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Preface

Volume IV (Ordinary Differential Equations with Applications to Trajectories 
and Oscillations) is organized like the preceding three volumes of the 
series Mathematics and Physics Applied to Science and Technology: (volume III) 
Generalized Calculus with Applications to Matter and Forces; (volume  II) 
Transcendental Representations with Applications to Solids and Fluids; and 
 (volume I) Complex Analysis with Applications to Flows and Fields. The first 
book, Linear Differential Equations and Oscillators; the second book, Non-Linear 
Differential Equations and Dynamical Systems; and the third book, Higher-Order 
Differential Equations and Elasticity of volume IV, correspond, respectively, to 
books four to six of the series, and consist of chapters 1 to 6 of volume IV. 
The present book, Simultaneous Differential Equations and Multidimensional 
Vibrations, is the fourth book of volume IV and the seventh book of the series; 
it consists of chapters 7 and 8 of volume IV.

Chapters 1, 3, and 5 focus on single differential equations, starting with 
(i) linear differential equations of any order with constant or homogeneous 
coefficients; and continuing with (ii) non-linear first-order differential equa-
tions, including variable coefficients and (iii) non-linear differential second-
order and higher-order equations. Chapter 7 discusses simultaneous systems 
of ordinary differential equations, and focuses mostly on the cases that have 
a matrix of characteristic polynomials, namely linear systems with constant 
or homogeneous power coefficients. The method of the matrix of character-
istic polynomials also applies to simultaneous systems of linear finite differ-
ence equations with constant coefficients.

Chapters 2 and 4 focus on, respectively, linear and non-linear oscilla-
tors described by second-order differential equations, like the elastic bod-
ies without stiffness in the chapter 6; the elastic bodies with stiffness in 
 chapter 6 lead to fourth-order differential equations equivalent to coupled 
second-order systems. Chapter 8 considers linear multi-dimensional oscil-
lators with any number of degrees of freedom, including damping, forcing, 
and multiple resonance. The discrete oscillators may be extended from a 
finite number of degrees-of-freedom to infinite chains. The continuous 
oscillators correspond to waves in homogeneous or inhomogeneous media, 
including elastic, acoustic, electromagnetic, and water surface waves. The 
combination of propagation and dissipation leads to the equations of math-
ematical physics.



xviii Preface

Organization of the Contents

Volume IV consists of ten chapters: (i) the odd-numbered chapters present 
mathematical developments; (ii) the even-numbered chapters contain physi-
cal applications; (iii) the last chapter is a set of 20 detailed examples of (i) 
and (ii). The chapters are divided into sections and subsections, for example, 
chapter 7, section 7.1, and subsection 7.1.1. The formulas are numbered by 
chapters in curved brackets; for example, (8.2) is equation 2 of chapter 8. When 
referring to volume I the symbol I is inserted at the beginning, for example: 
(i) chapter I.36, section I.36.1, subsection I.36.1.2; (ii) equation (I.36.33a). The 
final part of each chapter includes: (i) a conclusion referring to the figures as 
a kind of visual summary; (ii) the notes, lists, tables, diagrams, and classifica-
tions as additional support. The latter (ii) appear at the end of each chapter, 
and are numbered within the chapter (for example, diagram—D7.2, note—
N8.10, table—T7.4); if there is more than one diagram, note, or table, they 
are numbered sequentially (for example, notes—N7.1 to N7.55). The chapter 
starts with an introductory preview, and related topics may be mentioned 
in the notes at the end. The sections “Series Preface,” and “Mathematical 
Symbols” from the first book of volume IV are not repeated. The sections 
“Physical Quantities,” “References,” and “Index” focus on the contents of the 
present fourth book of volume IV.
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Physical Quantities

The location of first appearance is indicated, for example “2.7” means 
 “section 2.7,” “6.8.4” means “subsection 6.8.4,” “N8.8” means “note 8.8,” and 
“E10.13.1” means “example 10.13.1.”

