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Preface

We live in a complex world, and clever people are continually coming up with new ways
to observe and record increasingly large parts of it so we can comprehend it better (warts
and all!). We are squarely in the midst of a “big data” era, and it seems that every day new
methodologies and algorithms emerge that are designed to deal with the ever-increasing
size of these data streams.

It so happens that the “big data” available to us are often spatio-temporal data. That
is, they can be indexed by spatial locations and time stamps. The space might be geo-
graphic space, or socio-economic space, or more generally network space, and the time
scales might range from microseconds to millennia. Although scientists have long been
interested in spatio-temporal data (e.g., Kepler’s studies based on planetary observations
several centuries ago), it is only relatively recently that statisticians have taken a keen inter-
est in the topic. At the risk of two of us being found guilty of self-promotion, we believe
that the book Statistics for Spatio-Temporal Data by Cressie and Wikle (2011) was perhaps
the first dedicated and comprehensive statistical monograph on the topic. In the decade
(almost) since the publication of that book, there has been an exponential increase in the
number of papers dealing with spatio-temporal data analysis – not only in statistics, but also
in many other branches of science. Although Cressie and Wikle (2011) is still extremely
relevant, it was intended for a fairly advanced, technically trained audience, and it did not
include software or coding examples. In contrast, the present book provides a more access-
ible introduction, with hands-on applications of the methods through the use of R Labs at
the end of each chapter. At the time of writing, this unique aspect of the book fills a void in
the literature that can provide a bridge for students and researchers alike who wish to learn
the basics of spatio-temporal statistics.

What level is expected of readers of this book? First, although each chapter is fairly self-
contained and they can be read in any order, we ordered the book deliberately to “ease” the
reader into more technical material in later chapters. Spatio-temporal data can be complex,
and their representations in terms of mathematical and statistical models can be complex as
well. They require a number of indices (e.g., for space, for time, for multiple variables). In
addition, being able to account for dependent random processes requires a bit of statistical
sophistication that cannot be completely avoided, even in an applications-based introduct-
ory book. We believe that a reader who has taken a class or two in calculus-based prob-

xiii



xiv Preface

ability and inference, and who is comfortable with basic matrix-algebra representations of
statistical models (e.g., a multiple regression or a multivariate time-series representation),
could comfortably get through this book. For those who would like a brief refresher on
matrix algebra, we provide an overview of the components that we use in an appendix. To
make this a bit easier on readers with just a few statistics courses on their transcript, we
have interspersed “technical notes” throughout the book that provide short, gentle reviews
of methods and ideas from the broader statistical literature.

Chapter 1 is the place to start, to get you intrigued and perhaps even excited about
what is to come. We organized the rest of the book to follow what we believe to be good
statistical practice. First, look at your data and do exploratory analyses (Chapter 2), then
fit simple statistical models to the data to indicate possible patterns and see if assumptions
are violated (Chapter 3), and then use what you learned in these analyses to build a spatio-
temporal model that allows valid inferences (Chapters 4 and 5). The end of the cycle is
to evaluate your model formally to find areas of improvement and to help choose the best
model possible (Chapter 6). Then, if needed, repeat with a better-informed spatio-temporal
model.

The bulk of the material on spatio-temporal modeling appears in Chapters 4 and
5. Chapter 4 covers descriptive (marginal) models formed by characterizing the spatio-
temporal dependence structure (mainly through spatio-temporal covariances), which in turn
leads to models that are analogous to the ubiquitous geostatistical models used in kriging.
Chapter 5 focuses on dynamic (conditional) models that characterize the dynamic evolu-
tion of spatial processes through time, analogous to multivariate time-series models. Like
Cressie and Wikle (2011), both Chapters 4 and 5 are firmly rooted in the notion of hier-
archical thinking (i.e., hierarchical statistical modeling), which makes a clear distinction
between the data and the underlying latent process of interest. This is based on the very
practical notion that “[w]hat you see (data) is not always what you want to get (process)”
(Cressie and Wikle, 2011, p. xvi).

Spatio-temporal statistics is such a vast field and this modestly sized book is necessarily
not comprehensive. For example, we focus primarily on data whose spatial reference is a
point, and we do not explore issues related to the “change-of-support” problem, nor do
we deal with spatio-temporal point processes. Further, we mostly limit our discussion to
models and methodologies that are relatively mature, understood, and widely used. Some
of the applications our readers are confronted with will undoubtedly require cutting-edge
methods beyond the scope of this book. In that regard, the book provides a down-to-earth
introduction. We hope you find that the path is wide and the slope is gentle, ultimately
giving you the confidence to explore the literature for new developments. For this reason,
we have named our epilogical chapter Pergimus, Latin for “let us continue to progress.”

A substantial portion of this book is devoted to “Labs,” which enable the reader to
put his or her understanding into practice using the programming language R. There are
several reasons why we chose R: it is one of the most versatile languages designed for
statistics; it is open source; it enjoys a vibrant online community whose members post
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solutions to virtually any problem you will encounter when coding; and, most importantly,
a large number of packages that can be used for spatio-temporal modeling, exploratory data
analysis, and statistical inference (estimation, prediction, uncertainty quantification, and so
forth) are written in R. The last point is crucial, as it was our aim right from the beginning
to make use of as much tried-and-tested code as possible to reduce the analyst’s barrier
to entry. Indeed, it is fair to say that this book would not have been possible without the
excellent work, openness, and generosity of the R community as a whole.

In presenting the Labs, we intentionally use a “code-after-methodology” approach,
since we firmly believe that the reader should have an understanding of the statistical meth-
ods being used before delving into the computational details. To facilitate the connections
between methodology and computation, we have added “R Tips” where needed. The Labs
themselves assume some prior knowledge of R and, in particular, of the tidyverse, which
is built on an underlying philosophy of how to deal with data and graphics. Readers who
would like to know more can consult the excellent book by Wickham and Grolemund (2016)
for background reading (freely available online).

Finally, our goal when we started this project was to help as many people as we could to
start analyzing spatio-temporal data. Consequently, with the generous support of our editors
at Chapman & Hall/CRC, we have made the .pdf file of this book and the accompanying
R package, STRbook, freely available for download from the website listed below. In
addition, this website is a place where users can post errata, comment on the code examples,
post their own code for different problems, their own spatio-temporal data sets, and articles
on spatio-temporal statistics. You are invited to go to:

https://spacetimewithr.org

We hope you find this book useful for your endeavors as you begin to explore the com-
plexities of the spatio-temporal world around us – and within us! Let’s get started . . .

