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Preface

Volume IV (“Ordinary Differential Equations with Applications to Trajectories 
and Oscillations”) is organized like the preceding three volumes of the series 
“Mathematics and Physics Applied to Science and Technology”: (volume  III) 
“Generalized Calculus with Applications to Matter and Forces”; (volume II) 
“Elementary Transcendentals with Applications to Solids and Fluids”; (volume I) 
“Complex Analysis with Applications to Flows and Fields”. These three volumes 
on complex, transcendental, and generalized functions complete Topic A, 
“Theory of Functions and Potential Fields”. Topic B, “Boundary and Initial-
Value Problems” starts with volume IV on “Ordinary Differential Equations 
with Applications to Trajectories and Oscillations”.

Volume IV consists of ten chapters: (i) the odd-numbered chapters pres-
ent mathematical developments; (ii) the even-numbered chapters contain 
physical and engineering applications; (iii) the last chapter is a set of 20 
detailed examples of (i) and (ii). The first book “Linear Differential Equations 
and Oscillators” of volume IV corresponds to the fourth book of the series and 
consists of chapters 1 and 2 of volume IV. The present second book, “Non-
linear Differential Equations and Dynamical Systems”, corresponds to the fifth 
book of the series and consists of chapters 3 and 4 of volume IV.

Chapter 1 described linear differential equations of any order with con-
stant or power coefficients, and chapter 3 focuses on non-linear differential 
equations of the first-order, including variable coefficients, with extensions 
to differentials of order higher than the first and in more than two vari-
ables, and applications to the representation of vector fields by potentials. 
Chapter  2 discussed linear oscillators with damping/amplification and 
forcing with constant coefficients, including ordinary resonance. Chapter 4 
considers linear oscillators with variable coefficients leading to parametric 
resonance, and non-linear oscillators leading to non-linear resonance ampli-
tude jumps and hysteresis. Together with electromechanical dynamos and 
non-linear damping, these are examples of dynamical systems that may 
have bifurcations leading to chaotic motions.

Organization of the Book

The chapters are divided into sections and subsections, for example  chapter 3, 
section 3.1, and subsection 3.1.1. The formulas are numbered by chap-
ters in curved brackets; for example, (3.2) is equation 2 of chapter 3. When 

9780367137199_FM.indd   15 23/07/19   2:49 PM



xvi Preface

referring to volume I the symbol I is inserted at the beginning, for example: 
(i) chapter I.36, section I.36.1, subsection I.36.1.2; (ii) equation (I.36.33a). The 
final part of each chapter includes: (i) a conclusion referring to the figures 
as a kind of visual summary; (ii) the note(s), list(s), table(s), diagram(s), and 
classification(s) as additional support. The latter (ii) apply at the end of each 
chapter, and are numbered within the chapter (for example note N3.1, table 
T4.1); if there is more than one they are numbered sequentially (for example, 
notes N4.1 to N4.13). The chapter starts with an introductory preview, and 
related topics may be mentioned in the notes at the end. The “Series Preface” 
and “Mathematical Symbols” in the first book of volume IV are not repeated, 
and the “Physical Quantities”, “References”, and “Index” focus on the con-
tents of the present second book of volume IV.
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Physical Quantities

The location of first appearance is indicated, for example “2.7” means 
 ‘section 2.7’ “6.8.4” means “subsection 6.8.4”, “N8.8” means “note 8.8”, and 
“E10.13.1” means “example 10.13.1”.

1 Small Arabic Letters

a — moment arm: 4.7.3
an — coefficients of a series: 4.4.10
h — amplitude of excitation of parametric resonance: 4.3.2
q — non-linearity parameter for pendular motion: 4.7.13

2 Capital Arabic Letters

A — anharmonic factor: 4.4.10


A — vector potential: 3.9.9
D — drag force: 4.8.13
F — force: 3.9.11
I — moment of inertia: 4.7.3
J — electric current: 4.7.1
L — induction of a coil or self: 4.4.7.1

— lift force: 4.8.13
Q — heat: 3.9.11
R — electrical resistance: 4.7.1
S — entropy: 3.9.11

— dynamo parameter: 4.7.3
T — temperature: 3.9.11

— thrust: 4.8.13
U — internal energy: 3.9.11
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W — work: 3-9.11
— weight: 4.8.13

3 Small Greek Letters

α — angle of cylindrical helix: 3.9.5
— coefficient of the cubic term of the quartic potential: 4.5.1

β — coefficient of the quartic term in the biquadratic potential: 4.4.4
γ  — dimensionless non-linearity parameter: 4.4.8
ω0 — natural frequency: 4.3.2
ωe — excitation frequency of parametric resonance: 4.3.2
ψ — non-linearity parameter for a quartic potential: 4.6.1