1 Small Arabic Letters

b — width of a water channel: N7.12
c — phase speed of waves: N8.1
ce — speed of transversal waves in an elastic string: N7.9
cem — speed of electromagnetic waves: N7.15



c  — speed of longitudinal waves in an elastic rod: N7.11
cs — adiabatic sound speed: N7.16
ct — speed of torsional waves along an elastic rod: N7.10
cw — speed of water waves along a channel: N7.13


ei — non-unit base vector: N8.8
fr  — reduced external force: 8.2.1
g — determinant of the covariant metric tensor: N8.8



g  — reduced modal force: 8.1.1
gij — covariant metric tensor: N8.8
gij — contravariant metric tensor: N8.8
h — depth of water channel: N7.12
hi — friction force vector: 8.1.1

—scale factors: N8.8
ji — restoring force vector: 8.1.1
k — wavenumber: N7.25, N8.2
krs — resilience matrix: 8.1.2
 — lengthscale for horns: N7.28
mrs — mass matrix: 8.2.1



q  — modal coordinates: 8.2.4
z — specific impedance: N7.47
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2 Capital Arabic Letters

A — cross-sectional area of a horn: N7.16
— admittance: 8.9.1

An — modal amplitudes: 8.8.5
Bmn — terms in the modal matrix: 8.8.5
Ev — kinetic energy: 6.8.5



F  — reduced external force: 8.2.1



G  — modal forces: 8.2.9
±J  — invariants of acoustic horns: N7.28

K — reduced wavenumber: N7.29


K — enhanced wavenumber: N7.33
LA — lengthscale of variation of the cross-sectional area: N7.17
Lb — lengthscale of variation of the width of a water channel: N7.12
Lc — lengthscale of variation of the torsional stiffness: N7.10
LE — lengthscale of change of the Young modulus: N7.11
LT — lengthscale of change of tension: N7.9

εL  — lengthscale of variation of the dielectric permittivity: N7.15

µL  — lengthscale of variation of the magnetic permeability: N7.15
Mn— mass of n-th element of a radioactive disintegration chain: 8.7.1
Mrs — modal matrix: 8.2.13
N — number of particles: 5.5.17
Nrs — undamped modal matrix: 8.2.14
P — reduced pressure perturbation spectrum: N7.23

2P N  — dispersion polynomial: 8.2.2
Pij — dispersion matrix: 8.2.2



Qr  — transformation matrix: 8.2.7
R — electrical resistance: 8.9.2

— reflection coefficient: N7.47
S — surface adsorption coefficient: N7.48
Sij — scattering matrix: N7.53
T — transmission coefficient: N7.51
V — reduced velocity perturbation spectrum: N7.23
Y — inductance: 8.9.1
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Z — impedance: 8.9.1
Z — overall impedance: N7.52

0Z  — impedance of a plane sound wave: N7.47

3 Small Greek Letters

α — diffusivity: N8.1
β — amplification/attenuation factor: N7.50

—potential: N8.1
δij — identity matrix: 8.1.4



λ  — modal dampings: 8.2.5
λrs — damping matrix: 8.2.1
µrs — kinematic friction matrix: 8.1.3
νn — disintegration rate of the mass of the n-th element in a chain: 8.7.1
σ — mass density per unit length: N7.8



ω  —modal frequencies: 8.2.4



ω  — oscillation frequency of modes: 8.2.6
ω2

rs — oscillation matrix: 8.2.1

4 Capital Greek Letters

Φ — primal wave variable: N7.19
Φm — mechanical potential energy: 8.1.2
Ψ — dual wave variable: N7.19
Ψm — dissipation by mechanical friction: 8.1.2
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7
Simultaneous Differential Equations

An ordinary differential equation of order N relates one independent and 
one dependent variable, with a set of derivatives of the latter with regard to 
the former up to and including the order N. In the case of a system of simul-
taneous differential equations, there are M dependent variables and only one 
dependent variable (section 7.1). The derivatives of the former with regard to 
the latter appear in a set of simultaneous equations, which cannot be sepa-
rated for each dependent variable (at least without some manipulation).

