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Preface

This book of quantum field theory (QFT) is the continuation of Chapter 13 (Functional Integration 
in Statistical Physics) of the book entitled Statistical Thermodynamics: Understanding the Properties of 
Macroscopic Systems published by CRC Press in 2002. QFT is a universal tool for the quantum mechani-
cal description of processes permitting transitions among states that differ in their particle content and 
has applications ranging from condensed matter physics to elementary particle physics. As the quan-
tum mechanics of an arbitrary number of particles, QFT provides an efficient tool describing quantum 
statistics of the particles. This implies antisymmetrization and symmetrization of the states of identical 
fermions or bosons, respectively, under interchange of pairs of identical particles. QFT facilitates the 
treatment of spontaneously symmetrical broken states, such as superfluids as well as critical phenomena 
with regard to phase transitions. This book uses the strength of Feynman functional and diagrammatic 
techniques as a presentation foundation that comfortably applies QFT to a broad range of domains 
in physics and shows the universality of the techniques for a broad range of phenomena. The power-
ful QFT functional techniques and the renormalization group techniques applicable to equilibrium as 
well as nonequilibrium field theory processes are extended to treat nonequilibrium states and subse-
quently transport phenomena. The Green’s and correlation functions and the equations derived from 
them are used to solve real physical problems as well as to describe processes in real physical systems—
in particular quantum fluid, electron gas, electron transport, optical response, superconductivity, and 
superfluidity.

This book should be of interest not only to condensed matter physicists but to other physicists as well 
because the techniques discussed apply to high-energy as well as soft condensed matter physics. The 
universality of the techniques is confirmed as a unifying tool in other domains of physics. This book is 
written for graduate students and researchers who are not necessarily specialists in QFT. It begins with 
elementary concepts and a review of quantum mechanics and builds the framework of QFT, which is 
now applied to current problems of utmost importance in condensed matter physics. In most cases, the 
problem sets represent an integral part of the book and provide a means of reinforcing the explanation 
of QFT in real situations. The material in this book is clear, and its illustrations emphasize the subject 
and aid the reader in an essential understanding of the important concepts. This book should be highly 
recommended for all theoretical physicists in QFT.

This book is the product of lecture notes given to graduate students at the Universities of Dschang 
and Bamenda, Cameroon. Chapter 1 studies symmetry requirements in quantum mechanics as well as 
bosonic and fermionic quantum fields operating on multiparticle state space (Fock space). The chapter 
examines creation and annihilation operators and applies the method of second quantization, a tech-
nique that underpins the formulation of quantum many-particle theories. It also treats, in a unified 
manner, systems of bosons (fermions) with a fixed or variable number of particles. Chapter 2 exam-
ines bosonic and fermionic coherent states. It also studies Grassmann algebra, Berezin integration, and 
Gaussian integrals as well as Wick theorem for multidimensional Grassmann integrals and the trace of a 
physical quantity. Chapter 3 studies the path integral approach for fermions and bosons considering the 
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Grassmann algebra. Apart from providing a global view of the entire system, this approach has proven 
to be an extremely useful tool for understanding and handling quantum mechanics, quantum field 
theory, and statistical mechanics. This chapter also examines the Green’s functions that serves as tools 
for describing quantum dynamics of many-body systems. In addition, noninteracting particles are also 
studied, with their Green’s function computed via path integrals as well as via generating functionals.

In Chapter 4, perturbation theory is comfortably constructed from the average value of a functional. 
This chapter studies the perturbation theory in many-particle systems based on Wick theorem, which is 
formulated in terms of Feynman functional integral and diagrammatic techniques that are very useful 
for providing an insight into the physical process that they represent. This chapter also examines the 
cornerstone of the functional technique, which is the concept of generating functionals sufficient to 
derive all propagators. Chapter 5 examines the (anti)symmetrized vertex, making it simpler and more 
convenient to formulate perturbation theory. Discussions are facilitated by introducing fully (anti)sym-
metrized vertices via a uniform and compact notation for the creation and annihilation fermion opera-
tors. Chapter 6 examines connected Green’s functions with one-particle (1PI) and two-particle (2PI) 
irreducible vertices as well as the Dyson-Schwinger equations that are most conveniently studied via 
path integrals and that employ the approach of generating functions in the context of the path integral. 
The Luttinger-Ward functional and the 2PI vertices are used to set up approximations satisfying con-
servation laws as well as nonperturbative approaches. Chapter 7 examines the random phase approxi-
mation via the Feynman functional integral and diagrammatic technique: screened interactions and 
plasmons. Here, we study a model describing electrons in a metal that considers a system of electrons 
interacting with each other via the instantaneous Coulomb force (Jellium model).

Chapter 8 examines the theory of phase transitions and critical phenomena as well as Ginzburg-
Landau phenomenology and the connection to statistical field theory. Chapter 9 examines weakly inter-
acting Bose gas via quantum field theory. Application to Bogoliubov theory of the weakly interacting 
Bose gas and superfluidity is considered as well. This chapter also studies the path integral formalism 
for nonideal Bose gas considering the electron-electron interaction.

Chapter 10 studies superconductivity theory via the functional integral and diagrammatic approaches, 
where the statistical model is built on classical field configurations. The mean-field theory is also con-
sidered as well as its applications to Cooper instability and the BCS condensate. The vertex function for 
small momentum transfers is considered, that is, electron-electron interaction. Chapter 11 examines 
the path integral approach to the BCS theory where we study an accurate theory of interacting Fermi 
mixtures with spin imbalance. Chapter 12 discusses Green’s functions’ averages over impurities and, 
in particular, scattering potentials and disordered systems as well as disorder diagrams, perturbation 
series solution via T-matrix, and quenched and disorder averages. The diagrammatic cross technique is 
extended to superconductors considering the Nambu-Gorkov propagators.

Chapter 13 studies in detail the classical and quantum theory of magnetism and spin wave theory spin 
representations as well as spin liquids. The strongly interacting system and, in particular, the Kondo 
problem are studied in detailed where methods of quantum statistical field theory play a central role. 
Chapter 14 considers the nonequilibrium quantum field theory, where we study nonequilibrium Green’s 
functions as well as Keldysh-Schwinger diagrammatic and 2PI effective action techniques relating to 
nonequilibrium dynamics.

I would like to acknowledge those who have helped at various stages of the elaboration and writing 
through discussions, criticism, and especially, encouragement and support. I single out Prof. Nicolas 
Dupuis (Directeur de Recherche at CNRS Laboratoire de Physique Théorique de la Matière Condensée, 
CNRS UMR, Université Pierre et Marie Curie Paris, France) for allowing me to use some of his pictures. 
I am very thankful to my wife, Dr. Mrs. Fai Patricia Bi, for all her support and encouragement, and to 
my four children (Fai Fanyuy Nyuydze, Fai Fondzeyuv Nyuytari, Fai Ntumfon Tiysiy, and Fai Jinyuy 
Nyuydzefon) for their understanding and moral support during the writing of this book. I acknowledge 
with gratitude the library support received from the Abdus Salam International Centre for Theoretical 
Physics (ICTP), Trieste, Italy.
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1
Symmetry Requirements in QFT

Introduction

Quantum field theory (QFT) is a universal tool that has applications ranging from atomic, molecular, 
and particle physics to condensed matter and statistical physics as well as modern quantum chemistry. 
Recently, quantum field theory has also had an unexpected and profound impact on pure mathematics. 
Symmetries, which are at the heart of the universality shown by many physical systems, play a crucial 
role. Nowadays, quantum theory is the most complete microscopic method describing the physics of 
energy and matter. Considering the quantization of the electromagnetic field [1] and the representa-
tion of particles by quantized fields [2, 3] results in the development of quantum electrodynamics and 
quantum field theory. By convention, the original form of quantum mechanics is denoted by the first 
quantization, whereas quantum field theory is formulated in the language of second quantization that is 
an essential tool for the development of interacting many-body field theories.

The fundamental difference between classical and quantum mechanics relates to the concept of indis-
tinguishability of identical particles. Each particle can be equipped with an identifying marker without 
influencing its behavior in classical mechanics. In addition, each particle follows its own continuous 
path in phase space. So, principally, each particle in a group of identical particles can be identified; but 
this is not the case in quantum mechanics. It is not possible to mark a particle without influencing its 
physical state. In addition, if a number of identical particles are brought to the same region in space, 
their wave functions will spread out rapidly and will overlap with one another. Eventually, it will be 
impossible to say which particle is where. One of the fundamental assumptions for n-particle systems, 
therefore, is that identical particles (i.e., particles characterized by the same quantum numbers such as 
mass, charge, and spin) are, in principle, indistinguishable.

1.1  Second Quantization

1.1.1  Fock Space

This chapter introduces and applies the method of second quantization, a technique that underpins 
the formulation of quantum many-particle theories. Second quantization formalism treats systems of 
bosons or fermions with a fixed or variable number of particles in a unified way. In this section, we 
review the key aspects of this formalism.

In quantum mechanics, the state of a system of n identical (indistinguishable) particles is described 
by a state vector belonging to a Hilbert space (a complete multiparticle system [Fock space]) as the direct 
sum

	 Η = Η ⊕Η ⊕ = ⊕ Η=
∞

 n n0 1 0 	 (1)
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The Hilbert space, Ηn, corresponds to the n-particle states that are properly symmetrized (bosons) or 
antisymmetrized (fermions). It is a subspace of the direct tensor product

	 Η = Η ⊗Η ⊗ Ηn 1 1 1	 (2)

Also, Η0 corresponds to the vacuum state, 0 , Η1 corresponds to the single-particle state, and so on.
Consider the orthogonal bases { }′α  and { }α  of Η1, where ′α  and α are discrete quantum numbers:

	 ∑α = ′α ′α α
′α

	 (3)

Particles of the same species are completely indistinguishable in a quantum many-body system. Second 
quantization provides a general approach to many-body systems where the vector of state plays a minor 
role. Second quantization entails raising the Schrödinger vector of state to an operator that satisfies 
certain canonical (anti)commutation algebra. It is instructive to note that in first quantized physics, 
physical properties of a quantum particle such as density, kinetic energy, and potential energy can be 
expressed in terms of a one-particle vector of state. The essence of the second quantization is the eleva-
tion of each of these quantities to the status of an operator. This is done by replacing the one-particle 
vector of state with its corresponding field operator.

Knowing the orthonormal basis { }α  of Η1 allows us to obtain an orthonormal basis of Ηn from the 
tensor product of the single-particle basis that is the n-particle state

	  n n1 1 2)α α = α ⊗ α ⊗ ⊗ α 	 (4)

where the defined states utilize a curved bracket in the ket symbol. The first ket on the right-hand side 
of this equation refers to particle 1, the second to particle 2, and so on. Then the overlap of two vectors 
of the basis is given as follows:

	 ( ( )( ))′α ′α α α = ′α ⊗ ′α ⊗ ⊗ ′α α ⊗ α ⊗ ⊗ α = ′α α ′α α    n n n n n n1 1 1 2 1 2 1 1 	 (5)

From here, the orthogonality relation may be written as follows:

	 ( )′α ′α α α = ′α α ′α α = δ δ′α α ′α α   n n n n n n1 1 1 1 1 1 	 (6)

where the Kronecker symbol is used to include the possibility of δ-function normalization for continu-
ous quantum numbers.

