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Symbol Definition
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truck-road interaction. 
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G Shear modulus. 
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Gr Resilient shear modulus. 
g Acceleration of the gravity. 
H Normalized thickness of the road structure. 
h Angle between the center of the disc of the sun and the horizon, the solar 
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hc Convection coefficient 
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Ib Direct irradiance. 
Id diffuse irradiance. 
I0 Solar constant. 
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packing coefficient of a granular mixture. 
Ka Fitting coefficient of the Boyce’s model. 
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Ki Coefficient that relates the packing state of grains i within a granular 

mixture.
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parameter of the water retention curve, or 
m = 1/ν. 

md Mass of a vibratory drum. 
me Eccentric mass of a vibratory drum. 
mf Mass of the frame of a vibratory drum 
mW Parameters of the water retention model that depends on void’s ratio. 
m1 Mass of the axle for defining the truck-road interaction. 
m2 Mass of the body of the vehicle for defining the truck-road interaction. 
N(s) Specific volume in unsaturated state for a mean net stress of pc. 
N(0) Specific volume in saturated state for a mean net stress of pc. 
n Porosity, or 

exponent representing the rectangularity of a super elliptical contact area, or 
parameter of the water retention curve, or 
fitting coefficient of the Boyce’s model. 

nc Number of grain classes in a granular mixture. 
nsm Smoothing parameter of the function representing the effective degree of 

saturation. 
nW Parameters of the water retention model that depends on void’s ratio. 
P200 Proportion of material that pass through the # 200 U.S. Standard Sieve. 
PI Plasticity Index. 
p Mean stress. 
p Constitutive mean stress for the microstructural BBM. 
pa, patm Atmospheric pressure. 
pc Cyclic mean stress. 
pc Reference stress for the BBM. 
pc Reference mean constitutive stress for the microstructural BBM.
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p0
∗p0
q

qc
qconv Heat flux due to convection. 
qrad 
qsens
qth 
R

√

Maximum stress at for the Hertz contact theory.
Over consolidation mean stress in the saturated state. 
Deviator stress, or 
uniform load over a circular loaded area. 
Cyclic deviator stress. 

Heat flux due to radiation. 
Sensible heat flux. 
Heat flux due to thermal emissions 
Radial distance R = x2 + y2 + z2. 

Re Reynolds number. 
RMV Resonant meter value. 
r Constant of the BBM relating maximum stiffness at infinite. 
r Material parameter for the microstructural BBM. 
Sr Degree of saturation. 
Sr Effective degree of saturation for the microstructural BBM. 
Sr−opt Degree of saturation at the optimum water content. 
Sr0 Degree of saturation at the beginning of unloading. 
Sz(Ω) Power Spectral Density, PSD, of the road’s profile. 
s Matric suction. 
saev Suction corresponding to the air entry value. 
sb Air entry suction. 
sres Residual suction. 
s0 Suction at the beginning of unloading. 
sλ Material parameter for the microstructural BBM. 
T Temperature. 
Ta Air temperature. 
Td Dew point temperature. 
Tl Local time in the zone of a particular site. 
Ts Temperature at the surface of the road. 
Tsv True solar time at a particular site. 
Tsky Hypothetical temperature above the surface of the road. 
Tv Time factor for vertical consolidation. 
t Time. 
U(t) Degree of consolidation achieved at time t. 
Uv(t) Degree of vertical consolidation. 
Uvr Degree of consolidation in the radial and vertical directions. 
Uw Relative humidity. 
u Vector representing the displacements of the axle and the body of a vehicle. 
u Displacement towards the x axis. 
ua Pore air pressure. 
ug Function for defining the road’s profile. 
uv Vapor pressure. 
uvs Saturation vapor pressure. 
uw Pore water pressure. 
uwc Average excess pore water pressure.
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Symbol Definition

Va Air velocity. 
v Displacement towards the y axis, or 

Specific volume (v 1 e). = +
w Gravimetric water content, or 

displacement towards the z axis, or 
hour angle indicating the position of the sun in a day, or 
waviness index for defining the road’s profile. 

wT (x) Width of the contact area between a tire and the road 
x Cartesian coordinate. 
y Cartesian coordinate. 