Christopher K. Wikle
Columbia, Missouri, USA

Andrew Zammit-Mangion
Wollongong, NSW, Australia

Noel Cressie
Sydney, NSW, Australia

https://spacetimewithr.org
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Chapter 1

Introduction to Spatio-Temporal
Statistics

“I feel all things as dynamic events, being, changing, and interacting with each
other in space and time even as I photograph them.” (Wynn Bullock, 1902–
1975, American photographer)

Wynn Bullock was an early pioneer of modern photography, and this quote captures the
essence of what we are trying to get across in our book – except in our case the “pho-
tographs” are fuzzy and the pictures are incomplete! The top panel of Figure 1.1 shows
the July 2014 launch of the US National Aeronautics and Space Administration (NASA)
Orbiting Carbon Observatory-2 (OCO-2) satellite, and the bottom panel shows the “pho-
tographer” in action. OCO-2 reached orbit successfully and, at the time of writing, is taking
pictures of the dynamic world below. They are taken every fraction of a second, and each
“photograph” is made up of measurements of the sun’s energy in selected spectral bands,
reflected from Earth’s surface.

After NASA processes these measurements, an estimate is obtained of the fraction of
carbon dioxide (CO2) molecules in an atmospheric column between Earth’s surface and the
OCO-2 satellite. The top panel of Figure 1.2 shows these estimates in the boreal winter at
locations determined by the geometry of the satellite’s 16-day repeat cycle (the time interval
after which the satellite retraces its orbital path). (They are color-coded according to their
value in units of parts per million, or ppm.) Plainly, there are gaps caused by OCO-2’s orbit
geometry, and notice that the higher northern latitudes have very few data (caused by the
sun’s low angle at that time of the year). The bottom panel of Figure 1.2 shows 16 days
of OCO-2 data obtained six months later, in the boreal summer, where the same comments
about coverage apply, except that now the higher southern latitudes have very few data.
Data incompleteness here is a moving target in both space and time. Furthermore, any
color-coded “dot” on the map represents a datum that should not be totally believed, since

1
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Figure 1.1: Top: Launch of NASA’s OCO-2 satellite, on 02 July 2014 (credit: NASA/JPL).
Bottom: An artist’s impression of the OCO-2 satellite in orbit (credit: NASA/JPL).

it is an estimate obtained from measurements made through 700 km of atmosphere with
clouds, water vapor, and dust getting in the way. That is, there is “noise” in the data.

There is a “+” on the global maps shown in Figure 1.2, which is at the location of the
Mauna Loa volcano, Hawaii. Near the top of this volcano, at an altitude of 4.17 km, is the
US National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory
that has been taking monthly measurements of CO2 since the late 1950s. The data are
shown as a time series in Figure 1.3. Now, for the moment, put aside issues associated
with measurements being taken with different instruments, on different parcels of air, at
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Figure 1.2: Sixteen days of CO2 data from the OCO-2 satellite. Top: Data from 25 Decem-
ber 2016 to 09 January 2017 (boreal winter). Bottom: Data from 24 June 2017 to 09 July
2017 (boreal summer). The panel titles identify the eighth day of the 16-day window.

different locations, and for different blocks of time; these can be dealt with using quite
advanced spatio-temporal statistical methodology found in, for example, Cressie and Wikle
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(2011). What is fundamental here is that underlying these imperfect observations is a spatio-
temporal process that itself is not perfectly understood, and we propose to capture this
uncertainty in the process with a spatio-temporal statistical model.

Figure 1.3: Monthly mean atmospheric CO2 (ppm) at the NOAA Mauna Loa Observatory,
Hawaii. The smooth line represents seasonally corrected data (Credit: Scripps Institution
of Oceanography and NOAA Earth System Research Laboratory).

The atmospheric CO2 process varies in space and in time, but the extent of its spatio-
temporal domain means that exhaustive measurement of it is not possible; and even if it
were possible, it would not be a good use of resources (a conclusion you should find evident
after reading our book). Figure 1.2 shows two spatial views during short time periods that
are six months apart; that is, it gives two spatial “snapshots.” Figure 1.3 shows a temporal
view at one particular location as it varies monthly over a 50-year time period; that is, it
gives a temporal “profile.” This is a generic problem in spatio-temporal statistics, namely
our noisy data traverse different paths through the “space-time cube,” but we want to gain
knowledge about unobserved (and even observed) parts of it. We shall address this problem
in the chapters, the Labs, and the technical notes that follow, drawing on a number of data
sets introduced in Chapter 2.

Humans have a longing to understand their place (temporally and spatially) in the
universe. In an Einsteinian universe, space and time interact in a special, “curved” way;
however, in this book our methodology and applications are for a Newtonian world. Rick
Delmonico, author of the book, The Philosophy of Fractals (Delmonico, 2017), has been
quoted elsewhere as saying that “light is time at maximum compression and matter is space
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at maximum compression.” Our Newtonian world is definitely more relaxed than this! Nev-
ertheless, it is fascinating that images of electron motion at a scale of 10−11 meters look
very much like images of the cosmos at a scale of 1017 meters (Morrison and Morrison,
1982).

Trying to understand spatio-temporal data and how (and ultimately why) they vary in
space and time is not new – just consider trying to describe the growth and decline of
populations, the territorial expansion and contraction of empires, the spread of world re-
ligions, species (including human) migrations, the dynamics of epidemics, and so on. In-
deed, history and geography are inseparable. From this “big picture” point of view, there is
a complex system of interacting physical, biological, and social processes across a range of
spatial/temporal scales.

How does one do spatio-temporal statistics? Well, it is not enough to consider just
spatial snapshots of a process at a given time, nor just time-series profiles at a given spatial
location – the behavior at spatial locations at one time point will almost certainly affect the
behavior at nearby spatial locations at the next time point. Only by considering time and
space together can we address how spatially coherent entities change over time or, in some
cases, why they change. It turns out that a big part of the how and why of such change is
due to interactions across space and time, and across multiple processes.