4 Capital Greek Letters

Φ — scalar potential: 3.9.9
— mechanical potential energy: 4.4.2

Θ — Euler potential: 3.9.9
Ω — angular velocity of rotation: 4.7.1
Ψ — Euler potential 3.9.9
Ξ — Clebsch potential: 3.9.9
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3
Differentials and First-Order Equations

If a differential equation involves derivatives with regard to one (several) 
variables, it is an ordinary (partial) differential equation; ordinary differen-
tial equations will be considered in the present volume IV, and partial equa-
tions in the next volume V. In the dynamical example of the second-order 
linear system with constant (variable) coefficients (chapter 2(4)), the indepen-
dent variable is time only, leading to an ordinary differential equation. If 
the particle or system has one (several) degrees of freedom, for example its 
position is specified by one (several) coordinates, then the motion is specified 
by an equation (system of equations); thus the solution of an ordinary differ-
ential equation (system of N simultaneous ordinary differential equations), 
is a function (N functions) of one variable. The derivative of highest order 
appearing in a differential equation specifies the order of that equation; for 
example in the dynamics of a particle with one degree of freedom the ordi-
nary differential equation is of order two, because the highest order deriva-
tive of position with regard to time is the second, specifying the acceleration. 
Not all differential equations are readily solvable; this is why it is important 
to classify them into (i) ordinary or partial, (ii) equations or systems, (iii) order 
one or higher, and (iv) particular standards or sub-types. The aim is to iden-
tify classes of differential equations that have certain properties, making pos-
sible specific methods of solution. The starting point was the ordinary linear 
differential equations of any order N with constant or homogeneous coeffi-
cients that have a characteristic polynomial of degree N (chapter 1); by anal-
ogy other equations with one characteristic polynomial. Considering (i) linear 
differential equations with variable coefficients or (ii) non-linear differential 
equations, it is simpler to start with those of first order (chapter 3).

After the discussion of some general properties of first-order differential 
equations (section 3.1), methods of solution are presented for eight classes 
or standards: (i) the separable equation (section 3.2), for which the deriva-
tive is the ratio of two separate functions of the independent and dependent 
variable, which can be solved by quadratures, that is the solution reduces 
to one (or two) integration(s); (ii) the linear unforced equation, a particular 
case of a separable equation and hence always solvable (section 3.2); (iii) the 
solution of the linear forced equation is obtained from its unforced part by 
the method of variation of parameters (section 3.3), used before (notes 1.2–1.5 
and section 2.9); (iv) the Bernoulli equation, which is non-linear but can be 
transformed to the linear type, and hence is also always solvable (section 3.4); 
(v) the Riccati equation, which, while there is no known general solution, is 
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a non-linear generalization of the Bernoulli equation (section 3.6), and it can 
be shown (section 3.5) that if one/two/three particular integrals are known, 
then the general integral can be obtained via two/one/zero quadratures.

A sixth method is (vi) a change of variable that may render a differential equa-
tion solvable; for example the homogeneous first-order differential equation, 
in which the dependent and independent variable appear only through their 
ratio, can be transformed into a separable type, and hence integrated in all cases 
(section 3.7). Proceeding from the first six to the next two classes, any first-order 
differential equation is equivalent to a first-order differential in two variables 
(section 3.8) leading to two cases: (vii) if it satisfies a condition of integrability, 
it is an exact differential that is the differential of a function, that equated to an 
arbitrary constant supplies the general integral; (viii) if the integrability condi-
tion is not satisfied, the first-order differential equation is equivalent to an inex-
act differential, and it is not the differential of a function, though it becomes so 
when multiplied by an integrating factor that always exists. This is no longer 
the case for a first-order differential in three variables (section 3.9), when there 
are three possibilities: (i/ii) exact (inexact) differential satisfying (not satisfying) 
an integrability condition and not needing (needing) an integration factor, as 
for a first-order differential in two variables; (ii/iii) the existence (non-existence) 
of an integrating factor depends on the satisfaction (non-satisfaction) of a more 
general integrability condition. The first-order differential may be extended 
to: (i) more than three variables (notes 3.1–3.15); (ii) homogeneous differentials 
(notes 3.16–3.20); (iii) higher-order differentials (notes 3.21–3.24).