Volumetric proportion of grains in a granular mixture. 
Amplitude of the nth harmonic for defining the road’s profile. 

yi
Zn
z Cartesian coordinate. 

Soil displacement below a drum compactor. zs

GREEK LETTERS 

Symbol Definition 
α Mean absorptivity coefficient, or 

normalized radius of a circular loaded area. 
αK Parameter describing the contact stress between a tire and the road. 
β Parameter of the BBM giving the shape of the function for the increase of 

stiffness due to an increase of suction, or 
angle to define the point where the stress is calculated using the Fröhlich’s 
solution, or 
coefficient of the Boyce’s model. 

β Material parameter of the microstructural BBM. 
βi Residual compacity of grains i in a granular mixture. 
Γ Angle indicating the position of the earth in its orbit for a particular day of 

the year. 
Unit weight, orγ 
virtual compacity of a granular mixture.

ΔTl Time difference between the local time and the standard time. 
ΔΩ Width of each frequency band for defining the road’s profile. 
δ Solar declination. 
δK Parameter describing the contact stress between a tire and the road. 
ε Emissivity coefficient. 
εv Volumetric strain. 
ε1, ε2 Geometrical variables to define a triangular load over a half space. 
η Empirical parameter for computing the thermal conductivity of soils. 
θ Volumetric water content, or 

bulk stress, or 
Angle between a normal vector on the surface of the road and a direct line 
joining the sun. 

θi Volumetric fraction of ice in a soil.
(Continued)
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Symbol Definition

θres Residual volumetric water content. 
θs
θ /(s)

Volumetric fraction of the solid grains in a soil. 
First derivative of the water retention curve. 

θsat Saturated volumetric water content. 
θw Volumetric fraction of water in a soil. 
κ Road’s roughness coefficient for defining the road’s profile, or 

slope of the overconsolidated domain, in logarithmic scale, of the 
compression line in the saturated state. 

κH Empirical parameter for computing the thermal conductivity of soils. 
κs Parameter of the BBM relating the change in specific volume due to an 

increase of matric suction. 
λ Normalized depth for the Burmister’s solution, or 

slope of the virgin compression line in the saturated state. 

Φ 
Φi 

λ 
λ(0) 
λ(s) 
λ( )s 
ν 
ξ 
ξm 
ρ 
ρc Settlement due to primary consolidation. 
ρd 
ρH 
ρi 
ρw 
σ 

σc
/ 

σnet 
σoct 
σug 
σu/

g 
σv 
σvNC 

σvNC=1 

σx, σy, σz 
σz 

/ 
0 

σ1, σ2, σ3 
τoct 

Compressibility coefficient for the microstructural BBM. 
Slope, in logarithmic scale, of the compression line in the saturated state. 
Slope, in logarithmic scale, of the compression lines in the unsaturated state 
Coefficient of compressibility depending on the effective suction. 
Poisson’s ratio. 
Fröhlich’s concentration factor. 
Variable describing the microstructural state of a soil. 
Radial distance in the cylindrical coordinate system. 

Dry density. 
Normalized radial distance used in Burmister’s solution. 
Immediate settlement. 
Density of water. 
Total stress, or 
Stefan-Boltzmann constant. 
Over consolidation effective stress for computing settlements due to consol-
idation. 
Net stress. 
Octahedral stress. 
Standard deviation of the ISO road’s profile. 
Standard deviation of the first derivative of the ISO road’s profile. 
Vertical stress. 
Vertical stress required to reach a specific density by applying NC loading 
cycles. 
Vertical stress required to reach a particular density when applying one load-
ing cycle. 
Normal stresses in the Cartesian coordinate system. 
Initial effective vertical stress for computing settlements due to consolida-
tion. 
Principal stresses. 
Octahedral shear stress. 
Compacity of a granular mixture. 
Partial volume of class i in a granular mixture.

(Continued)



List of mathematical symbols xxiii

Symbol Definition

φ Latitude on the earth of a particular site. 
φ/ Friction angle in effective stresses. 
φn Phase angle of the nth harmonic for defining a road’s profile. 
φW Parameters of the water retention model that depends on the void’s ratio. 
χ Effective stress parameter. 
χH 
ψ 

Empirical parameter for computing the thermal conductivity of soils. 
Water potential. 