For example, consider an influenza epidemic, which is generally in the winter season.
Individuals in the population at risk can be classified as susceptible (S), infected (I), or
recovered (R), and a well-known class of multivariate temporal models, called SIR models,
capture the transition of susceptibles to infecteds to recovereds and then possibly back to
susceptibles. At a micro level, infection occurs in the household, in the workplace, and in
public places due to the interaction (contact) between infected and susceptible individuals.
At a macro level, infection and recovery rates can be tracked and fitted to an SIR model that
might also account for the weather, demographics, and vaccination rates. Now suppose we
can disaggregate the total-population SIR rates into health-district SIR rates. This creates a
spatio-temporal data set, albeit at a coarse spatial scale, and the SIR rates can be visualized
dynamically on a map of the health districts. Spatio-temporal interactions may then become
apparent, and the first steps of spatio-temporal modeling can be taken.

Spatio-temporal interactions are not limited to similar types of processes nor to spatial
and temporal scales of variability that seem obvious. For example, El Niño and La Niña
phenomena in the tropical Pacific Ocean correspond to periods of warmer-than-normal and
colder-than-normal sea surface temperatures (SST), respectively. These SST “events” occur
every two to seven years, although the exact timing of their appearance and their end is not
regular. But it is well known that they have a tremendous impact on the weather across
the globe, and weather affects a great number of things! For example, the El Niño and La
Niña events can affect the temperature and rainfall over the midwest USA, which can affect,
say, the soil moisture in the state of Iowa, which would likely affect corn production and
could lead to a stressed USA agro-economy during that period. Simultaneously, these El
Niño and La Niña events can also affect the probability of tornado outbreaks in the famed
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“tornado alley” region of the central USA, and they can even affect the breeding populations
of waterfowl in the USA.

Doing some clever smoothing and sharp visualizations of the spatial, temporal, and
spatio-temporal variability in the data is a great start. But the information we glean from
these data analyses needs to be organized, and this is done through models. In the next
section, we make the case for spatio-temporal models that are statistical.

1.1 Why Should Spatio-Temporal Models Be Statistical?

In the physical world, phenomena evolve in space and time following deterministic, perhaps
“chaotic,” physical rules (except at the quantum level), so why do we need to consider
randomness and uncertainty? The primary reason comes from the uncertainty resulting
from incomplete knowledge of the science and of the mechanisms driving a spatio-temporal
phenomenon. In particular, statistical spatio-temporal models give us the ability to model
components in a physical system that appear to be random and, even if they are not, the
models are useful if they result in accurate and precise predictions. Such models introduce
the notion of uncertainty, but they are able to do so without obscuring the salient trends or
regularities of the underlying process (that are typically of primary interest).

Take, for instance, the raindrops falling on a surface; to predict exactly where and when
each drop will fall would require an inconceivably complex, deterministic, meteorological
model, incorporating air pressure, wind speed, water-droplet formation, and so on. A model
of this sort at a large spatial scale is not only infeasible but also unnecessary for many
purposes. By studying the temporal intensity of drops on a regular spatial grid, one can
test for spatio-temporal interaction or look for dynamic changes in spatial intensity (given
in units of “per area”) for each cell of the grid. The way in which the intensity evolves
over time may reveal something about the driving mechanisms (e.g., wind vectors) and be
useful for prediction, even though the exact location and time of each incident raindrop is
uncertain.

Spatio-temporal statistical models are not at odds with deterministic ones. Indeed, the
most powerful (in terms of predictive performance) spatio-temporal statistical models are
those that are constructed based on an understanding of the biological or physical mecha-
nisms that give rise to spatio-temporal variability and interactions. Hence, we sometimes
refer to them as physical-statistical models (see the editorial by Kuhnert, 2014), or gen-
erally as mechanistically motivated statistical models. To this understanding, we add the
reality that observations may have large gaps between them (in space and in time), they
are observed with error, our understanding of the physical mechanisms is incomplete, we
have limited knowledge about model parameters, and so on. Then it becomes clear that
incorporating statistical distributions into the model is a very natural way to solve complex
problems. Answers to the problems come as estimates or predictions along with a quan-
tification of their uncertainties. These physical-statistical models, in the temporal domain,
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the spatial domain, and the spatio-temporal domain, have immense use in everything from
anthropology to zoology and all the “ologies” in-between.

1.2 Goals of Spatio-Temporal Statistics

What are we trying to accomplish with spatio-temporal data analysis and statistical mod-
eling? Sometimes we are just trying to gain more understanding of our data. We might
be interested in looking for relationships between two spatio-temporally varying processes,
such as temperature and rainfall. This can be as simple as visualizing the data or explor-
ing them through various summaries (Chapter 2). Augmenting these data with scientific
theories and statistical methodologies allows valid inferences to be made (Chapter 3). For
example, successive reports from the United Nations Intergovernmental Panel on Climate
Change have concluded from theory and data that a build-up of atmospheric CO2 leads to a
greenhouse effect that results in global warming. Models can then be built to answer more
focused questions. For example, the CO2 data shown in Figure 1.2 are a manifestation of
Earth’s carbon cycle: can we find precisely the spatio-temporal “places” on Earth’s surface
where carbon moves in and out of the atmosphere? Or, how might this warming affect our
ability to predict whether an El Niño event will occur within 6 months?

Broadly speaking, there are three main goals that one might pursue with a spatio-
temporal statistical model: (1) prediction in space and time (filtering and smoothing); (2)
inference on parameters; and (3) forecasting in time. More specific goals might include
data assimilation, computer-model emulation, and design of spatio-temporal monitoring
networks. These are all related through the presence of a spatio-temporal statistical model,
but they have their own nuances and may require different methodologies (Chapters 4 and
5).

1.2.1 The Two Ds of Spatio-Temporal Statistical Modeling

There have been two approaches to spatio-temporal statistical modeling that address the
goals listed above. These are the “two Ds” referred to in the title of this subsection, namely
the descriptive approach and the dynamic approach. Both are trying to capture statistical
dependencies in spatio-temporal phenomena, but they go about it in quite different ways.

Probably the simplest example of this is in time-series modeling. Suppose that the
dependence between any two data at different time points is modeled with a stationary first-
order autoregressive process (AR(1)). Dynamically, the model says that the value at the
current time is equal to a “propagation factor” (or “transition factor”) times the value at
the previous time, plus an independent “innovation error.” This is a mechanistic way of
presenting the model that is easy to simulate and easy to interpret.