The completeness of the basis is obtained from the tensor product of the completeness relation for 
the basis { }α  and yields the closure relation

	  



n n

n

1̂1 1

1

∑ )(α α α α =
α α

	 (7)

where 1̂ is the unit operator in Ηn. In the case of continuous quantum numbers, integration must be 
used in (7) instead of a summation; or a combination of both may be used in the case of mixed spectra.

Therefore, we see from the previous information that the Hilbert space describing the n-particle sys-
tem is spanned by all the nth-rank tensors, such as in (4). We define the state in which the ith particle is 
localized at a point with radius vector 



ri  as:

	 = ⊗ ⊗ ⊗
�
�
� � �

�
�

r r r r rn n1 1 2 	 (8)

If we multiply the ket vector in equation (4) by the bra vector in (8), this permits us to express the 
n-particle wave function in coordinate space:

	 (( ) ( ) ( ) ( ))ψ = α α = α α α = ϕ ϕ ϕα α α α α
�
�
� �

�
�
�

� �
�
� � �

�
�

� r r r r r r r r r rn n n n n nn n1 1 1 1 1 2 2 1 21 1 2 	 (9)
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This is a squarable-integrable function and represents the probability amplitude for finding particles at 
the n positions 

�
�
�

r rn1 . It satisfies the following condition:

	 ∫ ( )ψ < +∞α α
�
�
� �

�
�

� r r dr drn nn 1
2

11 	 (10)

It is useful to note that a vector of state in quantum mechanics is a scalar product on Hilbert space of 
the corresponding state and eigenstates of the position operator, that is,

	 ( )ϕ = αα
 

r r 	 (11)

Here, ( )ϕα


r  is a single-particle wave function in the state α  that forms a complete set of orthonormal 
functions satisfying the following orthonormal and completeness relations:

	 ∫ ∑( ) ( ) ( ) ( ) ( )ϕ ϕ = δ ϕ ′ ϕ = δ − ′α
∗

′α α ′α α
∗

α

α

      

dr r r r r r r, 	 (12)

It is physically obvious that the space Ηn is generated by linear combinations of products of single-
particle wave functions as seen previously.

So far, in defining the Hilbert space Ηn, the symmetry properties of the wave function have not been 
taken into account. We can define mathematically only those totally (anti)symmetric states observed 
in nature. This is in contrast to the multitude of pure and mixed symmetry states. We find the basis 
of Ηn by first (anti)symmetrizing the tensor product (4):

	 !ˆ 1
!1 1 1∑ )} )α α = Ρ α α = χ α α( ) ( )χ

Ρ

Ρ

Ρ Ρn
nn n n   	 (13)

In these (anti)symmetrized states, we utilize the curly bracket in the ket symbol. Here, Ρ runs through 
all permutations of n objects where χ = +1 for bosons and χ = −1 for fermions; the symbol χΡ equals 
unity for bosons and ( )− Ρ1  for fermions, and Ρχ

ˆ  is the symmetrization operator for bosons and the 

antisymmetrization operator for fermions; 
n
1

!
 is the normalization factor.

From (13), the Pauli Exclusion Principle is automatically satisfied for antisymmetric states: Two 
fermions cannot occupy the same quantum state. For example, let us say that two identical states 

1 2α = α = α :

	   n nn n n, , , ! ˆ , , , ! ˆ , , , 01 2 3 1 2 3 2 1 3} ) )α α α α = Ρ α α α α = − Ρ α α α α =χ χ 	 (14)

In this case, no acceptable many-fermion state exists.
We define the (anti)symmetrization operator Ρ̂ by its action on the many-body wave function 

( )ψ
�
�
�

r rn1  in (9) as

	 (( ) ( ))ψ = α α ≡ ψα α
�
�
� �

�
�
�

�
�
�

� r r r r r rn n n nn 1 1 1 11 	 (15)

Considering (13), we have

	 ∑ ( )( )Ρ ψ = χ ψ ( ) ( )χ
Ρ

Ρ

Ρ Ρ
�
�
� �

�
�

r r
n

r rn n
ˆ 1

!1 1 	 (16)

Then

	 ∑ ( )( )Ρ ψ = χ χ ψ ( ) ( )χ
′Ρ Ρ

Ρ ′Ρ

′Ρ Ρ ′Ρ Ρ
�
�
� �

�
�

r r
n n

r rn n
ˆ 1

!
1
!

2
1 1 	 (17)
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Here, Ρ ′Ρ  denotes the group composition of ′Ρ  and Ρ. From χ = χΡ+ ′Ρ ′Ρ Ρ, the summation over Ρ and ′Ρ  
can be swapped with the summation over Μ = ′Ρ Ρ and Ρ:

	 ∑∑ ∑( )( ) ( ) ( )Ρ ψ = χ ψ








 = Ρ ψ = Ρ ψ( ) ( )χ

Μ

Μ

Μ Μ

Ρ

χ

Ρ

χ
�
�
� �

�
� �

�
� �

�
�

r r
n n

r r
n

r r r rn n n n
ˆ 1

!
1
!

1
!

ˆ ˆ2
1 1 1 1 	 (18)

This equality holds for any wave function ψ , as well as for the operator itself, where the (anti)symmetri-
zation operator is a projector.

It is easy to show that Ρ = Ρχ χ
ˆ ˆ2 . For χ = +1, the implication is that, for bosons, several particles can 

occupy the same one-particle state. This was shown empirically for the first time by the Indian physicist 
Satyendra Nath Bose (1894–1974) by proving the relation:

	 ( )( ) ( )Ρψ = ψ = ψ( ) ( )Ρ Ρ
�
�
� �

�
� �

�
�

r r r r r rn n n
ˆ

1 1 1 	 (19)

Examples of bosons are photons, pions, mesons, gluons, phonons, excitons, plasmons, magnons, cooper 
pair, and Helium-4 atoms. These are particles with integral spins { }0,1,2, . The wave function of n 
bosons is totally symmetric and satisfies the relation in (19).

From equation (19), we see that bosons are genuinely indistinguishable when enumerating the dif-
ferent possible states of the particles. For χ = −1, the state (13) vanishes if two of αi, s are identical. 
This implies that any two fermions cannot occupy the same particle state (Pauli Exclusion Principle). 
The Pauli Exclusion Principle was developed empirically by the German physicist Wolfgang Pauli 
(1900–1958) [4]. It is instructive to note that this principle follows directly from the symmetry require-
ments on vector states. The Pauli Exclusion Principle is a corollary to the principle of indistinguish-
ability of particles. This principle poses a severe constraint on vector of states of many-fermion systems 
and limits the number of them that are physically admissible. Fermions take their name from the Italian 
physicist Enrico Fermi, who first studied the properties of fermion gases. Several important many-
particle systems have fermions as their basic constituents. Examples of fermions are protons, electrons, 

muons, neutrinos, quarks, and helium-3 atoms. These are particles with half-integral spins { }

1
2

, 3
2

, .  

Note that the statistics of composite particles are determined by the number of fermions. If the 
fermion number is odd, then the net result is a fermion. Otherwise, for energies sufficiently low 
compared to their binding energy, the net result is a boson.

The states { }α α n1  constitute a basis of Ηn. So, the closure relation (7) in Ηn becomes a closure rela-
tion in Ηn:

	    

 

nn n n n

n n

1̂ 1
!1 1 1 1

1 1

∑ ∑)( }{= Ρ α α α α Ρ = α α α αχ

α α

χ

α α

	 (20)

The overlap between two states constructed from the same basis α  is given by

	        n nn n n n n n n n! !1 1 1
2

1 1 1 1 1∑ ){ ( ( () )}′α ′α α α = ′α ′α Ρ α α = ′α ′α Ρ α α = χ ′α ′α α α( ) ( )χ χ
Ρ

Ρ Ρ

Ρ
		  (21)

From the orthogonality of the basis α , the only nonvanishing terms at the right-hand side of (21) are 
the permutations Ρ contributing to the given sum:

	 ′α = α ′α = α( ) ( )Ρ Ρ n n, ,1 	 (22)
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For fermions, all αi,s should be different for each one-particle state α . So, there is only one such per-
mutation Ρ that transforms α α n1  into ′α ′α1 . The overlap (21) reduces to one term. If the states iα  
are normalized, then

	  n n 11 1{ } ( )′α ′α α α = − Ρ	 (23)

For bosons, several particles can occupy the same one-particle state. So, any permutation that inter-
changes particles in the same state contributes to the sum in (21). The number of these permutations is 

α αn n n! !1 , which transforms α α n1  into ′α ′α n1 . Here, αn i  is the number of bosons in the one-particle 
state αi  where α α( ) ( )Ρ Ρ n1  are distinct with

	   n nn n n! !1 1 1{ }′α ′α α α = α α( ) ( )Ρ Ρ 	 (24)

For both fermions and bosons, the sum of the occupation numbers that counts the total number of 
occupied states is equal to the number of particles:

	 ∑= α

α

n n 	 (25)

For bosons, these occupation numbers are a priori not restricted, whereas for fermions, they can take 
only the value 0 or 1.

If we use the convention that =0! 1, then formulae (23) and (24) yield the equivalent single expression:

	   nn n

i
i !1 1

1
∏{ }′α ′α α α = χΡ

α

=

Ρ

	 (26)

So, the orthonormal basis for the Hilbert space Ηn can be obtained by normalizing the states  n1 }α α  
with the help of (26):

	 1

!

1

! !
1

1

1

1

1

∏ ∏
∑ )}α α = α α = χ α α( ) ( )

α

=

Ρ

α

=

Ρ
Ρ

Ρ Ρ

Ρn n n
n

i

n

i

n

i i

   	 (27)

The prefactor 

∏ α

=

Ρ

n n
i

i

1

! !
1

 normalizes the many-body wave function. Here, αn i  is the number of particles 

in the state αi and, for fermions, considering the Pauli Exclusion Principle, =αn i 0,1. The summation 
over n! permutations Ρ of { }α α n1  is required by particle indistinguishability; the parity χΡ is the num-
ber of transpositions of two elements that brings permutations ( )( ) ( )Ρ Ρ n1 , ,  back to ordered sequence 
( ) n1, , . Note that the normalized (anti)symmetric state defined in (27) uses an angular bracket in the 
ket symbol in contrast to the states defined earlier in (4). Since orthonormality is used in the calculation 
of the normalization factor, then hereafter it is understood that whenever the symbol  n1α α  is used, 
the basis { }αi  is orthonormal.

