system $L \boldsymbol{y}=\boldsymbol{b}$ using the function SolveLower System.m to find \boldsymbol{y}.
3. Finally: we solve the linear system $U \boldsymbol{x}=\boldsymbol{y}$ using the back-substitution method, implemented by the MATLAB function SolveUpperSystem.

Example 1.1 In this example, the LU-factors will be used to solve the linear system:

$$
\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)
$$

In MATLAB, the following commands can be used:

```
>> A = [4 -1 -1; -1 4 -1; -1 -1 4] ;
>> b = [2; 2; 2] ;
>> [L, U] = lu(A)
```

```
L =
1.0000 0 0
-0.2500 1.0000 0
-0.2500 -0.3333 1.0000
U =
4.0000 -1.0000 -1.0000
0 3.7500 -1.2500
0 0 3.3333
>> y = SolveLowerLinearSystem(L, b, 3)
y =
2.0000
2.5000
3.3333
>> x = SolveUpperLinearSystem(U, y, 3)
x =
1.0000
1.0000
1.0000
```

In Python, similar steps can be followed to solve the linear system $A \boldsymbol{x}=\boldsymbol{b}$ using the $L U$ factors of matrix A.

In [7]: y = lg.solve(L, b)
In [8]: x = lg.solve(U, y)
In [9]: print('x = ${ }^{n}$ ', x)
$\mathrm{x}=$
[[0.5]
[0.5]
[0.5]]
Python has the LU solver lu_solve located in scipy.linalg sub-package. It receives the matrix $L U$ obtained by applying the lu_solve function, to return the solution of the given linear system.

```
In [10]: x = lg.lu_solve(LU, b)
In [11]: print(x)
[[ 0.5]
[ 0.5]
[ 0.5]]
```

The Python's symbolic package sympy can also be used to find the LU factors of a matrix A. This can be done as follows:

```
In [10]: import sympy as smp
In [11]: A = smp.Matrix([[4., -1., -1.], [-1., 4., -1.],
    [-1., -1., 4.]])
In [12]: LU = B.LUdecomposition()
```

```
In [13]: LU
Out[13]:
(Matrix([
[ 1, 0, 0],
[-0.25,
    1, 0],
[-0.25, -0.333333333333333, 1]]), Matrix([
[4.0, -1.0, -1.0],
[ 0, 3.75, -1.25],
[ 0, 0, 3.33333333333333]]), [])
In [14]: LU[0]
Out[14]:
Matrix([
[ 1, 0, 0],
[-0.25, 1, 0],
[-0.25, -0.333333333333333, 1]])
In [15]: LU[1]
Out[15]:
Matrix([
[4.0, -1.0, -1.0],
[ 0, 3.75, -1.25],
[ 0, 0, 3.33333333333333]])
```

The symbolic package sympy can be also used to solve a linear system, using the $L U$ factors.

```
In [16]: b = [[2.0], [2.0], [2.0]]
In [17]: A.LUSolve(b)
Out[17]:
Matrix([
[1.0],
[1.0],
[1.0]])
```


1.3.2 The $Q R$ Factorization

In this type of factorization, the matrix A is expressed as a multiplication of two matrices Q and R. The matrix Q is orthogonal (its columns constitute an orthonormal set) and the matrix R is an upper triangular.

From the elementary linear algebra, an orthogonal matrix satisfies the following two conditions:

1. $Q^{-1}=Q^{T}$, and
2. if $Q=\left[\boldsymbol{q}_{1} \boldsymbol{q}_{2} \ldots \boldsymbol{q}_{n}\right]$, then,

$$
\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)=\boldsymbol{q}_{i}^{T} \cdot \boldsymbol{q}_{j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & i \neq j
\end{array}\right.
$$