ψW Parameters of the water retention model that depends on the void’s ratio. 
Angular frequency.Ω 

ΩL Lower limit for the spatial reference frequency to define a road’s profile. 
Ωn Central frequency of the nth band to define a road’s profile. 
ΩU Upper limit of the spatial reference frequency to define a road’s profile. 
Ω0 Spatial reference frequency to define a road’s profile. 

Angular frequency, or 
angle to define the point where the stress is calculated using the Fröhlich’s 
solution. 

ω
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Introduction 

This book develops 23 extended examples that cover most of the theoretical aspects 
presented in the book Geotechnics of Roads, Fundamentals, [10]. Moreover, for most 
examples, this book describes algorithms for solving complex problems and provides 
MATLAB scripts for their solution. Consequently, this book is a natural complement of 
the book Geotechnics of Roads, Fundamentals. 

Althoughmost of the theories required to solve the examples were described in detail 
in [10], each chapter in this book summarizes the set of equations required to solve the 
examples. This book has seven chapters as follows: 

Chapter 1 of this book deals with the distribution of stresses and strains in road 
structures. It develops six examples that cover, first, the analysis of the stresses and 
displacements produced by vertical or horizontal loads in elastic half-spaces. Then, it 
describes the analysis of the tire–road interaction using Hertz’s theory and the Fröhlich 
stress distribution. Besides, the chapter describes in detail the use of Burmister’s method 
to calculate the stress distribution in structures of multilayered roads. Concerning elas-
todynamic solutions, this chapter presents an example that describes the calculation of 
the vehicle–road interaction that produces dynamic loads on the road. These loads could 
exceed the static load obtained by forgetting the dynamic interaction. 

Chapter 2 deals with the unsaturated soil mechanics applied to road structures. 
It describes the methodology to assess the water retention curve using the empirical 
model proposed in the Mechanistic Empiric Pavement Design Gide (MEPDG). Then, 
it presents the method for calculating the unsaturated hydraulic conductivity based on 
the water retention curve. Moreover, regarding the flow of water in road structures, 
the chapter describes a simplified calculation of water infiltration. Then, it presents a 
more rigorous methodology based on the numerical calculation of water flow in unsatu-
rated materials. Finally, regarding heat flow, the chapter presents an example describing 
the methodology for the numerical calculation of the evolution of temperature in road 
structures. 

Chapter 3 analyzes soil compaction through two examples. The first one focuses on 
the compaction process interpreted as a hardening process of unsaturated soils. There-
fore, this example uses the elastoplastic model Barcelona Basic Model (BBM) to analyze 
the evolution of irreversible volumetric strains within the soil produced by a tire com-
pactor. The chapter also explains a linear packingmodel that allows assessing the density 
of compacted materials based on its grain size distribution, the second example of this 
chapter uses this methodology to compute the maximum density of Proctor’s tests. 

Chapter 4 develops three examples regarding the construction and the performance 
of embankments. The first example deals with the construction of embankments on soft 
soils; it explains in detail the use of the methodology of staged construction to design
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an embankment that has a proper safety factor and also analyzes the magnitude of set-
tlement to estimate the correct height of the fill. The second and third examples analyze 
the collapse of embankments and link the compaction characteristics with the long-term 
deformation of embankments subject towetting. For this purpose, these examples use the 
theory of unsaturated soil mechanics and the elastoplastic BBM. Such examples consider 
or not the effect of soil’s microstructure. 

Chapter 5 explains the essential subject of themechanical behavior of roadmaterials. 
Methodologies explained in this chapter are crucial to use mechanistic approaches that 
allow consideration of different load and climatic conditions that can affect roads. Two 
examples illustrate this effect; the first one explains the methodologies to adjust the labo-
ratory measurements of the resilient Young’s modulus to the different models that allow 
a mathematical description of its evolution regarding stresses, water content, or matric 
suction. The second example of this chapter uses the change of the resilient Young’s 
modulus depending on the matric suction to assess the effect of the water content of the 
granular layer on the fatigue life of a low traffic road structure. 