The overlap of the tensor product 1 )r rn
�
�
�

 and the (anti)symmetric state 1α αn :

	

∏
∑

∏
∑( ( ) ( )α α = χ α α = χ ϕ ϕ( ) ( )

α

=

Ρ
Ρ

Ρ Ρ

Ρ
α

=

Ρ
Ρ

α α

Ρ
( ) ( )Ρ Ρ

�
�
�
�

�
�
� �

�
�

r r

n n

r r

n n

r rn n

i

n n

i

n

i i

n

1

! !

1

! !
1 1

1

1 1

1

11

		  (28)
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or

	
�
�
�
�

�
r r

n n

r

n n
n n

i

i j

i

ij

i i

1

! !

1

! !
1 1

1 1

S S A

∏ ∏
( ) ( )( α α ≡ α ≡

α

=

Ρ

α

=

Ρ
	 (29)

Here, ijS A( ) is expressed in the following relation for fermions (bosons):

	
�
�
�
�

�

�r r

n n

n n n n

n n

ij n n

i

ij

i

n n

i i

1
!

det 1
!

1 , fermions

1

! !

per 1

! !

, bosons1 1

1 1

1 1

1 1

A A A

A A A

∑

∏ ∏
∑(

( )

α α =

  = −

  =















( ) ( )

( ) ( )

Ρ
Ρ Ρ

Ρ

α

=

Ρ

α

=

Ρ Ρ Ρ

Ρ

	 (30)

or

	
�
�
�
�

�

�r r

n
r

n n

rn n

j

i

j

i

i

i

1
!

det , fermions

1

! !

per , bosons1 1

1
∏

( )

( )( α α =

ϕ 

ϕ 















α

α

=

Ρ α 	 (31)

We therefore obtain a basis of permanents for bosons (sign-less determinant) and Slater determinants 
for fermions as seen earlier in equations (19) through (21). From (27) and the normalization in (20), we 
obtain the following closure relation:

	
∏

∑ α α α α =
α

=

Ρ

α α

 



n

n
i

n n

i

n

!

!
11

1 1

1

	 (32)

We define an (anti)symmetrized many-particle state in the following coordinate representation via 
the states ,σr



 not normalized:

	
�
�
� �

�
� � �

�
� � �

�
�

�
�
�

r r
n

r r
V

i r rn n n n n n n n n

n

, , 1
!

, , 1 exp , , ,1 1 1 1
2

1 1 1

, ,1

∑ ∑) { }( ) }}σ σ = χ σ σ = κ + + κ κ σ κ σ( ) ( ) ( ) ( )
{ }

Ρ
Ρ Ρ Ρ Ρ

Ρ κ κ

		  (33)

Here, σ denotes the spin index (as well as other discrete indices, if necessary) and κ


 the momentum.

1.1.2  Creation and Annihilation Operators

The formalism of second quantization treats systems of bosons (fermions) with a fixed or variable num-
ber of particles in a unified manner. In many physical processes, the particle number does change. 
Examples include electron-hole annihilations in metals or semiconductors, electron-phonon processes, 
and photon absorption or emission. To formulate statistical physics in terms of the grand canonical 
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ensemble, we must deal with states having different numbers of particles. For Fock space to be a concept 
of interest, there must be operators connecting the different n-particle sectors; these are the creation ψαˆ †  
and annihilation ψαˆ  operators (with each being the Hermitian adjoint of the other) that add a particle 
or remove a particle, respectively, in the one-particle state α thereby (anti)symmetrizing the resulting 
many-particle state:

	 ˆ , ˆ 1†
1 1

†
1 1} }ψ α α = αα α ψ α α = + αα αα α αnn n n n   

	 (34)

Here, αn  is the occupation number of the state α  in  n1α α . The annihilation operator ψαˆ  is the adjoint 
of the creation operator ψαˆ † . These operators provide a convenient representation of many-particle states 
and many-particle operators, generate the entire Hilbert space by their action on a single reference state, 
and provide a basis for the algebra of operators of the Hilbert space.

The operator ψαˆ †  physically adds a particle in state α  to the state on which it operates and (anti)sym-
metrizes the new state. Because there can be at most one fermion in a given state, equation (34) takes 
the following form:

	 ψ α α =
αα α α ∉ α α

α ∈ α α






α 

 



n
n n

n

ˆ ,

0 ,
†

1
1 1

1
	 (35)

Writing ( )ψ


rˆ 0†  and 0†α = ξα , where 0  is the vacuum state containing no particles at all and is 
distinguished from the zero of the Hilbert space, then we have the following relation between creation 
(annihilation) operators in the 



r -basis and the α-basis:

	 ∑ ∑( ) ( ) ( ) ( )ψ = ϕ ξ ψ = ϕ ξα
∗

α

α

α α

α

   

r r r r,† † 	 (36)

The most relevant example is when 


,α = κ σ , where κ


 and σ are the momentum and spin variables, 
respectively. It is important to note that like all other quantum variables, the quantum field in general 
is a strongly fluctuating degree of freedom. It only becomes sharp in certain special eigenstates. This 
function adds or subtracts particles to the system.

Since any basis vector 1 }α αn  or  n1α α  may be generated by the repeated action of a creation 
operator on the vacuum state

	 ψ = ααˆ 0† 	 (37)

then, generally,

	    

n
n n

i

nn

i

ˆ ˆ 0 , 1

!
1

† †
1

1

11

∏
} }α α = ψ ψ α α = α αα α

α

=

Ρ
	 (38)

We see that the creation operators generate the entire Fock space by repeated action on the vacuum state. 
From relation (34), we have

	      n m m n n mˆ ˆ1 1 1
†

1 1 1} {{ } { }α α ψ ′α ′α = ′α ′α ψ α α  = αα α ′α ′αα α
∗

	 (39)

This result can only be finite when = −n m 1, so that ψαˆ  removes a particle from the state on which it acts. 
In the case of a vacuum, this implies that ψ = ψ =α αˆ 0 0 ˆ 0†  for any state α . This is evidence that the 
vacuum is the kernel of the annihilation operators.
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From the closure relation in the Fock space then

	 1
!

1
0

1 1

1

∑∑ }{α α α α =
α α=

∞

n
n

n n

n

 



	 (40)

Using (21), we have

	

   

  





n

m

m

n

n m n

m m m

n

m

ˆ 1
!

ˆ

1
1 !

1

0

1 1 1

1 1 1 1 1

1

1 1

∑∑

∑

}{

{ }

} }

( ) }

ψ ′α ′α = α α ψ ′α ′α α α

=
−

αα α ′α ′α α α

α

α α−

∞

α

−

α α

−

−

	

(41)

With the help of (6) and (21), we now have

	 ∑ }} ( )ψ ′α ′α =
−

χ α ′α ′α ′α( ) ( ) ( )α
Ρ

Ρ

Ρ Ρ Ρ 

mm mˆ 1
1 !1 1 2 	 (42)

Because the permutation ( ) ( )( ) ( ) ( ) ( )Ρ Ρ → Ρ − Ρ +  m m2 1, , 1 1, 1 1, ,  has the signature χ ( )Ρ+Ρ −1 1, this 
allows us to arrive at

	 ∑ ∑} }} ( )ψ ′α ′α =
−

χ δ ′α ′α ′α ′α = χ δ ′α ′α ′α( )
( ) ( )α

Ρ −

Ρ

α ′α Ρ − Ρ +
−

=

α ′α( )Ρ    

mm m
i

i

m

i mi
ˆ 1

1 !
, ˆ1

1 1
, 1 1 1 1 1

1

1

, 11 	 (43)

Here, ′αiˆ  indicates that ′αi  is removed from the many-particle state  m1 }′α ′α . For a similar result for the 
normalized state  m1′α ′α  with occupation number αn  for the state α, we have

	 ∑ψ ′α ′α = χ δ ′α ′α ′αα
α

−

=

α ′α  

nm
i

i

m

i mi
ˆ 1 ˆ1

1

1

, 1 	 (44)

From here, we observe that the effect of ψαˆ  acting on any state is to annihilate one particle in the state 
α from a given state. In the case of bosons, the general result is conveniently expressed in occupation 
number representation:

	  n n

n
i

n n

i

1

!

ˆ ˆ 0

1

† †
1 1

1

∏
( ) ( )= ψ ψα α

α

=

Ρ α αΡ

α

Ρ

αΡ 	 (45)

or

	 n n
n

n

i i
i

i1
!

ˆ 0†

1
1 ∏ ( )= ψα α

α
α

=

Ρ

Ρ

α 	 (46)

Here, αn i  is the occupation number of the one-particle state αi. From (46), an arbitrary state in the Fock 
space can be obtained by acting on 0  with some polynomial of creation operators ψαi

ˆ † . This also follows 
that a fundamental property of creation (annihilation) operators is that they provide a basis for all 
operators in the Fock space. So, any operator can be expressed as a linear combination of the set of all 
products of the operators { }ψ ψα αˆ , ˆ† .
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The states (46) form an orthonormal basis for the complete multiparticle system and satisfy the 
following closure relation:

	 ∑ =
{ }

α α

α

α α   n n n ni

i

i 11 1 	 (47)

Let us now define the creation and annihilation operators ψαˆ †  and ψαˆ  for the αth type boson such that

	 ∑( ) ( )ψ = + + ψ = δ −α α α α α α α α α α α α

=

Ρ

α α α αΡ Ρ Ρ Ρ     n n n n n n n n n n n n
i

i
ˆ 1 1 , ˆ 1†

,

1
1 1 1 1

		  (48)

Here, ψαˆ †  increases, by one, the number of particles in the αth eigenstates; its adjoint ψαˆ  reduces, by one, 
the number of particles. The operators (48) are therefore eigenstates of the operator = ψ ψα α αn̂ ˆ ˆ† , which 
measures the number of particles in the one-body state α :

	 ∑= δα α α α α

=

Ρ

α α αΡ Ρ n n n n n n
i

i
ˆ ,

1
1 1 	 (49)

1.1.3  (Anti)Commutation Relations

We now examine the (anti)commutation of creation and annihilation operators. The (anti)symmetry 
properties of the many-particle states impose (anti)commutation relations among the creation opera-
tors. We consider the case in which any two single-particle states α  and ′α  belong to the orthonormal 
basis { }α  for any state  n1 }α α , then

	 } } } }ψ ψ α α = α ′α α α = χ ′α αα α = χψ ψ α αα ′α ′α α   n n n nˆ ˆ ˆ ˆ† †
1 1 1

† †
1 	 (50)

From here,

	 ( ) }ψ ψ − χψ ψ α α =α ′α ′α α  nˆ ˆ ˆ ˆ 0† † † †
1 	 (51)

So,

	 ψ ψ − χψ ψ =α ′α ′α αˆ ˆ ˆ ˆ 0† † † † 	 (52)

and taking the adjoint of (52), then

	 ψ ψ − χψ ψ =α ′α ′α αˆ ˆ ˆ ˆ 0	 (53)