Descriptively, the same probability structure can be obtained by defining the correlation
between two values at any two given time points to be an exponentially decreasing function
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of the lag between the two time points. (The rate of decrease depends on the AR(1) propa-
gation factor.) Viewing the model this way, it is not immediately obvious how to simulate
from it nor what the behavior of the correlation function means physically.

The “take-home” message here is that, while there is a single underlying probability
model common to the two specifications, the dynamic approach has some attractive inter-
pretable features that the descriptive approach does not have. Nevertheless, in the absence of
knowledge of the dynamics, it can be the descriptive approach that is more “fit for purpose.”
With mean and covariance functions that are sufficiently flexible, a good fit to the data can
be obtained and, consequently, the spatio-temporal variability can be well described.

1.2.2 Descriptive Modeling

The descriptive approach typically seeks to characterize the spatio-temporal process in
terms of its mean function and its covariance function. When these are sufficient to de-
scribe the process, we can use “optimal prediction” theory to obtain predictions and, cru-
cially, their associated prediction uncertainties. This approach has a distinguished history
in spatial statistics and is the foundation of the famed kriging methodology. (Cressie, 1990,
presents the early history of kriging.) In a spatio-temporal setting, the descriptive approach
is most useful when we do not have a strong understanding of the mechanisms that drive the
spatio-temporal phenomenon being modeled. Or perhaps we are more interested in study-
ing how covariates in a regression are influencing the phenomenon, but we also recognize
that the errors that occur when fitting that relationship are statistically dependent in space
and time. That is, the standard assumption given in Chapter 3, that errors are independent
and identically distributed (iid), is not tenable. In this case, knowing spatio-temporal co-
variances between the data is enough for statistically efficient inferences (via generalized
least squares) on regression coefficients (see Chapter 4). But, as you might suspect, it can be
quite difficult to specify all possible covariances for complex spatio-temporal phenomena
(and, for nonlinear processes, covariances are not sufficient to describe the spatio-temporal
statistical dependence within the process).

Sometimes we can describe spatio-temporal dependence in a phenomenon by includ-
ing in our model covariates that capture spatio-temporal “trends.” This large-scale spatio-
temporal variability leaves behind smaller-scale variability that can be modeled statistically
with spatio-temporal covariances. The descriptive approach often relies on an important
statistical characteristic of dependent data, namely that nearby (in space and time) obser-
vations tend to be more alike than those far apart. In spatial modeling, this is often re-
ferred to as “Tobler’s first law of geography” (Tobler, 1970), and it is often a good guiding
principle. It is fair to point out, though, that there are exceptions: there might be “com-
petition” (e.g., only smaller trees are likely to grow close to or under bigger trees as they
compete over time for light and nutrients), or things may be more alike on two distant
mountain peaks at the same elevation than they are on the same mountain peak at different
elevations.
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It is important to take a look back at the writings of the pioneers in statistics and ask why
spatio-temporal statistical dependencies were not present in early statistical models if they
are so ubiquitous in real-world data. Well, we know that some people definitely were aware
of these issues. For example, in his ground-breaking treatise on the design of experiments
in agriculture, R. A. Fisher (1935, p. 66) wrote: “After choosing the area we usually have
no guidance beyond the widely verified fact that patches in close proximity are commonly
more alike, as judged by the yield of crops, than those which are further apart.” In this
case, the spatial variability between plots is primarily due to the fact that the soil properties
vary relatively smoothly across space at the field level. Unfortunately, Fisher could not im-
plement complex error models that included spatial statistical dependence due to modeling
and computational limitations at that time. So he came up with the brilliant solution of
introducing randomization into the experimental design in order to avoid confounding plot
effects and treatment effects (but note, only at the plot scale). This was one of the most
important innovations in twentieth-century science, and it revolutionized experimentation,
not only in agriculture but also in industrial and medical applications. Readers interested in
more details behind the development of spatial and spatio-temporal statistics could consult
Chapter 1 of Cressie (1993) and Chapter 1 of Cressie and Wikle (2011), respectively.

1.2.3 Dynamic Modeling

Dynamic modeling in the context of spatio-temporal data is simply the notion that we build
statistical models that posit (either probabilistically or mechanistically) how a spatial pro-
cess changes through time. It is inherently a conditional approach, in that we condition on
knowing the past, and then we model how the past statistically evolves into the present. If
the spatio-temporal phenomenon is what we call “stationary,” we could take what we know
about it in the present (and the past) and forecast what it will look like in the future.

Building spatio-temporal models using the dynamic approach is closer to how scien-
tists think about the etiology of processes they study – that is, most spatio-temporal data
really do correspond to a mechanistic real-world process that can be thought of as a spatial
process evolving through time. This connection to the mechanism of the process allows
spatio-temporal dynamic models a better chance to establish answers to the “why” ques-
tions (causality) – is this not the ultimate goal of science? Yet, there is no free lunch –
the power of these models comes from established knowledge about the process’s behavior,
which may not be available for the problem at hand. In that case, one might specify more
flexible classes of dynamic models that can adapt to various types of evolution, or turn to
the descriptive approach and fit flexible mean and covariance functions to the data.

From a statistical perspective, dynamic models are closer to the kinds of statistical mod-
els studied in time series than to those studied in spatial statistics. Yet, there are two fun-
damental differences between spatio-temporal statistical models that are dynamic, and the
usual multivariate time-series models. The first is that dynamic spatio-temporal models
have to represent realistically the kinds of spatio-temporal interactions that take place in
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the phenomenon being studied – not all relationships that one might put into a multivariate
time-series model make physical (or biological or economic or . . . ) sense. The second rea-
son has to do with dimensionality. It is very often the case in spatio-temporal applications
that the dimensionality of the spatial component of the model prohibits standard inferential
methods. That is, there would be too much “multi” if one chose a multivariate time-series
representation of the phenomenon. Special care has to be taken as to how the model is pa-
rameterized in order to obtain realistic yet parsimonious dynamics. As discussed in Chapter
5, this has been facilitated to a large extent by the development of basis function expansions
within hierarchical statistical models.