The simplest case of a system of M simultaneous ordinary differential 
equations is an autonomous system (section 7.1) in which the first-order 
derivative of each of the M dependent variables is an explicit function of all 
the dependent variables, and does not involve any derivatives. The auton-
omous system of ordinary differential equations is related to the problem 
of finding the family of curves tangent to a given continuous vector field 
(section 7.2), which always has a solution. In contrast, the problem of find-
ing a family of hypersurfaces orthogonal to a given continuous vector field 
leads to a differential of first order in M variables, which has (does not have) 
a solution (sections 3.8–3.9 and notes 3.1–3.15) if the differential is exact or 
has an integrating factor (is inexact and has no integrating factor). Any sys-
tem of M simultaneous ordinary differential equations can be transformed 
to an autonomous system (section 7.1); this leads to a method to eliminate a 
system of M simultaneous ordinary differential equations in M dependent 
variables into a single ordinary differential equation of order N for one of 
the dependent variables (section 7.3). This specifies the order N of the system 
of M simultaneous ordinary differential equations that equals (is less than) 
the sum of the higher-order derivatives in all M equations if the system is 
independent (redundant).

The most important class of single (simultaneous) ordinary differential 
equation(s) is the linear case with constant coefficients [sections 1.3–1.5 
(7.4–7.5)] to which can be reduced the case of power coefficients [sections 
1.6–1.8 (7.6–7.7)]. In all of the cases, the solution is determined by the roots 
of a single characteristic polynomial. For a single linear ordinary differen-
tial equation with constant coefficients, the characteristic polynomial is the 
differential operator acting on the dependent variable (section 1.3). In the 
case of a simultaneous system of M equations with M dependent variables, 
there is (section 7.4) an ×M M  matrix of linear operators with constant coef-
ficients, and its determinant specifies the characteristic polynomial of the 
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system of simultaneous differential equations, whose order N is the degree 
of the characteristic polynomial. The solutions corresponding to single or 
multiple, real or complex roots, are similar for a single (set of simultaneous) 
differential equation(s), and each dependent variable is a linear combination 
of them, with coefficients determined by the initial conditions; the number 
of independent and compatible initial conditions needed to specify a unique 
solution is equal the order of the single (set of simultaneous) differential 
equation(s). This implies that in the solution of a linear simultaneous system 
of M ordinary differential equations with constant (homogeneous) coeffi-
cients without forcing [section 7.4 (7.5)]: (i) each of the M dependent variables 
is a linear combination of N linearly independent particular integrals speci-
fied by the roots of the characteristic polynomial; (ii) there are N arbitrary 
constants of integration, for example, those in the first dependent variable; 
(iii) the coefficients in all other dependent variables involve the same N arbi-
trary constants of integration, in a way that is compatible with substitution 
back into the system of simultaneous ordinary differential equations.

The case of a single (set of simultaneous) linear ordinary differential 
equation(s) with constant coefficients and a forcing term, can be considered 
using [sections 1.4–1.5 (7.5)] the characteristic polynomial directly or as an 
inverse operator. A characteristic polynomial also exists for a single (set of 
simultaneous) linear ordinary differential equation(s) with power coeffi-
cients, leading to similar methods of solution [sections 1.6–1.8 (7.6–7.7)]. The 
characteristic polynomial also exists for a single (set of simultaneous) linear 
finite difference equation(s), again leading to similar methods of solution 
[section(s) 1.9 (7.8–7.9)].

7.1 Reduction of General to Autonomous Systems

A general system of M simultaneous ordinary differential equations (subsec-
tion 7.1.2) can be reduced to an autonomous system of differential equations 
(subsection 7.1.1).

7.1.1 Autonomous System of Differential Equations

A generalized autonomous system of order M of ordinary differential equa-
tions (standard CXXI) has one independent variable x, and M dependent 
variables (7.1a) whose first-order derivatives (7.1b) depend explicitly only on 
all the dependent variables and the dependent variable:

1,..., : ; , ...., ;1( )( )= ′ ≡ =m M y x
dy
dx

Y x y ym
m

m M  (7.1a, b)
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This excludes the appearance of any derivatives of any order on the right-
hand side (r.h.s.) of (7.1b). An ordinary differential equation (1.1a, b) of order N 
with independent (dependent) variable x(y), which is explicit in the highest-order 
derivative (7.2):