We may also write

	 ψ ψ − χψ ψ = ψ ψ  = ψ ψ − χψ ψ = ψ ψ  =α ′α ′α α α ′α −χ α ′α ′α α α ′α −χ
ˆ ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ ˆ , ˆ 0† † † † † † 	 (54)

In equations (52) and (53), for the case of bosons χ = +1, we have the commutators

	 ψ ψ − ψ ψ = ψ ψ − ψ ψ =α ′α ′α α α ′α ′α αˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0† † † † 	 (55)
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and for the case of fermions, we have the anticommutators

	 ψ ψ + ψ ψ = ψ ψ + ψ ψ =α ′α ′α α α ′α ′α αˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0† † † † 	 (56)

Comparing

	 ∑ }} } }ψ ψ α α = ψ ′α α α = δ α α + χ δ ′α α α αα ′α α α ′α αα

=

    n n n
i

i

n

i ni
ˆ ˆ ˆ ˆ†

1 1 1

1

1 	 (57)

and

	 ∑ ∑} }}ψ ψ α α = ψ χ δ α α α = χ δ ′α α α α′α α ′α
−

αα

=

−
αα

=

    n
i

i

n

i n
i

i

n

i ni i
ˆ ˆ ˆ ˆ ˆ†

1
† 1

1

1
1

1

1 	 (58)

then also

	 ψ ψ − χψ ψ = ψ ψ  = δα ′α ′α α α ′α χ α ′αˆ ˆ ˆ ˆ ˆ , ˆ† † † 	 (59)

We consider relation (36) and calculate the following anti(commutation) relation

∑ ∑ ∑{ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ψ ′ ψ  = ϕ ϕ ′ ψ ψ − χψ ψ = ϕ ϕ ′ δ = ϕ ϕ ′
χ α

∗
′α ′α α α ′α

α ′α

α
∗

′α α ′α

α ′α

α
∗

α

α

       

r r r r r r r r, † † † 	 (60)

So,

	 † † ∑ ∑( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ψ ′ ψ − χψ ψ ′ = ϕ ϕ ′ δ = ϕ ϕ ′ = δ − ′α
∗

′α α ′α

α ′α

α
∗

α

α

r r r r r r r r r r
         

	 (61)

This means that the operator function ( )ψ


r†  creates a particle with coordinate 


r . It is instructive to note 
that if ψ ψα α, †  were not operators but the c-numbers, then ( )ψ



r  and ( )ψ


r†  in (36) would be considered 
as one-particle conjugated wave functions. Generally, to introduce wave functions for a particle, it is 
necessary to change from classical to quantum mechanics by performing a so-called first quantization. 
Therefore, in the transformation from wave functions to operator functions ( )ψ



r  and ( )ψ


r† , with the 
help of (61), we perform a so-called second quantization.

1.1.4  Change of Basis in Second Quantization

Different quantum operators are expressed most naturally in different representations, which makes 
basis changes an essential issue in quantum physics. Next, we characterize the Fock space bases intro-
duced earlier to a full reformulation of many-body quantum mechanics and then introduce general 
transformation rules that will be exploited further in this book. To find out how changes from one 
ordered single-particle basis { }α  to another { }α  affect the operator algebra { }ψαˆ :

	 ∑ ∑α = α α α = α α α
α

∗

α

   	 (62)

For single-particle systems, we conveniently define creation operators ψα
ˆ †  and ψαˆ † , which correspond to 

the two basis sets { }α , to another { }α :

	 ∑ ∑}} }ψ α α = αα α = α α αα α = α α ψ α αα
α

α

α

� � � � � � �� n n n nˆ ˆ†
1 1 1

†
1 	 (63)
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Therefore, the transformation rules for creation (annihilation) field operators

	 ∑ ∑ψ = α α ψ ψ = α α ψα α α

α

α

α

 





ˆ ˆ , ˆ ˆ† † 	 (64)

The general validity of equation (64) stems from applying the first quantization single-particle result in 
equation (62) to the n-particle first quantized basis states  n1 }α α . This yields

	 ∑ ∑ψ ψ = α α ψ










α α ψ








α α α

α

α

α

� � � �� � n nn n

n

ˆ ˆ 0 ˆ ˆ 0† †
1 1

† †
1 1

1

	 (65)

The transformation rules (64) lead to two important results:

1.	 The basis transformation preserves the bosonic or fermionic particle statistics

	 ˆ , ˆ ˆ ˆ ˆ ˆ† † †∑ ∑{ }ψ ψ  = α α ′α ′α ψ ψ − χψ ψ = α α ′α ′α δ = δα ′α χ
α ′α

α ′α ′α α α ′α α ′α

α ′α

   





 

	 (66)

2.	 The basis transformation leaves the total number of particles invariant

	 ∑ ∑ ∑ ∑ ∑ψ ψ = α α α ′α ψ ψ = α ′α ψ ψ = δ ψ ψ = ψ ψα α

α

α

αα ′α

′α α

α ′α

′α α ′α α

α ′α

′α α

α

α 





 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † † 	 (67)

When the new basis is orthonormal, the (anti)commutation relations are preserved and the following 
transformation is unitary:

	 { } { }ψ ψ → ψ ψα α α α



ˆ , ˆ ˆ , ˆ† † 	 (68)

1.1.5  Quantum Field Operators

For many applications, the coordinate representation turns out to be suitable, which leads to the defini-
tion of quantum field operators. We define the second-quantized field operators at every point in space 
as follows

	

 




 










r r
V

i r r r

V
i r

ˆ , ˆ 1 exp ˆ , ˆ , ˆ

1 exp ˆ

† † †∑∑ ∑

∑

{ } ( )

{ } ( )

( ) ( )ψ = α σ ψ = − κ ψ κ ψ = σ α ψ

= κ ψ κ

σ α

κ

σ σ

α

α

α

κ

σ 	

(69)

Here, the sum extends over all states α of the orthonormal basis. In (69), the last relations are achieved 
by selecting the momentum-representation basis { }κ α



, . The field operators satisfy the following (anti)
commutation relations

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )ψ ψ ′  = ψ ψ ′  = ψ ψ ′  = δ δ − ′σ ′σ −χ σ ′σ −χ σ ′σ −χ σ ′σ
       

r r r r r r r rˆ , ˆ ˆ , ˆ 0 , ˆ , ˆ† † † 	 (70)

In a way, the quantum field operators express the essence of the wave/particle duality in quantum phys-
ics. On the one hand, they are defined as fields. This implies some type of waves. However, on the other 
hand, they exhibit the commutator properties associated with particles.
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Considering equations (34) and (43), we have

	 ( ) } }ψ σ σ = σ σ σσ
� �

�
� � �

�
�

r r r r r rn n n nˆ , , , , , , , , , ,†
1 1 1 1 	 (71)

	
� �

�
� � � �

�
�
�
�

r r r r r r r rn n
i

i

n

i i i n nˆ , , , , , , , , , ,1 1
1

1

1 1∑( ) } ( ) }ψ σ σ = χ δ − σ σ σσ
−

=

	 (72)

where ,
��ri iσ  implies that σ



ri i,  is omitted. So, the field operator ( )ψσ


rˆ †  adds a spin-σ particle at point 


r  and 
(anti)symmetrizes the resultant many-body state.

1.1.6  Operators in Second-Quantized Form

Second quantization provides a natural formalism for describing many-particle systems. In this section, 
we examine the case of a system of n interacting particles. We note that, in reality, particles do interact 
with one another. We present a general theory in which the particles not only interact with the exter-
nal potential, say the operator ( )v̂ 1 , but also interact with each other via the potential, say ( )v̂ 2 . The state 
operators describing physical states should be (anti)symmetric under the exchange of two particles. This 
depends on the statistics of the particles and whether they are fermions or bosons. We note that any 
operator acting within the Fock space may be written in second quantization. When all operators are 
expressed in terms of the fundamental creation and annihilation operators, we consider the example of 
one-, two-, and n-body operators.

1.1.6.1  One-Body Operator

The operator ( )v̂ 1  is a one-body operator that acts on each particle separately:

	 ∑ ∑∑ )) ) }α α = α α α α = χ α α( ) ( )
( ) ( )

=

Ρ
Ρ Ρ

=Ρ

   v v v
n

vn i n

i

n

n i n

i

n

ˆ ˆ , ˆ 1
!

ˆ1
1 1

1

1
1 1

1

	 (73)

where vî operates only on the ith particle. For example, say

	 ( ))α α = α ⊗ α ⊗ ⊗ α v vn nˆ ˆ1 1 1 2 	 (74)

Suppose we first choose a basis where the operator v̂ is diagonal:

	 α = α α α ≡ ααv v vˆ ˆ 	 (75)

So,

	 ∑∑ ∑∑)} } }α α = χ α α = α α = α α( )
( ) ( )

Ρ
α Ρ Ρ

=Ρ

α α α

α=
( )Ρ   v

n
v v v nn n

i

n

n

i

n

ni i
ˆ 1

!
ˆ1

1 1

1

1

1

1 	 (76)

Here, the sum extends over the complete set of one-body states α and the number operator = ψ ψα α αn̂ ˆ ˆ† . 
From the aforementioned, we see that

	 ∑= α α( )
α

α

v v nˆ ˆ ˆ1 	 (77)

To obtain the action of ( )v̂ 1 , we must sum over all states α , multiplying αv  by the number of particles 
in state α .



13Symmetry Requirements in QFT

© 2014 Taylor & Francis Group, LLC

From equation (77), we arrive at the general expression for one-body operators that is valid in any 
complete basis in terms of the field operators:

	 ∑= α ′α ψ ψ( )

α ′α

α ′αv vˆ ˆ ˆ ˆ1 † 	 (78)

Formula (78) is precisely the expression of ( )v̂ 1  in the second quantization that can be rewritten as 
follows

	 ∫ ∑ ( ) ( )= ′ α ′ ′α ψ ψ ′( )
α ′α

α ′α

   

v d rd r r v r r rd dˆ , ˆ , ˆ ˆ1 † 	 (79)

In order to obtain the action of ( )v̂ 1 , we have to sum over all states α  and multiplying αv  by the number 
of particles in state α . It is instructive to note that expressions (78) and (79) make no reference to the 
total number of particles actually present in the system.