Chapter 6 is devoted to the climate effects on road structures. The chapter develops 
three examples. The first one explains the process to compute the evolution of the tem-
perature in a road structure along a day of the year; the analysis includes several climatic 
variables such as the solar radiation, the air temperature, the wind velocity, the relative 
humidity, the latitude of the site, and the day of the year.Moreover, this chapter develops 
two other examples regarding the flow of water, one of them analyzes the effect of the 
cracks of the bituminous layer in the infiltration of water toward the road structure, and 
the second one analyses the capacity of a drainage layer to evacuate the infiltrations of 
water. 

Finally,Chapter 7 explains the theoretical tools that allow analyzing the performance 
of vibratory compactors and the procedure to examine their movement to apply the 
methodology of continuous compaction control. The chapter presents two examples; 
the first one considers the layer under compaction as an elastic material, while the second 
considers the elastoplastic response of the material undergoing compaction.



Chapter 1 

Distribution of stresses and strains in roads 

1.1 RELEVANT EQUATIONS 

The performance of road structures results from the interaction between the stress 
produced by the external loads and the behavior of the different constituent materials. 
Also, since roads must undergo thousands to millions of load repetitions, their 
constituent materials must sustain loads without suffering irreversible strains. Therefore, 
they must remain in the elastic domain of behavior. 

This chapter focuses on the calculation of stresses in road structures. First, it 
describes methodologies that allow calculating the stress distribution produced by 
vertical and horizontal loads in a homogeneous half-space. Then, the chapter describes 
a methodology for calculating road loads due to interaction with vehicles. Finally, the 
chapter describes Burmister’s method, which is the usual method to calculate stresses 
and strains in road structures having multiple layers. 

1.1.1 Boussinesq’s solution 
In 1878, Boussinesq proposed a solution that allows calculating the distribution of 
stresses in a half-space beneath a concentrated load [6]. The set of equations that permit 
to obtain the stress components resulting from a concentrated vertical load P located in 
the Cartesian coordinate system, as indicated in Figure 1.1, are[ ] []

3P x2z m 2 1 (2R z)x2 z 
σx 

− +=
R5 − 

3m 
− , (1.1) 

2 R(R+ z 2 3 3π ) 
+ 

(R R 
++ z) R[ ] []

3P y2z m 2 1 2R z)y2( z 
σy 

+ 
R

+ (1.2)5 
−= 

2π
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3m 
−
R(R+ z) ( + z 2) R3 + , 

R R3 

P
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xy yx

zy

xz
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Figure 1.1 Geometric layout to describe the Boussinesq solution in Cartesian coordinates.
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3P z3 
σz = , (1.3) 

2π R5[ ] []
3P xyz m− 2 (2R+ z)xy 

τxy = 
2π R5 − , (1.4) 

3m (R+ z 2) R3 

3P yz2 
τyz = , (1.5) 

2π R5 

3P xz2 
τzx = , (1.6) 

2π R5 

where x, y, z are the Cartesian coordinates, R = x2 + y2 + z2, m = 1/ν, and ν is 
Poisson’s ratio. 

Also, the expressions that provide the horizontal displacements u and v, and the 
vertical displacement w are

√

] [
1 

u 
+ ν xz (1= 

2πE R3 
− 2ν) x− P, (1.7) 

R (R+ z)] [
1 

v 
+ ν yz (1= 

2π R3 
− 2ν) y 

E
− P, (1.8) 
R (R z)] + [

1 
w 

+ ν z2 2 (1= 
2πE R3 

− ν)+ P, (1.9) 
R 

where E is Young’s modulus. 

1.1.2 Cerruti’s solution 
Shortly after Boussinesq, in 1882, Cerruti proposed a set of expressions for calculating 
the stress distribution in half-space beneath a horizontal load [16]. His solution provides 
the following expressions for the stresses’ distribution produced by a concentrated 
horizontal load H located in the Cartesian plane as depicted in Figure 1.2:[ ] []

Hx 3x2 1 2 Ry2ν 2 2 2 
σx = −

2 R3 
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− R 
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+ + z 2)
− y2 (R

− , (1.10) 
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Figure 1.2 Geometric layout to describe the Cerruti solution in Cartesian coordinates.
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3Hxz2 
σz = (1.12) 

2πR5 [ ] []
Hy 3x2 1 2Rx2 

τxy 
− 2ν= − − + −R2 x 

2πR3 R2 (R
+ 2 

z 2)
+ , (1.13)+ R+ z 

3Hxyz 
τyz = , (1.14) 