Irrespective of which “D” is used to model a spatio-temporal data set, its sheer size
can overwhelm computations. Model formulations that use basis functions are a powerful
way to leap-frog the computational bottleneck caused by inverting a very large covariance
matrix of the data. The general idea is to represent a spatio-temporal process as a mixed
linear model with known covariates whose coefficients are unknown and non-random, to-
gether with known basis functions whose coefficients are unknown and random (Chapters
4 and 5). Usually the basis functions are functions of space and their coefficients define
a multivariate time series of dependent random vectors. Depending on the type of basis
functions considered, this formulation gives computational advantages due to reduced di-
mensions and/or sparse covariance/precision matrices that facilitate or eliminate the need
for matrix inversions.

There are many classes of basis functions to choose from (e.g., Fourier, wavelets,
bisquares) and many are multi-resolutional, although physically based functions (e.g., ele-
vation) can easily be added to the class. If the basis functions are spatial and their random
coefficients depend only on time, then the temporal dependence of the coefficients can cap-
ture complex spatio-temporal interactions. These include phenomena for which fine spatial
scales affect coarse spatial scales and, importantly, vice versa.

1.3 Hierarchical Statistical Models

We believe that we are seeing the end of the era of constructing marginal-probability-based
models for complex data. Such models are typically based on the specification of likeli-
hoods from which unknown parameters are estimated. However, these likelihoods can be
extremely difficult (or impossible) to compute when there are complex dependencies, and
they cannot easily deal with the reality that the data are noisy versions of an underlying
real-world process that we care about.

An alternative way to introduce statistical uncertainty into a model is to think condition-
ally and build complexity through a series of conditional-probability models. For example,
if most of the complex dependencies in the data are due to the underlying process of in-
terest, then one should model the distribution of the data conditioned on that process (data
model), followed by a model of the process’ behavior and its uncertainties (process model).
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There will typically be unknown parameters present, in both the statistical model for the
data (conditioned on the process) and the statistical model for the process.

When a dynamic model of one or several variables is placed within a hierarchical model
formulation (see below), one obtains what has been historically called a state-space model
in the time-series literature. That is, one has data that are collected sequentially in time
(i.e., a time series), and they are modeled as “noisy” observations of an underlying state
process evolving (statistically) through time. These models are at the core of a number
of engineering applications (e.g., space missions), and the challenge is to find efficient
approaches to perform inference on the underlying state process of interest while accounting
for the noise.

In general, there are three such situations of interest when considering state-space mod-
els: smoothing, filtering, and forecasting. Smoothing refers to inference on the hidden state
process during a fixed time period in which we have observations throughout the time pe-
riod. (The reader might note that this is the temporal analog of spatial prediction on a
bounded spatial domain.) Now consider a time period that always includes the most current
time, at which the latest observation is available. Filtering refers to inference on the hidden
state value at the most current time based on the current and all past data. The most famous
example of filtering in this setting is a methodology known widely as the Kalman filter
(Kalman, 1960). Finally, forecasting refers to inference on the hidden state value at any
time point beyond the current time, where data are either not available or not considered in
the forecast. In this book, instead of modeling the evolution of a single variable or several
variables, we model entire spatial processes evolving through time, which often adds an
extra layer of modeling complexity and computational difficulty. Chapter 5 discusses how
basis-function representations can deal with these difficulties.

In addition to uncertainty associated with the data and the underlying spatio-temporal
process, there might be uncertainties in the parameters. These uncertainties could be ac-
counted for statistically by putting a prior distribution on the parameters. To make sense
of all this, we use hierarchical (statistical) models (HMs), and follow the terminology of
Berliner (1996), who defined an HM to include a data model, a process model, and a pa-
rameter model. Technical Note 1.1 gives the conditional-probability structure that ties these
models together into a coherent joint probability model of all the uncertainties. The key to
the Berliner HM framework is that, at any level of a spatio-temporal HM, it is a good
strategy to put as much of the dependence structure as possible in the conditional-mean
specification in order to simplify the conditional-covariance specification.

When the parameters are given prior distributions (i.e., a parameter model is posited)
at the bottom level of the hierarchy, then we say that the model is a Bayesian hierarchical
model (BHM). A BHM is often necessary for complex-modeling situations, because the
parameters themselves may exhibit quite complex (e.g., spatial or temporal) structure. Or
they may depend on other covariates and hence could be considered as processes in their
own right. In simpler models, an alternative approach is to estimate the parameters present
in the top two levels in some way using the data or other sources of data; then we like to say
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that the hierarchical model is an empirical hierarchical model (EHM). When applicable, an
EHM may be preferred if the modeler is reluctant to put prior distributions on parameters
about which little is known, or if computational efficiencies can be gained.

It is clear that the BHM approach allows very complex processes to be modeled by
going deeper and deeper in the hierarchy, but at each level the conditional-probability model
can be quite simple. Machine learning uses a similar approach with its deep models. A
cascade of levels, where the processing of output from the previous level is relatively simple,
results in a class of machine-learning algorithms known as deep learning. A potential
advantage of the BHM approach over deep learning is that it provides a unified probabilistic
framework that allows one to account for uncertainty in data, model, and parameters.

A very important advantage of the data–process–parameter modeling paradigm in
an HM is that, while marginal-dependence structures are difficult to model directly,
conditional-dependence structures usually come naturally. For example, it is often rea-
sonable to assume that the data covariance matrix (given the corresponding values of the
hidden process) is simply a diagonal matrix of measurement-error variances. This frees
up the process covariance matrix to capture the “pure” spatio-temporal dependence, ide-
ally (but, not necessarily) from physical or mechanistic knowledge. Armed with these two
covariance matrices, the seemingly complex marginal covariance matrix of the data can
be simply obtained. This same idea is used in mixed-effects modeling (e.g., in longitudi-
nal data analysis), and it is apparent in the spatio-temporal statistical models described in
Chapters 4 and 5.

The product of the conditional-probability components of the HM gives the joint prob-
ability model for all random quantities (i.e., all “unknowns”). The HM could be either a
BHM or an EHM, depending on whether, respectively, a prior distribution is put on the
parameters (i.e., a parameter model is posited) or the parameters are estimated. (A hybrid
situation arises when some but not all parameters are estimated and the remaining have a
prior distribution put on them.) In this book, we are primarily interested in obtaining the
(finite-dimensional) distribution of the hidden (discretized) spatio-temporal process given
the data, which we call the predictive distribution. The BHM also allows one to obtain
the posterior distribution of the parameters given the data, whereas the EHM requires an
estimate of the parameters. Predictive and posterior distributions are obtained using Bayes’
Rule (Technical Note 1.1).