We may compute another operator of basic importance—particle density at the point 


r :

	 ˆ , ˆ , ˆ ˆ ˆ ˆ1 2 1 2
†

1 2
†∫ ∑ ∑( )( ) ( ) ( ) ( ) ( )= α δ − ′α ψ ψ = ψ ψα ′α

α ′α

α α

α

n r d r d r r r r r r r r rd d        

	 (80)

The particle number operator:

	 ∫ ∑( )= = ψ ψα α

α



N d rn rdˆ ˆ ˆ ˆ† 	 (81)

This applies for any complete basis of the one-body states α .
Considering the one-body potential

	 ∑ ( )=( )

=



v v ri

i

n

ˆ ˆ1

1

	 (82)

then

	 , ˆ , ˆ ˆ ˆ ˆ ˆ1
1 2 1 2

†
1 2

†∫ ∑ ∫ ∑ ∫( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= α ′α ψ ψ = ψ ψ =( )
α ′α

α ′α

α α

α

v d r d r r v r r r r d rv r r r d rv r n rd d d d         

	 (83)

Considering that ∑Τ =
=

p
m
i

i

n
ˆ ˆ

2

2

1

 is the kinetic energy operator, then in the second-quantized form, one 

obtains the following:

	

ˆ ,
ˆ

2
, ˆ ˆ

2
ˆ ˆ

ˆ ˆ ,
2

2
†

2
†

†
2

∑ ∑

∑

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Τ = κ α ′κ ′α ψ κ ψ ′κ = κ ψ κ ψ κ

= ∈ κ ψ κ ψ κ ∈ κ = κ

α ′α

κ ′κ α ′α

α α

κα

α α

κα

p
m m

m

     

   

 



	

(84)

This expression is simple and intuitive because the underlying basis diagonalizes the kinetic energy.
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1.1.6.2  Two-Body Operator

In this section, we introduce a two-body operator ( )v̂ 2  acting on the state  n1 )α α  of n particles as the 
sum of the ( )v̂ 2  on all distinct pairs of particles:

	 ∑ ∑∑ )) ) }α α = α α α α = χ α α

( ) ( )

( ) ( )
( ) ( )

=
<

Ρ
Ρ Ρ

=
<

Ρ

   v v v
n

vn ij n

i j
i j

n

n ij n

i j
i j

n

ˆ ˆ , ˆ 1
!

ˆ2
1 1

2

, 1

1 1

, 1

	 (85)

Here, vijˆ  acts only on the i and j particles. The restriction <i j  results in a summation over distinct pairs. 
Considering the basis { }α  where v̂ is diagonal, then

	 ˆ ˆ( )) ) )αβ = αβ αβ αβ ≡ αβαβv v v 	 (86)

and

	

 

 

v
n

v

v v v

n n

i j
i j

n

n

i j
i j

n

ij n

i j

n

i j

i j i j i i

ˆ 1
!

ˆ

ˆ 1
2

ˆ ˆ

2
1 1

, 1

1

, 1

1

, 1

∑∑

∑ ∑( )

)}

} }

α α = χ α α

= α α = − δ α α

( )

( )

( )
( ) ( )

Ρ
α α Ρ Ρ

=
<

Ρ

α α

=
<

α α α α

=

( )( )Ρ Ρ

	

(87)

or

	 ∑ ( )} }α α = − δ α α( )
αβ α β αβ α

αβ

 v v n n nn nˆ 1
2

ˆ ˆ ˆ2
1 1 	 (88)

Here, the sum extends over all states α β,  of the complete basis of the one-body states. From the (anti)
commutation of the field operators, we find the operator ℘αβ

ˆ  that counts the number of pairs in the 
states α  and β . If α  and β  are different, then the number of pairs is α βn n ; if α = β , the number of 
pairs is ( )−α αn n 1 . Hence, the operator counting pairs may be written

	 ℘ = − δ = ψ ψ ψ ψ − δ ψ ψ = ψ χψ ψ ψ = ψ ψ ψ ψαβ α β αβ α α α β β αβ α α α β α β α β β αn n nˆ ˆ ˆ ˆ † † † † † † † 	 (89)

then

	 ∑( )= αβ αβ ψ ψ ψ ψ( )
α β β α

αβ

v vˆ 1
2

ˆ2 † † 	 (90)

Similar to the case of the one-body operator, the action of a two-body operator is obtained by summa-
tion over pairs of single-particle states α  and β . Then, we multiply the matrix element ( )αβ αβv̂  by 
the number of pairs of such particles present in the physical state.

Transforming from the diagonal representation to an arbitrary basis, we find the general expression 
of a two-body operator:

	


v vˆ 1
2

ˆ2
1 2 1 2

† †
1 2 2 1

1 2

∑ )(= α α ′α ′α ψ ψ ψ ψ( )
α α ′α ′α

α ′α

	 (91)
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or

	 ∫ ∑ ( ) ( ) ( ) ( ) ( )= ′ α α ′ ′α ′ ′α ψ ψ ψ ′ ψ ′( )
α α

α ′α

′α ′α
� � � � � � � �

�

v d r d r r r v r r r r r rd dˆ 1
2

, , , , , , ˆ ˆ ˆ ˆ2
1 2 1 1 2 2 1 1 2 2

†
1

†
2 2 11 2

1 2

2 1 	 (92)

Simplicity and convenience are among the great virtues of representing operators via creation and anni-
hilation operators that concisely handle all the bookkeeping for Fermi and Bose statistics. Sometimes, it 
is convenient to use (92) where the matrix element is indeed (anti)symmetrized:

	 ˆ 1
4

ˆ2
1 2 1 2

† †
1 2 2 1

1 2

∑ }{= α α ′α ′α ψ ψ ψ ψ( )
α α ′α ′α

α ′α

v v


	 (93)

with

	 ˆ ˆ ˆ1 2 1 2 1 2 1 2 1 2 2 1) ){ ( (}α α ′α ′α = α α ′α ′α + χ α α ′α ′αv v v 	 (94)

We examine the example of a two-body potential

	 ∑ ( )= −
( )

( )

<

 

v v r ri j

i j

n

ˆ ˆ ˆ ˆ2 	 (95)

such that

	 ˆ 1
2

, , , ˆ ˆ , , , ˆ ˆ ˆ ˆ2
1 2 1 1 2 2 1 1 2 2

†
1

†
2 2 11 2

1 2

2 1∫ ∑ ( )( ) ( ) ( ) ( ) ( )= ′ α α − ′ ′ ′α ′ ′α ψ ψ ψ ′ ψ ′( )
α α

α ′α

′α ′αv d r d r r r v r r r r r r r rd d � � � � � � � � � �

�

	 (96)

or

	 ∫ ∑ ( ) ( ) ( ) ( ) ( )= − ψ ψ ψ ψ( )
α α

α α

α α
     

v d r d r v r r r r r rd dˆ 1
2

ˆ ˆ ˆ ˆ2
1 2 1 2

†
1

†
2 2 11 2

1 2

2 1 	 (97)

Here, we consider the fact that ( )−
 

v r rˆ 1 2  is diagonal in the coordinate representation:

	 ( ) ) )( )− ′ α α = − α α
       

v r r r r v r r r rˆ ˆ , , , , , ,1 1 2 2 1 2 1 1 2 2 	 (98)

If we consider the Fourier space, then equation (97) yields the second-quantized form of the two-body 
potential in the momentum space:

	 ∑ ( ) ( ) ( ) ( ) ( )= ψ κ + ψ ′κ − ψ ′κ ψ κ( )

κ ′κ α ′α

α ′α ′α α








 

 


v
V

v q q q
q

ˆ 1
2

ˆ ˆ ˆ ˆ2

, , , ,

† † 	 (99)

Here, ( )v q  is the Fourier transformed of the interaction potential ( )v r . This may be thought of as one 
particle with initial momentum ′κ



 interacting with another particle with initial momentum κ


 by 
exchanging a momentum 



q ; ( )v q  is then the matrix element of such a process.
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We may make a generalization for the case of an n-body operator in second-quantized form:

	

ˆ 1
!

ˆ ˆ ˆ ˆ ˆ

1
!

ˆ ˆ ˆ ˆ ˆ

1

,

1
† †

2 1

,

1
† †

1 1

1 1

1 1

1 1

∑

∑

)

}

(

{( )

= α α ′α ′α ψ ψ ψ ψ

= α α ′α ′α ψ ψ ψ ψ

{ }

{ }

( )

α ′α

α α ′α ′α

α ′α

α α ′α ′α

v
n

v

n
v

n
n n

n n

n n

n n

   

    	
(100)

Next, it will be useful to examine the normal ordering for a many-particle operator: An operator is 
normal-ordered if all the creation operators are to the left of all the annihilation operators. As an 
example, the right-hand side of (89) is in normal order. Regardless, any expression not in normal order 
may be brought into normal order by a sequence of applications of (anti)commutation relations for cre-
ation and annihilation operators.
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2
Coherent States

Introduction

The minimum uncertainty wave packets for the harmonic oscillator were published as coherent states by 
Schrödinger [5]. Recently, coherent states have played an important role in many branches of physics 
and, in particular, quantum field theory and quantum optics. We have seen earlier that second quan-
tization is the natural formalism for studying many-particle systems. In this chapter, we show how to 
construct path integral representation using a closure relation based on the eigenstates of the creation or 
the annihilation operators. We show, in particular, how coherent states are used to obtain a path integral 
representation of the partition function as well as calculating directly the trace defining the partition 
function. Quantum field theory combines classical field theory with quantum mechanics and provides 
analytical tools to understand many-body and relativistic quantum systems. Recently, there have been 
many advances in controlled fabrication of phase coherent electron devices on the nanoscale and in 
the realization that ultracold atomic gases exhibit strong interaction and condensation phenomena 
in Fermi and Bose systems. These advances, along with many others, have resulted in new perspectives 
on quantum physics of many-particle systems.

This book aims to introduce the ideas and techniques of quantum field theory for the many-particle 
system. This begins with the introduction of path integrals that provide a description of quantum 
mechanical time evolution in terms of trajectories. Further, perturbation theory and Feynman dia-
grams, which provide powerful techniques to approximately evaluate path integrals of more com-
plicated systems, are also introduced to further generalize path integral formalism to many-particle 
systems. Particular attention is paid to the treatment of fermionic many-particle systems because the 
corresponding path integral has to be formulated in terms of anticommuting (Grassmann) variables. 
This also aids us in examining the concept of supersymmetry. To begin, we look at bosonic coherent 
states and then generalize to the fermionic case.

2.1  Coherent States for Bosons

In the preceding chapter, we used permanents or Slater determinants as a natural basis for the Fock 
space

	 Η = Η ⊕Η ⊕ = ⊕ Η=
∞

 n n0 1 0 	 (101)

Another useful basis of the Fock space is that of coherent states, which are an analog to the basis of posi-
tion eigenstates in quantum mechanics. Though it is not an orthonormal basis, it spans the entire Fock 
space. Position states r



 are defined as eigenstates of 


r̂ , while coherent states are defined as eigenstates 
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of the annihilation operators. To see why annihilation operators are selected rather than creation opera-
tors, we denote by ξ  a general vector of the Fock space:

	 ∑∑ξ = ξ α αα α

α α=

∞

1

0
1

1

n

n
n

n







	 (102)

So, ξ  has a component with a minimum number of particles. Applying any creation operator ψ̂† to ξ , 
the minimum number of particles in ξ  is observed to be increased by one. Hence, the resulting state 
cannot be a multiple of the initial state, and a creation operator ψ̂† cannot have an eigenstate. Applying 
an annihilation operator ψ̂  to ξ  decreases the maximum number of particles in ξ  by one. Since ξ  
may contain components with all particle numbers, nothing a priori prohibits ξ  from having eigen-
states. Our goal is to find eigenstates of the (non-Hermitian) Fock space operators ψ̂† and ψ̂ .