2πR5 

3Hx2z 
τzx = , (1.15) 

2πR5 

Also, x, y, z are the Cartesian coordinates, and R = x2 + y2 + z2. 
Moreover, the displacements u, v, and w provided by Cerruti’s solution are[ ] []

√

H x2 R x2 
u = 1 ( 

4πGR 
+ 
R2 + 1 − 2ν) 

R+ z 
− , (1.16) 

(R+ z 2)[ ]
H xy xy 

v = (1 2ν) , (1.17) 
4πGR R2 − − 2(R+ z)[ ]
H xz x 

w = 
4πGR R2 + (1 − 2ν) , (1.18) 

R+ z 

where G is the shear modulus, and ν is Poisson’s ratio. 

1.1.3 Fröhlich solution 
Fröhlich [32] introduced a “concentration factor”, ξ , into Boussinesq’s equations. The 
Fröhlich solution is a rough alternative to account for the modification of the stress 
distribution due to plasticity. However, Fröhlich’s solution is not exact because it respects 
the equilibrium conditions but without considering the equations for displacement’s 
compatibility. Despite the approximation of the Fröhlich solution, it produces good 
agreement with the measures of field stresses, mainly when a layer of soil undergoes 
compaction [40]. 

Equation 1.19 gives Fröhlich’s solution for the radial stress produced by a combina-
tion of vertical and horizontal point loads (P, H) [39,41]. 

ξP ξξ 2 H ξ 3σR = cos 
2πR2 

− β + (ξ − 2) cos ω sin β cos 
2πR2 

− β, (1.19) 

σθ = 0. (1.20) 

In Equation 1.19, β is the angle formed by the vertical axis and a vector joining the point 
where the load is applied and the point where the stress is calculated. At the same time, ω 
is the angle between the horizontal load vector and a vertical plane including the vector 
mentioned above (in other words, the plane Ω represented in Figure 1.3). 

In Cartesian coordinates, Equations 1.19 and 1.20 lead to the following stresses: 
2 

2σx = σR sin β cos2
x 

ω = σR , (1.21) 
R2 

2 2 y2 
σy = σR sin β sin ω = σR , (1.22) 

R2
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Figure 1.3 Geometric layout to describe the Fröhlich solution in Cartesian coordinates. (Adapted 
from Ref. [39].) 

2 
2 z 

σz = σR cos β = σR (1.23) 
R2 

τxy = 2 xy 
σR sin β cos ω sin ω = σR , (1.24) 

R2 

xz 
τxz = 2σR cos β sin β cos ω = σR , (1.25) 

R2 

yz 
τyz = 2σR cos β sin β sin ω = σR . (1.26) 

R2 

1.1.4 Tire–soil interaction 
The contact area of the footprint below a tire can be approximated by a superellipse 
represented by Equation 1.27 as first suggested in Ref. [40]: [[x [n [y [n[ [

a 
+ [ [

b 
= 1, (1.27) 

[ [ [
where a and b are the half axes of the super-ellipse, and n is an exponent representing its 
rectangularity. 

Then, the footprint area is limited by Equation 1.28: ] [ nΩ = (x, y) |x/a| + |y/b|n ≤ 1 . (1.28) 
}}

Equation 1.29 provides a stress distribution function accounting for different tires, 
which was proposed in Ref. [40]. From this equation, the transverse and longitudinal 
distributions of vertical stress over the loaded area are [

y ( ) 
x = 0 y = C 0 5 − e−δK (0.5−y/wT (x)) wT x 

σz( , ) AK . for 0 ≤ y ≤ , and 
wT (x) 2] [ ]

x αK
[

lT (y) 
σz(x, y) = σz(x = 0, y) 1 − for 0 

T (y)/2
≤ x 

l
≤ , (1.29) 

2

]
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where wT (x) and lT (y) are the width and the length of the contact area, δK and αK 
are parameters given in Ref. [40] that depend on the tire characteristics, and CAK is a 
proportionality factor that accounts for the total load of the tire. 

Another possibility allowing an approximate evaluation of the interaction tire–soil 
is to use of the Hertz contact theory. This procedure is explained in Example 3. 