3.1 General Properties of First-Order Equations

The general properties include a classification of solutions (subsection 3.1.1) 
and the determination of the arbitrary constant in the general integral (sub-
section 3.1.2). The differential equation is considered to be solved when it is 
reduced to an integration (subsection 3.1.3) or quadrature (subsection 3.1.4) 
that may be elementary or not. The general integral of a first-order differ-
ential equation is one family (or several families) of integral curves [subsec-
tion 3.1.1 (3.1.5)], and each value of the arbitrary constant corresponds to one 
curve of the (of each) family.

3.1.1 General Integral and Integral Curves

An ordinary differential equation of the first order is a relation between a 
function y(x), its variable x, and its first derivative y’:

y
dy
dx

F x y y( )′ ≡ ′ =: , ; 0.
 

(3.1a, b)
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The function y(x) is the dependent variable, and the variable x is the 
independent variable. A solution of the differential equation is a function 
y(x) that satisfies it (3.1b) when substituted together with its first deriva-
tive (3.1a). The solution of the differential equation (3.1a, b), may be given 
a geometric interpretation (Figure 3.1): the first-order ordinary differen-
tial equation (3.1b) specifies at each point of the (x, y)-plane one (or more) 
slopes y’. A solution must be a curve, whose tangent at the point (x, y), has 
a slope y’ and is called an integral curve. Since it specifies one (or more) 
slopes or tangents at each point, the most general solution is a family of 
curves (Figure 3.2):

( ) =, , 0,f x y C (3.2)

involving a parameter C, and this is the general integral of the first-
order ordinary differential equation (3.1b). Giving to the parameter C a 
particular value C C= 1, specifies a particular curve, or a particular integral 
of the differential equation. Thus an ordinary differential equation of first-
order (3.1b) relates a family of curves (3.2) to the slopes (3.1a) of its tangents at 
each point (x, y). The cases in which the tangent is not unique may lead to 
more than one family of integral curves or to integral curves with multiple 
points, the simplest being as double points (Figure 3.3). If the family of 
integral curves has an envelope this a singular or special integral (section 1.1); 
the locus of double points or other loci may also lead to special integrals 
(sections 5.1–5.4).

y

y'

x
x

y

f (x, y, C) = 0

FIGURE 3.1
An explicit first-order differential equation specifies one slope at each point of the plane and its 
solution is an integral curve with the corresponding tangents.
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x

f (x, y, C3) = 0

f (x, y, C2) = 0

f (x, y, C1) = 0

y

FIGURE 3.2
Each integral curve is a particular integral of the first-order differential equation for a particu-
lar value of the constant of integration; the general integral is the family of curves with the 
value of the arbitrary constant identifying each curve.

x

y

f (x, y, C3) = 0f (x, y, C2) = 0f (x, y, C1) = 0

FIGURE 3.3
If there are multiple slopes at some points these are multiple points, for example double points 
through which the curve crosses itself in two different directions.
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3.1.2 Constant of Integration and Boundary Condition

The preceding geometric property may be re-stated in analytical terms: the 
general integral (3.2) of the first-order ordinary differential equation (3.1a, b), involves 
one arbitrary constant of integration C, and includes, for particular values of C, 
all particular integrals. A rigorous proof will be given in section 9.1, and here 
is provided a heuristic explanation; there may also be singular integrals not 
included in the general integral (chapter 5). If the general integral (3.2) is dif-
ferentiated with regard to x it yields:

 
0,

f
x

y
f
y

∂
∂

+ ′
∂
∂

=
 

(3.3)

where the partial derivatives may depend on the constant of integration C. 
Taking C as a parameter, and eliminating it between (3.2) and (3.3), leads 
back to the differential equation of first order (3.1b). If the general integral 
(3.2) involved more than one constant of integration, say two C, Co, then after 
elimination of C with (3.3) the remaining constant Co would have appeared 
in (3.1b). If the general integral (3.2) involved no constant of integration, then 
elimination with (3.3) for (3.1b) would generally be impossible, unless the 
two equations were redundant, that is the case of singular or special (sec-
tions 5.1–5.4) integrals. Excepting the case of special integrals, the general 
integral (3.2) of a first-order (3.1a) differential equation (3.1b) involves one 
arbitrary constant of integration that can be determined from a boundary 
condition:

 ( ) =, , 0,0 0f x y C  (3.4)

selecting the integral curve passing through a given point, assuming there 
is one and only one.