2.2  Coherent States and Overcompleteness

Coherent States

It is useful to note that an important property needed for setting up path integration is the completeness 
of the states. We now examine coherent states and define eigenstates of the operator ψ̂ . The physical 
meaning of the bosonic coherent states can be understood from a study of the system of harmonic oscil-
lators described by the following Hamiltonian equation:

	 ∑Η = Η Η = Ρ + ω
α

α

α
α α α

m
m

k

k
k

k

k
k k kˆ ˆ , ˆ ˆ

2
Q̂

2

2 2 2

	 (103)

with

	 Q̂ ,Ρ̂



 = δα α α αik l k l 	 (104)

Here, mk, ωαk , αkQ̂ , and Ραk
ˆ  are the mass, frequency, position, and momentum operators, respectively, of 

the oscillator. The ladder operators

	 ψ = ω + Ρ
ω







ψ = ω − Ρ

ω






Ρ = − ∂

∂α
α

α
α

α
α

α
α

α

α
α

α

m i
m

m i
m

ik
k

k
k

k
k

k
k

k

k
k

k

ˆ
2

Q̂
ˆ

, ˆ
2

Q̂
ˆ

, ˆ
Q

† 	 (105)

satisfy the canonical bosonic commutation relations

	 ψ ψ  = ψ ψ  = ψ ψ  = δα α α α α α α α′ ′ ′ ′k k k k k k k k
ˆ , ˆ ˆ , ˆ 0 , ˆ , ˆ† † † 	 (106)

This permits us to rewrite the Hamiltonian equation as follows:

	 ∑Η = ω ψ ψ +



α

α

α αk

k

k k
ˆ ˆ 1

2
† 	 (107)

Singling out the ground state 0  then

	 ψ = Ρ = =α α αk k k
ˆ 0 0 , 0 ˆ 0 0 Q̂ 0 0	 (108)
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The eigenstates of the Hamiltonian equation (107) can be obtained from the tensor product of the states 
n kα :

n n n n
n n

n n n n n
n n

n n
n

n

n
n k

k

k n

ˆ

!

ˆ

!
0 , ˆ ˆ 1

2

† †

1 1
1

1

1
1 1    ∑( ) ( )

= ⊗ ⊗ =
ψ ψ

Η = ω +



α α α α

α

α

α

α
α α α

α

α α α

α

(109)

It is instructive to note that one of the drawbacks of the given states is that they do not serve as eigen-
states of either the position Q̂ or the momentum Ρ̂ operator. Moreover, the commutation relation (104) 
prevents us from searching eigenstates for both operators. Notwithstanding, it is possible to define a 
so-called coherent state p qi j,  having average position and momentum given by some classical value 
( )p qi j, :

	 Ρ = =α α α αp q p q p p q p q qi i i i, ˆ , , , Q̂ , 	 (110)

We find such a state by considering

	 p q { }= −Α ξ, exp ˆ 	 (111)

and the identity

	 { } { }Α Β −Α = Β+ Α Β



 + Α Α Β









 +exp ˆ ˆ exp ˆ ˆ 1

1!
ˆ , ˆ 1

2!
ˆ , ˆ , ˆ 	 (112)

that ends at the second term when Α Β





ˆ , ˆ  is the c-number. So (110) sets the condition

	 0ξ ≡ 	 (113)

and

	 ∑ ( )Α = − − Ρα α α α

α

i p qk k k k

k

ˆ Q̂ ˆ 	 (114)

with

	 p q { }= −Α, exp ˆ 0 	 (115)

Then, from (105) and

	 ξ = ω +
ω





 ξ = ω −

ω




α α

α
α α

αm q i p
m

m q i p
mk k

k
k k

k

2
,

2
† 	 (116)

we have

	 p q k k k k

k

∑( ) { }= ξ ψ − ξ ψ











= ψ ξ− ξ ψα α α

∗
α

α

, exp ˆ ˆ 0 exp ˆ ˆ 0† † † 	 (117)
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Here,

	 ψ =
ψ

ψ

















ξ =
ξ

ξ

















α αΡ Ρ

 

ˆ
ˆ

ˆ
,

1 1

	 (118)

It can be easily verified that

	 ( ) ( )ξ Ρ − ξ = ξ − ξ =α α α αp qk k k k
ˆ Q̂ 1

2
2 2

	 (119)

Therefore, ξ  is as near as possible to a classical state. Considering (112) and (115), then we rewrite (117) 
as follows:

	
n n

n n
n n

n

n
n





∑{ } ( ) ( )
ξ = ψ ξ =

ξ ψ ξ ψα α

α

α α

αα α

α α

exp ˆ 0
ˆ

!

ˆ

!
0†

† †
1 1

1

1
1

	 (120)

Since

	 n n
n n

n n

n
n

n

n

 

( ) ( )
=

ψ ψ
α α

α

α

α

α

αˆ

!

ˆ

!
0

† †

1
1

1

1

	 (121)

then the given coherent state is defined by the following eigenvector [6]:

	
n n

n n
n n n

n
n

n

 



∑ ( ) ( )ξ =
ξ ξα

α

α

α
α α

α α

α
Ρ

α

! !
1

1

1
1

1

	 (122)

The eigenstate n n nα α1 , as seen earlier in equation (25), has a total number of particles, ∑= α

α

n n k

k

, 

while the Hilbert space (generically referred to as the Fock space) is written as the direct sum, such as 
in equation (1).

2.2.1  Overcompleteness of Coherent States

Assume we have constructed an eigenstate ξ  of the annihilation operators ψαˆ ; then the eigenstates and 
eigenvalues of the bosonic operator can be obtained via the eigenvalue equation:

	

∑ ∑ ∑ ∑

∑ ∑ ∑

{ } ( )

{ }( )

ψ ξ = ψ ψ ξ = ψ ξ ψ = ψ ξ = ξ ψ = ξ −

= ξ
−

− = ξ
′

′ = ξ ξ = ξ ψ ξ = ξ ξ

α α α α
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=

∞

α
α

=

∞
α

α

=

∞
α

=

∞

α

=

∞

′= −

α
′+

′=

∞

α
α

=

∞

α α α

n n
n

n
n

n
n n

n
n

n
n

n
n

n n

n

n

n

n

n

n

n

n

n
n n

n

n

n

n

ˆ ˆ exp ˆ 0 ˆ
!

ˆ 0 ˆ
! !

ˆ
!

1

1 !
1

! !
exp ˆ 0

† †

0 0 0 1

1
1

1

0 0

†

(123)

Similarly, the adjoint

	 ξ ψ = ξ ξα α
∗ˆ † 	 (124)
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The action of a creation (annihilation) operator ( )ψ ψα αˆ ˆ†  on a coherent state is obtained as

	 ∑ψ ξ = ψ ψ ξ











= ∂

∂ξ
ξ ξ ψ = ∂

∂ξ
ξα α ′α ′α

′α α
α

α
∗

ˆ ˆ exp ˆ 0 , ˆ† † † 	 (125)

It is useful to show that the operators ψαˆ †  and ψαˆ  act in the coherent state representation in the same way 
as the operators 



r̂  and 


p̂ act in coordinate representation. From equations (123), (124), and (125), then

	 ( ) ( )ξ ψ φ = ∂
∂ξ

φ ξ ξ ψ φ = ξ φ ξα
α
∗

∗
α α

∗ ∗ˆ , ˆ † 	 (126)

So, symbolically, we can write

	 ψ = ∂
∂ξ

ψ = ξα
α
∗ α α

∗ˆ , ˆ † 	 (127)

This is consistent with the bosonic commutation rules:

	 ξ ξ  = ∂
∂ξ

∂
∂ξ









 = ∂

∂ξ
ξ









 = δα

∗
′α

∗

α
∗

α
∗

α
∗ ′α

∗
α ′α, , 0 , , 	 (128)

We observe that the behavior of ψαˆ  an ψαˆ †  in the coherent state representation is thus analogous to that 
of 


r̂  and 


p̂ in coordinate representation.
It is important to note that the coherent state with ξ = 0 is identical to the Fock vacuum 0 . The eigen-

value ξα of the bosonic annihilation operator ψαˆ  may be any real or complex number. What is unusual 
about this definition is that ψαˆ  is not a Hermitian operator (and so is not observable in the usual sense). 
Nevertheless, the states ξ  defined in such a way form a complete set—indeed an overcomplete set—and 
define a new representation, the coherent state representation. Introducing the overcomplete base of 
coherent states widens the concept of the path integral formalism in areas of many-particle systems [3, 7].

Because ξ  is an eigenstate of the annihilation operators ψαˆ , then the (anti)commutation relations

	 ψ ψ  =α ′α −χ
ˆ , ˆ 0	 (129)

This implies that

	 ψ ψ ξ = ψ ξ ξ = ξ ξ ξ = χψ ψ ξ = χψ ξ ξ = χξ ξ ξα ′α α ′α α ′α ′α α ′α α ′α αˆ ˆ ˆ ˆ ˆ ˆ 	 (130)

In the case of fermions, the main difficulty encountered is the lack of a classical limit for the eigenvalue 
ξα. This implies that c-numbers cannot reflect the anticommuting character of fermions. As a way of 
introducing anticommuting objects, we present anticommuting variables called Grassmann numbers, 
which follow the same concepts used in constructing coherent states for bosons.

2.2.2  Overlap of Two Coherent States

We examine the following inner product or overlap of two coherent states given by:

	 ∑∑ ( ) ( ) ( ) ( )ξ ′ξ =
ξ ξ ′ξ

′
′ξ
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1
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1

1
1

1
11

1 1 	 (131)
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Because the basis α  is orthonormal, the scalar product

	 ′ ′ = δ δα α α α ′ ′Ρ Ρ α α αΡ αΡ  n n n n n n n n1 1 1 1 	 (132)

and, so,

	 ∑ξ ′ξ = ξ ′ξ











α
∗

α

α

exp 	 (133)

It is instructive to note that the coherent states corresponding to two different values of ξ are not 
orthogonal states because they do not form a proper basis and are eigenvectors of a non-Hermitian 
operator. The overlap quickly falls off exponentially with the distance between the two points and gives 
a measure of the intrinsic uncertainty of the coherent state as probability amplitude in phase space.