1.1.5 Road–vehicle interaction 

Roads generally have a certain roughness of different wavelengths; at the same time, 
vehicles, which can be described as a dynamic system, interact with the roughness of 
the road. This interaction produces a dynamic load on the road whose magnitude 
depends on the speed of the vehicle, its dynamic characteristics, and the roughness of 
the road. 

The ‘quarter car model’ permits to schematize the road–vehicle interactions. It 
describes the vehicle, with its tire and suspension, as a set of masses and springs, as shown 
in Figure 1.4. 

The movement of the components of the quarter car is represented by the following 
second-order linear differential equation with two degrees of freedom [65]: 

Mu Cu Ku f (t), (1.30) ¨ + ˙ + =

where u = [u1, u2]T is the vector representing the displacements of the axle and the body 
of the vehicle, positive in the downward direction, while the mass, damping, and stiffness 
matrices of the system are] [ ] [ ] [

m 
M = 1 0 c 2 k1 

, C = 1 + c2 −c k2 k2 
, K + − 

0 m2 2 
= , (1.31)−c2 c −k2 k2 

where k1 is the spring constant of the tire, k2 is the spring constant of the suspension, 
m1 is the mass of the axle, m2 is the mass of the body of the vehicle, c1 is the damping 
of the tire, and c2 is the constant of the suspension’s shock absorber. 

The road’s profile, described by the function ug, is positive in the downward direction. 
The vector that represents the road profile as a time signal f (t) is] [

k t 
f t 1ug( ) + c + m= 1u̇g(t) 1g 
( ) . (1.32) 

m2g 

A methodology for the numerical solution of Equation 1.30 is described in Example 4. 

k1 

c2 
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m2 

k2 
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Tire 

Suspension{ 

{ c1 x 

Figure 1.4 Quarter car model to analyze vehicle–road interaction.
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1.1.5.1 Mathematical description of road profiles 

Based on field data, the standard ISO 8608 [29] proposes to describe the profile of a road 
in the form of power spectral density (PSD). From Refs. [25,26], the spectral equation 
that describes the path profile of a single track is[ ]w 

Ω0 Sz(Ω) = κ , (1.33) 
Ω 

w = 2 for  ΩL ≤ Ω ≤ Ω0, or 
w = 1.5 for  Ωo ≤ Ω ≤ ΩU , 

where Sz(Ω) is the PSD of the road profile, whose unit is ‘m3/cycle’; the frequencies 
Ω0 = 1/2π , ΩL = 0.01, and ΩU = 10, all in cycles/m, are the spatial reference frequency, 
and the respective lower and upper limits for frequency; κ is the road roughness coeffi-
cient in m3/cycle and w is the waviness index. 

In addition, ISO has proposed a road classification system having the seven classes 
of roughness shown in Table 1.1, and the geometric mean of the coefficient of road 
roughness κ can be assessed as κ = 4R · 10−6. 

A particular road profile, described by its power spectrum, can be obtained using the 
method of superposition of harmonics (SOH) proposed in Refs. [52,53]. The method 
divides the power spectrum into N frequency bands, each band corresponding to one 
harmonic. The superposition equation proposed in Ref. [25] is 

[N 
ug(x) = Zn sin(2πΩnx+ φn), n = 1, 2, 3, . . . ,N, (1.34) 

n 1 =

where ug(x) is the elevation of road profile, x is the forward distance traveled by the 
vehicle, Zn is the amplitude of the nth harmonic, N = (ΩU − ΩL)/ΔΩ is the number 
of frequency bands into which the total PSD spectrum is divided, ΔΩ is the width of 
each frequency band, and φn is the phase angle of the nth harmonic, which is assumed 
randomly using a uniform distribution in the interval [0, 2π ]. 

The discretization of the PSD leads to the following expression for the central fre-
quency of the nth band: 

2n 
Ωn = ωL 

− 1+ ΔΩ. (1.35) 
2 

Table 1.1 ISO ranking of road profiles using a Roughness coefficient κ 

Road Class R · 6κ 10 m3/Cycle 
Range Geometric Mean 

A (very good) 1 <8 4 
B (good) 2 8–32 16 
C (average) 3 32–128 64 
D (poor) 4 128–512 256 
E (very poor) 5 512–2,048 1,024 
F 6 2,048–8,192 4,096 
G 7 8,192–32,768 16,384