 ( )( ) = ′( ) ( )−y x G x y y yN N; , , ... , ,1  (7.2)

( )( ) ( ) ( )= − ≡ ′ =( )
− −1,..., 1: , ; , ...., ,1 1 1r M y x y x y x G x y yr

r
N N  (7.3a–c)

by: (i) defining −N 1 new dependent variables (7.3a, b) as the derivatives of the 
dependent variable up to the order −N 1; (ii) rewriting the original differential equa-
tion (7.2) in autonomous form (7.3c). For example, the third-order differential 
equation (7.4a) explicit for the third-order derivative:

( ) ( )′′′ = ′ ′′ ′ ≡ ′ ≡ = ′′ ′ = ′′′ =; , , : , , ; , , ,1 1 2 2 1 2y F x y y y y y y y y y y F x y y y
 (7.4a–d)

can be reduced to the autonomous system (7.4b–d) also of order 3. The pre-
ceding method of reduction to an autonomous system of differential equa-
tions applies both [subsection 7.1.1 (7.1.2)] to a single (set of simultaneous) 
differential equation(s) of any order(s).

7.1.2 General System of Simultaneous Differential Equations

A set of M differential equations with one independent variable x and M 
dependent variables is decoupled if like (7.2):

m M F x y y y ym m m m m
Nm1,..., : ; , , , ...., 0 ,( )= ′ ′ =( )  (7.5a, b)

each dependent variable (7.5a) satisfies an ordinary differential equation 
(7.5b) of order Nm involving only the same dependent variable and its deriv-
atives of order up to Nm; in this case each of the M differential equations 
(7.5b) can be solved separately from the others. This is not the case if each 
differential equation involves more than one dependent variable and/or its 
derivatives:

m s M N N F x y y y ym s s m m m m
Nm s, 1, ..., ; | : 0 ; , , , ...., .,

,( )= ∈ = ′ ′′ ( )  (7.6a–c)

The general simultaneous system of M (7.6a) ordinary differential equations 
(7.6c) relates (standard CXII) the independent variable x to all (7.6b) dependent 

can be transformed into (standard CXXI) an autonomous system of order N:
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variables ys and their derivatives up to the order Nm s, . Assume that the system 
(7.6a–c) can be solved explicitly (7.7d) for the highest-order derivative (7.7c) of each 
dependent variable (7.7a):

m r M r m y x G x y y y y y ym
N

s m m m
N

r r r
Nm m m m m r, 1, ..., ; : ; , , ...., ; , , .... , ,, , 1 ,( )( )= ≠ = ′ ′( ) ( ) ( )−

 (7.7a–d)

with the remaining dependent variables (7.7b) and their derivatives also appearing. 
The corresponding autonomous system:

( ) ( )= = − ≡ = ( )1,..., ; 1, 2, ..., 1 : ,, ,m M s N t y x y xm m n m m s m
s

m
m  (7.8a–c)

: ; , , ...., ; , .... ,
1

, , ,1 , ,1 ,N N y G x y y y y y
m

M

m m m t m m m m t r r tm m r∑ ( )= ′ =
=

 (7.8d, e)

has: (i) extra variables (7.8a–c) for a total (7.8d); (ii) all equations (7.8c, e) have an 
autonomous form. For example, the pair of simultaneous ordinary differential 
equations of orders 2(1) explicit in the highest-order derivatives (7.9a, b):

 ( ) ( )′′ = ′ ′ = ′y F x y y z z G x z y y; , ; , ; ; , , (7.9a, b)

is equivalent to the autonomous system (7.10a–c) of order 3:

 ( ) ( )′ = ′ = ′′ = ′ =y y y y F x y y z z G x z y y, ; , ; , ; ; , .1 1 1 1  (7.10a–c)

The implicit autonomous system of differential equations (7.1a, b) has a sim-
ple geometrical interpretation (section 7.2).