Since predictive and posterior distributions must have total probability mass equal to 1,
there is a critical normalizing constant to worry about. Generally, it cannot be calculated
in closed form, in which case we rely on computational methods to deal with it. Important
advances in the last 30 years have alleviated this problem by making use of Monte Carlo
samplers from a Markov chain whose stationary distribution is the predictive (or the pos-
terior) distribution of interest. These Markov chain Monte Carlo (MCMC) methods have
revolutionized the use of HMs for complex modeling applications, such as those found in
spatio-temporal statistics.
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Technical Note 1.1: Berliner’s Bayesian Hierarchical Model (BHM) paradigm
First, the fundamental notion of the law of total probability allows one
to decompose a joint distribution into a series of conditional distributions:
[A,B,C] = [A | B,C][B | C][C], where the “bracket notation” is used to denote prob-
ability distributions; for example, [A,B,C] is the joint distribution of random variables
A, B, and C, and [A | B,C] is the conditional distribution of A given B and C.

Mark Berliner’s insight (Berliner, 1996) was that one should use this simple decomposi-
tion as a way to formulate models for complex dependent processes. That is, the joint
distribution, [data, process, parameters], can be factored into three levels.

At the top level is the data model, which is a probability model that specifies the distri-
bution of the data given an underlying “true” process (sometimes called the hidden or
latent process) and given some parameters that are needed to specify this distribution.
At the next level is the process model, which is a probability model that describes the
hidden process (and, thus, its uncertainty) given some parameters. Note that at this level
the model does not need to account for measurement uncertainty. The process model
can then use science-based theoretical or empirical knowledge, which is often physical
or mechanistic. At the bottom level is the parameter model, where uncertainty about the
parameters is modeled. From top to bottom, the levels of a BHM are:

1. Data model: [data | process, parameters]
2. Process model: [process | parameters]
3. Parameter model: [parameters]

Importantly, each of these levels could have sub-levels, for which conditional-probability
models could be given.

Ultimately, we are interested in the posterior distribution, [process, parameters | data]
which, conveniently, is proportional to the product of the levels of the BHM given above:

[process, parameters | data] ∝ [data | process, parameters]
× [process | parameters]
× [parameters],

where “∝” means “is proportional to.” (Dividing the right-hand side by the normaliz-
ing constant, [data], makes it equal to the left-hand side.) Note that this result comes
from application of Bayes’ Rule, applied to the hierarchical model. Inference based on
complex models typically requires numerical evaluation of the posterior (e.g., MCMC
methods), because the normalizing constant cannot generally be calculated in closed
form.
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An empirical hierarchical model (EHM) uses just the first two levels, from which the
predictive distribution is

[process | data, parameters] ∝ [data | process, parameters]
× [process | parameters],

where parameter estimates are substituted in for “parameters.” Numerical evaluation of
this (empirical) predictive distribution is also typically needed, since the EHM’s normal-
izing constant cannot generally be calculated in closed form.

1.4 Structure of the Book

The remaining chapters in this book are arranged in the way that we often approach statist-
ical modeling in general and spatio-temporal modeling in particular. That is, we begin by
exploring our data. So, Chapter 2 gives ways to do this through visualization and through
various summaries of the data. We note that both of these types of exploration can be
tricky with spatio-temporal data, because we have one or more dimensions in space and
one in time. It can be difficult to visualize information in more than two dimensions, so it
often helps to slice through or aggregate over a dimension, or use color, or build animations
through time. Similarly, when looking at numerical summaries of the data, we have to
come up with innovative ways to help reduce the inherent dimensionality and to examine
dependence structures and potential relationships in time and space.

After having explored our data, it is often the case that we would like to fit some fairly
simple models – sometimes to help us do an initial filling-in of missing observations that
will assist with further exploration, or sometimes just to see if we have enough covariates to
adequately explain the important dependencies in the data. This is the spirit of Chapter 3,
which presents some ways to do spatial prediction that are not based on a statistical model or
are based on very basic statistical models that do not explicitly account for spatio-temporal
structure (e.g., linear regression, generalized linear models, and generalized additive mod-
els).

If the standard models presented in Chapter 3 are not sufficient to accomplish the goals
we gave in Section 1.2, what are we to do? This is when we start to consider the descriptive
and dynamic approaches to spatio-temporal modeling discussed above. The descriptive
approach has been the “workhorse” of spatio-temporal statistical modeling for most of the
history of the discipline, and these methods (e.g., kriging) are described in Chapter 4. But,
as mentioned above, when we have strong mechanistic knowledge about the underlying
process and/or are interested in complex prediction or forecasting scenarios, we often bene-
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fit from the dynamic approach described in Chapter 5. Take note that Chapters 4 and 5
will require a bit more patience to go through, because process models that incorporate
statistical dependence require more mathematical machinery. Hence, in these two chapters,
the notation and motivation will be somewhat more technical than for the models presented
in Chapter 3. It should be kept in mind, though, that the aim here is not to make you an
expert, rather it is to introduce you (via the text, the Labs, and the technical notes) to the
motivations, main concepts, and practicalities behind spatio-temporal statistical modeling.

After building a model, we would like to know how good it is. There are probably
as many ways to evaluate models as there are models! So, it is safe to say that there is
no standard way to evaluate a spatio-temporal statistical model. However, there are some
common approaches that have been used in the past to carry out model evaluation and model
comparison, some of which apply to spatio-temporal models (see Chapter 6). We note that
the aim there is not to show you how to obtain the “best” model (as there isn’t one!). Rather,
it is to show you how a model or a set of models can be found that does a reasonable job
with regard to the goals outlined in Section 1.2.