From their definition, it is obvious that coherent states do not have a fixed number of particles but 
that the occupation numbers αn  in the coherent state ξ  are Poisson distributed with mean values ξα

2:

	 

!
2

2

1 ∏ξ =
ξ

α α
α

αα
Ρ

α

n n
n

n

	 (134)

So, the distribution of the total particle number has the average value

	 ∑= =
ξ ξ
ξ ξ

=
ξ ψ ψ ξ

ξ ξ
= ξ ξα α

α
∗

α

α

n n
nˆ
ˆ ˆ ˆ†

	 (135)

with the variance

	 ∑( )σ = − = ξ ξ =α
∗

α

α

n n nˆ ˆ ˆ2 2
	 (136)

In the thermodynamic limit, where → ∞n , the relative width

	 σ = →
n n

1 0	 (137)

In this case, the particle number distribution becomes sharply peaked around n. This indicates that a 
product of Poisson distributions approaches a normal distribution.

2.2.3  Overcompleteness Condition

The most important property of coherent states is their overcompleteness in the Fock space, which 
implies that any vector of the Fock space can be expanded in terms of coherent states. To obtain a path 
integral representation, a closure relation for the coherent states is needed. We examine the closure rela-
tion (resolution identity) for the bosonic coherent states, which is defined as:

	 ∏∫ ∑ξ ξ
π

− ξ ξ











ξ ξ =α

∗
α

α

α
∗

α

α

d d
i2

exp 1̂	 (138)

In (138), ̂1 is the Fock space identity operator, and the measure is given by

	 ( ) ( )ξ ξ
π

=
ξ ξ

π
α
∗

α α αd d
i

d d
2

Re Im
	 (139)
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As shown in (133), because the coherent states are in general not orthogonal, the set of coherent 
states is overcomplete, while formula (138) shows that the coherent states form a basis in the Fock 
space. Nonetheless the coherent states are very useful, particularly for deriving path integrals. In this 
book, they are important as an example of states where the creation and annihilation operators have 
nonvanishing expectation values. This factor will be essential in the discussion on Bose-Einstein 
condensates.

2.2.4  Closure Relation via Schur’s Lemma

We prove the closure relation via Schur’s lemma, which in this case states: If an operator commutes 
with all creation and annihilation operators, then it is proportional to the unit operator in the 
Fock space.

From equation (125), then

	 ψ ξ ξ  = ξ − ∂
∂ξ







ξ ξα α
α
∗

ˆ , 	 (140)

And, by evaluating the commutator (138) and performing integration by parts, we have

∏∫ ∑ ∏∫ ∑ψ ξ ξ
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(141)

If we look at the adjoint of (141), we observe that the left-hand side of (138) commutes with all of the 
creation as well as the annihilation operators. Therefore, it must be proportional to the unit operator. 
We can calculate the proportionality factor by taking the expectation value of the left-hand side of (138) 
in the vacuum:

	 ∏∫ ∑ ∏∫ ∑ξ ξ
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
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2

exp 0 0 1̂	 (142)

Therefore, we prove the closure relation in (138).
For a single degree of freedom, we write ξ in polar form

	 { } { }ξ = ξ ϕ ξ = ξ − ϕ∗i iexp , exp 	 (143)

then this changes the variables from ( )ξ ξ∗,  to ( )ξ ϕ, . Considering that the Jacobian determinant of this 
variable transformation is ξi2 , then the measure

	 ξ ξ
π
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ξ ξ ϕ

π

∗d d
i

i d d
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2
2

	 (144)

Hence,

	 ∫ ∫ ∑ ∫{ } { } { }( )ξ ξ
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or
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Changing variables again, = ξz 2, and using the definition of the Gamma function,

	 ∫ { } ( )− = Γ + =
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dz z z n nnexp 1 !
0

	 (147)

then
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	 (148)

For one degree of freedom and considering the position eigenstates q  and the coherent states ξ , 
then it makes sense to compute their inner product:

	 ∑ξ = ξ

=

∞

q
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q n
n

n
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0

	 (149)

In this case, the wave function q n  of the nth excited state of the harmonic oscillator:
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or
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	 (151)

Here ( )Η xn  is the Hermite polynomial with argument x. The generating function for the Hermite poly-
nomials ( )Η xn :

	 ∑{ } ( )− = Η
=

∞

xy y x y
nn

n

n

exp 2
!

2

0

	 (152)

Therefore, from the aforementioned,

	 ∑ ∑
( )

( )ξ = ξ = ξ
α −

α










π

Η α
=

∞

=

∞

q
n

q n
n

q

n
q

n

n

n

n
n n! !

exp
2

2 !0 0

2

	 (153)
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or

	 ∑( ) ( ) ( )ξ = α
π

−
α












ξ





Η α = α
π

−
α











αξ − ξ ξ






=

∞ ∗

q
q

n
q

q
q

n

n

nexp
2

1
! 2

exp
2

exp 2
2

2

0

2
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or

	 ξ = ω
π





 − ξ ξ − ω + ω ξ









∗

  

q m m q m qexp
2 2

2
1
4 2 	 (155)

2.2.5  Normal-Ordered Operators

In this section, we will examine one property of coherent states—the simple form of matrix elements 
of normal-ordered operators between coherent states. An operator A( )ψ ψα αˆ , ˆ†  is said to be normal-
ordered when all creation operators stand to the left of the annihilation operators ψαˆ . The matrix 
element between coherent states of such an operator takes the form

	 A A∑( ) ( )ξ ψ ψ ′ξ = ξ ′ξ











ξ ′ξα α α

∗
α

α

α
∗

αˆ , ˆ exp ,† 	 (156)

One example is a two-body potential:

	 ∑ )(ξ ′ξ = α ′α β ′β ξ ψ ψ ψ ψ ′ξ( )

α ′α β ′β

α ′α ′β βv vˆ 1
2

ˆ ˆ ˆ ˆ2 † † 	 (157)

or

	 ∑ ∑)(ξ ′ξ = α ′α β ′β ξ ξ ξ ′ξ ′ξ ′ξ ξ ′ξ











( )

α ′α β ′β

α
∗

′α
∗

′β β α
∗

α

α

v vˆ 1
2

exp2 	 (158)

2.2.6  The Trace of an Operator

The overcompleteness relation can be used to represent a state of the extended Fock space in terms of 
coherent states. The completeness relation provides a useful expression for the trace of any operator A. 
Denoting { }n  as a complete set of states, then

	

n n d d
i

n n

d d
i

n n d d
i

n n

n

A A A

A A

∑ ∏∫ ∑ ∑

∏∫ ∑ ∑ ∏∫ ∑

= = ξ ξ
π

− ξ ξ











ξ ξ =

= ξ ξ
π

− ξ ξ











ξ ξ = ξ ξ

π
− ξ ξ












ξ ξ

α
∗

α

α

α
∗

α

α

α
∗

α

α

α
∗

α

α

α
∗

α

α

α
∗

α

α

Tr
2
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2
exp

2
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or

	 d d
i

A A∏∫ ∑= ξ ξ
π

− ξ ξ











ξ ξα

∗
α

α

α
∗

α

α

Tr
2

exp 	 (160)
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From quantum mechanics, the completeness of position eigenstates permits us to represent a state

	 ∫ ( )ψ = ψˆ ˆ  

dr r r 	 (161)

Here, the coordinate representation of the state ψ̂  is

	 ( )ψ = ψ
 

r rˆ ˆ 	 (162)

Similarly, equation (139) implies any state ψ̂  of Fock space can be represented:

	 ˆ
2

exp ˆ
2

exp ˆ�∏ ∫ �∏ ∫ ∑ () ψ = =
ξ

π = =
−










= = ) ψ = =

ξ
π = =

−










) = =α

∗
α

α

α
∗

α

α

α
∗

α

α

α
∗

α

α

∗d d
i

d d
i

	 (163)

where

	 ( )ξ ψ = ψ ξ∗ˆ ˆ 	 (164)

by definition, is the coherent state representation of the state ψ̂ , with ξ denoting the set { }ξα
∗ . The 

coherent state representation for bosons often is referred to as the holomorphic representation. This is 
due to the fact that ψ  is an analytic function of the variables ξα

∗ . Physically, the quantity ( )ψ ξ∗ˆ  simply 
is the wave function of the state ψ̂  in the coherent state representation. This implies the probability 
amplitude to find the system in the coherent state ξ .

In the case of holomorphic functions ( )ψ ξ∗ˆ , the unit operator can be achieved via (138):

	 ∏∫ ∑ξ ψ = ′ξ ′ξ
π

− ′ξ ′ξ











ξ ′ξ ′ξ ψα

∗
α

α

α
∗

α

α

d d
i

ˆ
2

exp ˆ 	 (165)

Therefore, it follows that

	 ∏∫ ∑( ) ( ) ( )ψ ξ = ′ξ ′ξ
π

− ′ξ − ξ ′ξ











ψ ′ξ∗ α

∗
α

α

α
∗

α
∗

α

α

∗d d
i

ˆ
2

exp ˆ 	 (166)

It is instructive to note that this simply is a general form in the complex plane for the familiar represen-
tation of a Dirac delta function:

	 ∫ { }( ) ( )δ − ′ =
π

− ′x x dk ik x x
2

exp 	 (167)

2.3  Grassmann Algebra and Fermions

2.3.1  Grassmann Algebra

The path integral approach is easy to employ for bosonic systems due to commuting functions instead 
of anticommuting operators [8, 9]. However, such an advantage is not obvious for fermionic systems 
because the integration variables are anticommuting. We will now discuss a fermionic system within 
the framework of the fermionic coherent state path integral. When dealing with fields instead of opera-
tors, we apply Grassmann algebra, which maintains the Pauli Exclusion Principle. Grassmann algebra 
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allows us to elaborate all necessary calculation rules to derive the path integral and, subsequently, the 
Dyson equation for fermionic functionals that are accordingly functionals of Grassmann functions.

We consider the distribution law for Grassmann variables:

	 ( ) ( ) ( ) ( ) ( )ξ + ξ ξ = ξ ξ + ξ ξ ξ ξ + ξ = ξ ξ + ξ ξ λ ξ ξ = λξ ξ = ξ λξ, ,1 2 3 1 3 2 3 1 2 3 1 2 1 3 1 2 1 2 1 2 	 (168)

as well as the anticommutative property

	 { }ξ ξ = ξ ξ + ξ ξ =i j i j j i, 0	 (169)

This permits us to arrive at the square of any generator vanishing for any k :

	 ξ =k 02 	 (170)

This is a particular important property of the anticommutation relation of equation 169.
We can construct a finite dimensional Grassmann algebra from n such elements, which are called 

generators { }ξ = k nk , 1, , . Then, from property (170), all elements of the given algebra can now be 
expressed via a linear combination of these generators:

	 { }ξ ξ ξ ξ ξ ⋅ ⋅ξλ λ λ λ λ λ  n1, , , , ,1 1 2 1 2 	 (171)

Here, < ξ ≤ nk0 , and we assume that the elements, by convention, are ordered by the indices 
λ < λ < < λ n1 2 . From (170), there exists no element of the higher products containing more than one 
ξk. So now, any element of the n-dimensional Grassmann algebra can be expressed as a polynomial of 
first order in the generators:

	 ∑ ∑ ∑( )ξ ξ = + ξ + ξ ξ + + ξ ξ ξα

α

α α

α <α

α α α

α <α < <α

α α α  





f f f f fn n

n

n, ,1 0 1 1 21

1

1 2

1 2

1 2

1 2

1 2 	 (172)

where the complex valued coefficients fk ∈  are complex numbers or complex functions. So, f  is a 
function of the generators and a complex variable; therefore, we refer to objects shown in equation (172) 
as Grassmann functions.