3.1.3 Algebra, Analysis, and Differential Equations

A differential equation may be considered a third-level problem in the sense 
that it is considered solved when it reduces to a problem of analysis, like an 
integration. For example, the simplest ordinary differential equation of first 
order (3.5b):

 
| , , ,f R y f x y f d C

x

∫( ) ( )( )∈ ′ = = ξ ξ +E
 

(3.5a–c)

where f(x) is an integrable function (3.5a), has general integral (3.5c) obtained 
by a single integration or quadrature, involving one arbitrary constant of 
integration C. Performing the integration, regardless of whether it is elemen-
tary or not, is a second-level problem of analysis. The solution of the prob-
lem of analysis may lead to a general integral in implicit form (3.2) or in 
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explicit form (3.6) involving the roots of an algebraic equation, such as the 
characteristic polynomial of a linear differential equations with constant 
(homogeneous) coefficients [sections (1.3–1.5 (1.6–1.8)]. Finding the roots or 
obtaining one or more explicit solution(s) in the form:

 y y x C( )= ; , (3.6)

is a first-level problem of algebra. Thus there is a four-level hierarchy of 
problems: (i) algebraic at level one; (ii) analysis at level two involving integrations 
or quadratures; (iii) differential equations at level three, involving relations between 
functions and derivatives; and (iv) variational problems at level four whose solution 
lead to differential equations.

3.1.4 Solution by Quadratures and Indefinite Integrals

A differential equation is solved by quadratures when its solution is 
expressed by an integral, for example (3.5c) is the solution by quadratures of 
the differential equation (3.5b) where the function f is integrable (3.5a). The 
general integral (3.5b) specifies a family of integral curves, differing from 
each other by a translation along the y-axis (Figure 3.3); hence only one curve 
passes through each point x y( ),0 0 :

 
∫ ∫ ∫( ) ( ) ( )− = ξ ξ − ξ ξ = ξ ξ,0

0

0

y y f d f d f d
x x

x

x

 
(3.7a)

thus the indefinite integral in the general solution (3.5c) is replaced by a defi-
nite integral (3.7a) in the particular solution corresponding to the constant of 
integration:

 
.0

0

C y f d
x

∫ ( )≡ − ξ ξ
 

(3.7b)

An example of first-order ordinary differential is the case of linear slope 
(3.8a):

 2 , ,2y x y x C′ = = +  (3.8a, b)

whose general integral (3.8b) is a family of parabolas (Figure 3.4) cutting the 
y-axis x = 0 at y = C; for example the parabola through the origin is the par-
ticular integral C = 0. The solution of a first-order differential equation may 
consist of N families of functions if it is of degree N (subsection 5.4.4); next is 
given an example of degree N = 2 (subsection 3.1.5).
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3.1.5 Double Points of Quadratic Differential Equation

A first-order differential equation is explicit if it can be solved for the 
slope (3.9a), and is of degree M if is a polynomial of the derivatives (3.9b):

 
, , , 0.

1

y f x y y f x y
m

M

m∏( ) ( )′ = ′ −  =
=  

(3.9a, b)

A simple case of quadratic differential equation is (3.10a):

0 ,2y f x f x y f x f x y f x y f x( ) ( ) ( ) ( ) ( ) ( )= ′ − +  ′ + = ′ −  ′ − + − + − + −  (3.10a)

x

−1

+1

+2

y

y  = x2 + 2

y  = x2 + 1

y  = x2 − 1

y  = x2

FIGURE 3.4
Through the regular points of a differential equation passes only one integral curve, for exam-
ple the family of parabolas symmetric relative to the y-axis with unit curvature at the apex has 
particular integrals identified by the intersection with the y-axis.
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whose general integral is two families of curves (3.10b, c):

 
.y x C f d

x

∫ ( )( ) = + ξ ξ± ±
 

(3.10b, c)

For each value of the constant C there are two curves, and thus the regular 
points in the plane (Figure 3.5) are double points; unlike those in Figure 3.3 
they do not arise from the curve crossing itself. The general integral is (3.10d):

 
0 ,∫ ∫( ) ( )( ) ( )= − ξ ξ −





− ξ ξ −



+ + − −y x f d C y x f d C

x x

 
(3.10d)

because it is satisfied by either of (3.10b, c); there is only one constant of inte-
gration in (3.10b, c) ≡ (3.10d) because the ordinary differential equation (3.10a) 
is of the first-order.

3.2 Integration by Quadratures of a Separable Equation

Integration by quadratures is possible for a separable equation (subsection 
3.2.1) for which several examples can be given, including the particular case 
of the linear unforced equation (subsection 3.2.2).

x

y
f+(x, y, C3) = 0

f+(x, y, C2) = 0

f+(x, y, C1) = 0

f−(x, y, C3) = 0

f−(x, y, C2) = 0

f−(x, y, C1) = 0

FIGURE 3.5
If there are multiple slopes at all points, then the general integral consists of several families of 
curves, for example two for a first-order differential equation quadratic on the slope.