Last, but certainly not least, each of Chapters 2–6 contain Lab vignettes that go through
the implementation of many of the important methods presented in each chapter using the
R programming language. This book represents the first time such a comprehensive collec-
tion of R examples for spatio-temporal data have been collected in one place. We believe
that it is essential to “get your hands dirty” with data, but we recognize that quite a few
of the methods and approaches used in spatio-temporal statistics can be complicated and
that it can be daunting to program them yourself from scratch. Therefore, we have tried to
identify some useful (and stable) R functions from existing R packages (see the list follow-
ing the appendices) that can be used to implement the methods discussed in Chapters 2–6.
We have also put a few functions of our own, along with the data sets that we have used, in
the R package, STRbook, associated with this book (instructions for obtaining this package
are available at https://spacetimewithr.org). We note that there are many other
R packages that implement various spatio-temporal methods, whose approaches could ar-
rive at the same result with more or less effort, depending on familiarity. As is often the
case with R, one gets used to doing things a certain way, and so most of our choices are
representative of this.

https://spacetimewithr.org


http://taylorandfrancis.com


Chapter 2

Exploring Spatio-Temporal Data

Exploration into territory unknown, or little known, requires both curiosity and survival
skills. You need to know where you are, what you are looking at, and how it relates to what
you have seen already. The aim of this chapter is to teach you those skills for exploring
spatio-temporal data sets. The curiosity will come from you!

Spatio-temporal data are everywhere in science, engineering, business, and industry.
This is driven to a large extent by various automated data acquisition instruments and soft-
ware. In this chapter, after a brief introduction to the data sets considered in this book,
we describe some basic components of spatio-temporal data structures in R, followed by
spatio-temporal visualization and exploratory tools. The chapter concludes with fairly ex-
tensive Labs that provide examples of R commands for data wrangling, visualization, and
exploratory data analysis.

When you discover the peaks and valleys, trends and seasonality, and changing land-
scapes in your data set, what then? Are they real or illusory? Are they important? Chapters
3–6 will give you the inferential and modeling skills required to answer these questions.

2.1 Spatio-Temporal Data

Time-series analysts consider univariate or multivariate sequential data as a random process
observed at regular or irregular intervals, where the process can be defined in continuous
time, discrete time, or where the temporal event is itself the random event (i.e., a point pro-
cess). Spatial statisticians consider spatial data as either temporal aggregations or tempor-
ally frozen states (“snapshots”) of a spatio-temporal process. Spatial data are traditionally
thought of as random according to either geostatistical, areal or lattice, or point process
(and sometimes random set) behavior. We think of geostatistical data as the kind where
we could have observations of some variable or variables of interest (e.g., temperature and
wind speed) at continuous locations over a given spatial domain, and where we seek to pre-
dict those variables at unknown locations in space (e.g., using interpolation methodology

17
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such as kriging). Lattice processes are defined on a finite or countable subset in space (e.g.,
grid nodes, pixels, polygons, small areas), such as the process defined by work-force indi-
cators on a specific political geography (e.g., counties in the USA) over a specific period
of time. A spatial point process is a stochastic process in which the locations of the points
(sometimes called events) are random over the spatial domain, where these events can have
attributes given in terms of marks (e.g., locations of trees in a forest are random events,
with the diameter at breast height being the mark). Given the proliferation of various data
sources and geographical information system (GIS) software, it is important to broaden the
perspective of spatial data to include not only points and polygons, but also lines, trajecto-
ries, and objects. It is also important to note that there can be significant differences in the
abundance of spatial information versus temporal information.

R tip: Space-time data are usually provided in comma-separated value (CSV) files,
which can be read into R using read.csv or read.table; shapefiles, which can
be read into R using functions from rgdal and maptools; NetCDF files, which can be
read into R using a variety of packages, such as ncdf4 and RNetCDF; and HDF5 files,
which can be read into R using the package h5.

It should not be surprising that data from spatio-temporal processes can be considered
from either a time-series perspective or a spatial-random-process perspective, as described
in the previous paragraph. In this book, we shall primarily consider spatio-temporal data
that can be described by processes that are discrete in time and either geostatistical or on a
lattice in space. For a discussion of a broader collection of spatio-temporal processes, see
Cressie and Wikle (2011), particularly Chapters 5–9.

Throughout this book, we consider the following data sets:

• NOAA daily weather data. These daily data originated from the US National Oceanic
and Atmospheric Administration (NOAA) National Climatic Data Center and can be
obtained from the IRI/LDEO Climate Data Library at Columbia University.1 The
data set we consider consists of four variables: daily maximum temperature (Tmax)
in degrees Fahrenheit (◦F), minimum temperature (Tmin) in ◦F, dew point tempera-
ture (TDP) in ◦F, and precipitation (Precip) in inches at 138 weather stations in the
central USA (between 32◦N–46◦N and 80◦W–100◦W), recorded between the years
1990 and 1993 (inclusive). These data are considered to be discrete and regular in
time (daily) and geostatistical and irregular in space. However, the data are not com-
plete, in that there are missing measurements at various stations and at various time
points, and the stations themselves are obviously not located everywhere in the cen-
tral USA. We will refer to these data as the “NOAA data set.” Three days of Tmax
measurements from the NOAA data set are shown in Figure 2.1.

1http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.DAILY/.FSOD/

http://iridl.ldeo.columbia.edu
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Figure 2.1: Maximum temperature (Tmax) in ◦F from the NOAA data set on 01, 15, and
30 May 1993.

Figure 2.2: Sea-surface temperature anomalies in ◦C for the month of January in the years
1989, 1993, and 1998. The year 1989 experienced a La Niña event (colder than normal
temperatures) while the year 1998 experienced an El Niño event (warmer than normal tem-
peratures).

• Sea-surface temperature anomalies. These sea-surface temperature (SST) anomaly
data are from the NOAA Climate Prediction Center as obtained from the IRI/LDEO
Climate Data Library at Columbia University.2 The data are gridded at a 2◦ by 2◦

resolution from 124◦E–70◦W and 30◦S–30◦N, and they represent monthly anomalies
from a January 1970–December 2003 climatology (averaged over time). We refer to
this data set as the “SST data set.” Three individual months from the SST data set are
shown in Figure 2.2.