7.2 Tangents, Trajectories, and Paths in N-Dimensions

An autonomous system of N first-order coupled differential equations speci-
fies a family of curves in a space of N dimensions (subsection 7.2.1), which 
may lie on the intersection of ≤M N  hypersurfaces (subsection 7.2.3). The 
simplest cases ( )= =N N2 3  are [subsection 7.2.2 (7.2.4)] plane curves (space 
curves specified by the intersection of two surfaces). Thus, the consider-
ation of hypercurves (hypersurfaces) tangent (orthogonal) to a continuous 
N-dimensional vector field leads to an autonomous system of N differential 
equations [a first-order differential in N variables (notes 3.1–3.15)] that always 
has (may not have) a solution.
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7.2.1 N-Dimensional Hypercurve Specified by Tangent Vectors

Denoting by (7.11b) the coordinates in an N-dimensional space (7.11a) and by 
a parameter such as time (t), a regular curve has parametric equations (7.11c), 
where the coordinates are functions of the parameter with a continuous first-
order derivative, and specify a trajectory:

( )( ) ( )= ∈ ≤ ≤ =, 1, ..., : : ,1n m N x t C a t b
dx
dt

X xn
n

n m  (7.11a–c)

in the autonomous system of first-order differential equations (7.11c). The 
independent variable t does not appear explicitly, as it is designated an 
implicit autonomous system (standard CXXIII). The differentiation of the 
coordinates with regard to time (7.11c) specifies a continuous (7.12a) tan-
gent vector field (Figure 7.1), not necessarily of unit length, since a metric 
(notes III.9.35–III.9.45) need not exist; if the dependent variables xn are spatial 
coordinates and the parameter t is time, then the vector field defined by the 
derivatives (7.11c) is the velocity. Eliminating the parameter (7.12b) leads to a 
set of ( )−N 1  simultaneous ordinary differential equations (7.12c):

X x x C R dt
dx
X

dx
X

dx
X

n N
N n

n
( )( )∈ = = = =, ..., | : .... ,1

1

1

2

2
 (7.12a–c)

whose solution (7.13b) specifies the path as the intersection of ( )−N 1  hyper-
surfaces (7.13a):

m N f x x x Cm N m( )= − =1,..., 1 : , , ...., ,1 2  (7.13a, b)

where −C CN, ...,1 1 are arbitrary constants. Note that the trajectory (7.11a–c) 
[path (7.13a, b)] correspond to the same curve with (without) a parameter 
that specifies its direction, say increasing time for the direction along the 
trajectory. Thus, (standard CXXIV) an implicit autonomous system of N dimen-
sional equations (7.11a–c) specifies a family of regular curves (7.13a, b) with −N 1 

X

X X

FIGURE 7.1
A continuous vector field leads to an autono-
mous system of ordinary differential equations 
whose solution is the tangent curve.
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parameters −C CN, ...,1 1, which are tangent (Figure 7.1) to a given continuous vector 
field (7.12a). The simplest cases are the plane N = 2 (three-dimensional space 
N = 3), where a continuous vector field specifies a family of tangent curves 
(section 7.2.2) with one (two) parameters.

7.2.2 Families of Curves in the Plane or in Space

In the two-dimensional case, the trajectory (7.14a):

 ( ) ( )







= = =dx
dt

dy
dt

X Y x y
dy
dx

Y
X

f x y C, , , , , , , (7.14a–b)

specifies a differential equation (7.14b), whose solution (7.14c) is a one- 
parameter family of which are curves tangent (Figure 7.1) to the vector field 
of components { }X Y, .

In the three-dimensional case:

 ( )







=dx
dt

dy
dt

dz
dt

X Y Z x y z, , , , , , , (7.15a)

the system of two equations (7.15b):

 ( )= = =dx
X

dy
Y

dz
Z

f g x y z C C, , , , , ,1 2  (7.15b, c)

specifies two families of surfaces (7.15a), whose intersection determines 
(Figure 7.2) a family of curves with two parameters , ,1 2C C  which are tangent 
to the vector field of components { }X Y Z, , .

X

f (x1,x2,x3) = C1

g (x1,x2,x3) = C2

FIGURE 7.2
The tangent curve to a continuous vector field (Figure 7.1) in three dimensions may be obtained 
as the intersection of two surfaces.