• Breeding Bird Survey (BBS) counts. These data are from the North American Breed-
ing Bird Survey.3 In particular, we consider yearly counts of the house finch (Car-
podacus mexicanus) at BBS routes for the period 1966–2000 and the Carolina wren

2http://iridl.ldeo.columbia.edu/SOURCES/.CAC/
3K. L. Pardieck, D. J. Ziolkowski Jr., M. Lutmerding, and M.-A. R. Hudson, US Geological Survey, Patux-

http://iridl.ldeo.columbia.edu
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Figure 2.3: Counts of house finches between 1980 and 1999. The size of the points is
proportional the number of observed birds, while transparency is used to draw attention to
regions of high sampling density or high observed counts.

(Thryothorus ludovicianus) for the period 1967–2014. The BBS sampling unit is a
roadside route of length approximately 39.2 km. In each sampling unit, volunteer
observers make 50 stops and count birds for a period of 3 minutes when they run
their routes (typically in June). There are over 4000 routes in the North American
survey, but not all routes are available every year. For the purposes of the analyses
in this book, we consider the total route counts to occur yearly (during the breeding
season) and define the spatial location of each route to be the route’s centroid. Thus,
we consider the data to be discrete in time, geostatistical and irregular in space, and
non-Gaussian in the sense that they are counts. We refer to this data set as the “BBS
data set.” Counts of house finches for the period 1980–1999 are shown in Figure 2.3.

• Per capita personal income. We consider yearly per capita personal income (in dol-
lars) data from the US Bureau of Economic Analysis (BEA).4 These data have areal
spatial support corresponding to USA counties in the state of Missouri, and they
cover the period 1969–2014. We refer to this data set as the “BEA income data set.”
Figure 2.4 shows these data, on a log scale, for the individual years 1970, 1980, and

ent Wildlife Research Center (https://www.pwrc.usgs.gov/bbs/RawData/). Note that we used the
archived 2016.0 version of the data set, doi: 10.5066/F7W0944J, which is accessible through the data archive
link on the BBS website (ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/Archivefiles/
Version2016v0/).

4http://www.bea.gov/regional/downloadzip.cfm

https://www.pwrc.usgs.gov
http://www.bea.gov
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Figure 2.4: Per capita personal income (in dollars) by county for residents in Missouri in
the years 1970, 1980, and 1990, plotted on a log scale. The data have been adjusted for
inflation. Note how both the overall level of income as well as the spatial variation change
with time.

1990; note that these data have been adjusted for inflation.

• Sydney radar reflectivity. These data are a subset of consecutive weather radar re-
flectivity images considered in the World Weather Research Programme (WWRP)
Sydney 2000 Forecast Demonstration Project. There are 12 images at 10-minute in-
tervals starting at 08:25 UTC on 03 November, 2000 (i.e., 08:25–10:15 UTC). The
data were originally mapped to a 45× 45 grid of 2.5 km pixels centered on the radar
location. The data used in this book are for a region of dimension 28 × 40, cor-
responding to a 70 km by 100 km domain. All reflectivities are given in “decibels
relative to Z” (dBZ, a dimensionless logarithmic unit used for weather radar reflec-
tivities). We refer to this data set as the “Sydney radar data set.” For more details on
these data, shown in Figure 2.5, see Xu et al. (2005).

• Mediterranean winds. These data are east–west (u) and north–south (v) wind-
component observations over the Mediterranean region (from 6.5◦W–16.5◦E and
33.5◦N–45.5◦N) for 28 time periods (every 6 hours) from 00:00 UTC on 29 Jan-
uary 2005 to 18:00 UTC on 04 February 2005. There are two data sources: satellite
wind observations from the QuikSCAT scatterometer, and surface winds and pres-
sures from an analysis by the European Center for Medium Range Weather Forecast-
ing (ECMWF). The ECMWF-analysis winds and pressures are given on a 0.5◦×0.5◦

spatial grid (corresponding to 47 longitude locations and 25 latitude locations), and
they are available at each time period for all locations. The QuikSCAT observa-
tions are only available intermittently in space, due to the polar orbit of the satellite,
but at much higher spatial resolution (25 km) than the ECMWF data when they are
available. The QuikSCAT observations given for each time period correspond to all
observations available in the spatial domain within 3 hours of time periods stated
above. There are no QuikSCAT observations available at 00:00 UTC and 12:00 UTC
in the spatial domain and time periods considered here. We refer to this data set as
the “Mediterranean winds data set.” Figure 2.6 shows the wind vectors (“quivers”)
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Figure 2.5: Weather radar reflectivities in dBZ for Sydney, Australia, on 03 November
2000. The images correspond to consecutive 10-minute time intervals from 08:25 UTC to
10:15 UTC.

for the ECMWF data at 06:00 UTC on 01 February 2005. These data are a subset of
the data described in Cressie and Wikle (2011, Chapter 9) and Milliff et al. (2011).

2.2 Representation of Spatio-Temporal Data in R

Although there are many ways to represent spatial data and time-series data in R, there are
relatively few ways to represent spatio-temporal data. In this book we use the class defini-
tions defined in the R package spacetime. These classes extend those used for spatial data
in sp and time-series data in xts. For details, we refer the interested reader to the package
documentation and vignettes in Pebesma (2012). Here, we just provide a brief introduction
to some of the concepts that facilitate thinking about spatio-temporal data structures.

Although spatio-temporal data can come in quite sophisticated relational forms, they
most often come in the form of fairly simple “tables.” Pebesma (2012) classifies these
simple tables into three classes:

• time-wide, where columns correspond to different time points;
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Figure 2.6: ECMWF wind vector observations over the Mediterranean region for 06:00
UTC on 01 February 2005.

• space-wide, where columns correspond to different spatial features (e.g., locations,
regions, grid points, pixels);

• long formats, where each record corresponds to a specific time and space coordinate.

R tip: Data in long format are space inefficient, as spatial coordinates and time attributes
are required for each data point, whether or not data are on a lattice. However, it is
easy to subset and manipulate data in long format. Powerful “data wrangling” tools in
packages such as dplyr and tidyr, and visualization tools in ggplot2, are designed for
data in long format.

Tables are very useful elementary data objects. However, an object from the spacetime
package contains additional information, such as the map projection and the time zone.
Polygon objects may further contain the individual areas of the polygons as well as the
individual bounding boxes. These objects have elaborate, but consistent, class definitions
that greatly aid the geographical (e.g., spatial) component of the analysis.

Pebesma (2012) considers four classes of space-time data:

• full grid (STF), a combination of any sp object and any xts object to represent all
possible locations on the implied space-time lattice;