In order to operate using Grassmann functions, it is necessary to define analog operations of differ-
entiation and integration for Grassmann functions.

2.3.1.1  Differentiation over Grassmann Variables

We define differentiation over a Grassmann variable (generator) as:

	 ( )
ξ

ξ ξ ξ = δ ξ ⋅ ⋅ξ − δ ξ ξ ⋅ ⋅ξ + + − δ ξ ξ ξλ λ λ λ λ λ λ λ λ λ
−

λ λ λ λ −    

d
d j

j j
n

jn n n n n1 1
1 2 1 2 2 1 3 1 2 1 	 (173)

The derivative over Grassmann numbers is precisely left-sided. In essence, we have to anticommute the 
variable to the left and apply the rules

	
ξ

=
ξ

ξ = δd
d

d
di i

j ij1 0 , 	 (174)

This is a linear operation that is the same for ordinary numbers.
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2.3.1.1.1  Grassmann Function Differentiation Rules
To examine differentiation rules for Grassmann functions, we consider some important properties 
of Grassmann generators. This can be done by first examining the following commutation of two 
Grassmann numbers with a single Grassmann number:

	 [ ]η η ξ = η η ξ− ξη η = −η ξη − ξη η = ξη η − ξη η =, 01 2 1 2 1 2 1 2 1 2 1 2 1 2 	 (175)

From induction, it is obvious that any even number of Grassmann numbers commutes with a single 
Grassmann number:

	 [ ]ξ ξ ξ η = n , 01 2 2 	 (176)

Similarly, we assume

	 [ ]η η η ξ = n , 01 2 2 	 (177)

Then we examine the case:

	

[ ]

( )

η η η ξ = η η η η η ξ− ξη η η η η =

= −η η η η ξη − ξη η η η η =

= η η η ξη η − ξη η η η η = η η η ξ− ξη η η η η

+ + + + +

+ + + +

+ + + + + +

  

 

   

n n n n n n n

n n n n n n

n n n n n n n n n n

,1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2

1 2 2 2 1 2 2 1 2 2 2 1 2 2

1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2

	 (178)

With the swap in positions of η +n2 2 and ξ in the first term, there is a sign change for that term and

	
[ ]

[ ]
η η η ξ = −η η η η ξη − ξη η η η η =

= η η η ξη η − ξη η η η η = η η η ξ η η

+ + + + +

+ + + + + +

  

  

n n n n n n n

n n n n n n n n n

,

,

1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2

1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2

	 (179)

By induction from (177), then

	 [ ]η η η ξ =+ n , 01 2 2 2 	 (180)

We also show that the commutation of an arbitrary number of even Grassmann numbers with any 
other number of Grassmann numbers:

	 [ ]η η η ξ ξ ξ = n k, 01 2 2 1 2 	 (181)

We examine the case:

	 [ ]η η η ξ ξ ξ = η η η ξ ξ ξ ξ − ξ ξ ξ ξ η η η+ + +     n k n k k k k n,1 2 2 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 	 (182)

Swapping the positions of ξk and ξ +k 1 in the second term, then

	 [ ]η η η ξ ξ ξ = η η η ξ ξ ξ ξ − ξ ξ ξ η η η ξ+ + +     n k n k k k n k,1 2 2 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1	 (183)

or

	 [ ] [ ]η η η ξ ξ ξ = η η η ξ ξ ξ ξ+ +   n k n k k, ,1 2 2 1 2 1 1 2 2 1 2 1	 (184)
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So, from induction and considering (181), then

	 [ ]η η η ξ ξ ξ =+ n k, 01 2 2 1 2 1 	 (185)

We show that two arbitrary odd numbers of Grassmann numbers anticommute:

	 { }η η η ξ ξ ξ =+ + n k, 01 2 2 1 1 2 2 1 	 (186)

One Grassmann number anticommutes with an odd number of Grassmann variables and we assume 
that

	 { }η η η ξ =+ n , 01 2 2 1 	 (187)

Hence,

{ }η η η ξ = η η η ξ+ ξη η η = η η η η η ξ+ ξη η η η η+ + + + + + + + +    n n n n n n n n n,1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 1 2 2 2 3 1 2 2 1 2 2 2 3

(188)

After swapping Grassmann variables in the first term of the last relation, then

{ } { }η η η ξ = η η η ξη η + ξη η η η η = η η η ξ η η+ + + + + + + + + +   n n n n n n n n n n, ,1 2 2 3 1 2 2 1 2 2 2 3 1 2 2 1 2 2 2 3 1 2 2 1 2 2 2 3

(189)

From (187) and by induction, we arrive at

	 { }η η η ξ =+ n , 01 2 2 3 	 (190)

Therefore, for an arbitrary >n 0 and for any k  by induction, we have

	 { }η η η ξ ξ ξ =+ + n k, 01 2 2 1 1 2 2 1 	 (191)

We now consider

	 { }η η η ξ ξ ξ = η η η ξ ξ ξ + ξ ξ ξ η η η+ + + + + +     n k n k k n,1 2 2 1 1 2 2 3 1 2 2 1 1 2 2 3 1 2 2 3 1 2 2 1	 (192)

and insert the Grassmann variables ξ +k2 1 and ξ +k2 2 in the terms so that

	 { }η η η ξ ξ ξ = η η η ξ ξ ξ + ξ ξ ξ ξ ξ η η η+ + + + + + + +     n k n k k k k n,1 2 2 1 1 2 2 3 1 2 2 1 1 2 2 3 1 2 2 1 2 2 2 3 1 2 2 1	 (193)

After swapping the Grassmann variables in the last term, we have

	 { }η η η ξ ξ ξ = η η η ξ ξ ξ + ξ ξ ξ η η η ξ ξ+ + + + + + + +     n k n k k n k k,1 2 2 1 1 2 2 3 1 2 2 1 1 2 2 3 1 2 2 1 1 2 2 1 2 2 2 3	 (194)

This relation can also be rewritten as

	 { } { }η η η ξ ξ ξ = η η η ξ ξ ξ ξ ξ+ + + + + +   n k n k k k, ,1 2 2 1 1 2 2 3 1 2 2 1 1 2 2 1 2 2 2 3	 (195)

So, by induction from (191), we have

	 { }η η η ξ ξ ξ =+ + n k, 01 2 2 1 1 2 2 3 	 (196)
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The previous demonstrations allow us to summarize some important properties of Grassmann 
generators:

•	 Two even numbers of Grassmann variables commute with each other:

	 [ ]η η η ξ ξ ξ = n k, 01 2 2 1 2 2 	 (197)

•	 Even and odd numbers of Grassmann variables commute with each other:

	 [ ]η η η ξ ξ ξ =+ n k, 01 2 2 1 2 2 1 	 (198)

•	 Two odd numbers of Grassmann variables anticommute with each other:

	 { }η η η ξ ξ ξ =+ + n k, 01 2 2 1 1 2 2 1 	 (199)

Considering these properties and (172), then we see that two arbitrary Grassmann functions do not 
commute. Thus,

	 ( ) ( )η η  ≠f g, 0	 (200)

Generally, this may lead to the definition of even and odd Grassmann functions.
We may also characterize an element of Grassmann algebra by introducing an automorphism, P, that 

acts as a parity operator

	 ( ) ( )Ρ ξ ξ = − ξ ξλ λ λ λ 

n
n n11 1 	 (201)

So, if f  is an even function, then

	 ( )Ρ =f f 	 (202)

and if it is an odd function, then

	 ( )Ρ = −f f 	 (203)

Consider again the last relation in (174). In this case, the anticommutation relations (169) imply

	 ∂
∂ξ

∂
∂ξ












=

+i j
, 0	 (204)

So, the operator ∂
∂ξi

 is nilpotent, ∂
∂ξ

=
i

0
2

2 , thereby showing that the function ( )ξ ξf n, ,1  is at most of 

order 1 in each variable. The last relation in (174) defines a left differentiation

	 ( )∂
∂ξ

ξ ξ = − ∂
∂ξ

ξ ξ = −ξ ≠i j
i

j i
i

i j j , 	 (205)

When ∂
∂ξi

 acts on ξi , we shift first ξi  to the left of the monomial. The chain rule for differentiation can 

then be written

	 ( )∂
∂ξ

= ∂
∂ξ

∂
∂

f g g f
gi i

	 (206)

However, contrary to ordinary variables, the order of the terms on the right-hand side is important.
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Integration and differentiation for Grassmann numbers are identical:

	 ∫ ( ) ( )ξ ξ ξ = ∂
∂ξ

ξ ξ d f fi n
i

n, , , ,1 1 	 (207)

This is a condition ensuring that two fundamental properties of ordinary integrals over functions van-
ishing at infinity are satisfied. The integral of an exact differential is zero:

	 ∫ ( )ξ ∂
∂ξ

ξ ξ =d fi
i

n, , 01 	 (208)

The integral over ξi  of ( )ξ ξf n, ,1  is independent of ξi  so that its derivative vanishes:

	 ∫ ( )∂
∂ξ

ξ ξ ξ =d f
i

i n, , 01 	 (209)

Properties in (208) as well as in (209) follow from (207) and the nilpotence of the differential operator 
∂

∂ξi
. If we consider a Grassmann algebra with a single generator

	 ( )ξ = + ξf f f0 1 	 (210)

then

	 ∫∂
∂ξ

ξ =d f f1	 (211)

2.3.1.2  Exponential Function of Grassmann Numbers

We examine the following exponential function of Grassmann variables:

	 ∑ ∏ ∏∑ ∏∏{ }ξ ξ ξ











= ξ ξ ξ ≡ ξ












= ξ












λ λ λ

λ

λ λ λ

λ

λ

λ

λ

λ
+ + 

k

n

k

n

k k k

k

k k k

k

k

k

k

k

exp exp exp exp
2 2

1 2 1 2 	 (212)

This permits us to write

∑ ∏ ∏[ ]{ }ξ ξ ξ











η η













= ξ ξ ξ η η  = − ξ ξ ξ η ηλ λ λ

λ

λ λ λ

λ

λ λ λ

λ

     n n nk k

k

k

k

exp , exp , 1 ,1 1 11 2 2 1 2 2 1 2 2

(213)

or

	 ∏ ∏( )[ ] [ ][ ]− ξ ξ ξ η η = η η − ξ ξ ξ η ηλ λ λ

λ

λ λ λ

λ

    n n nk

k

k

k

1 , 1, ,1 1 11 2 2 1 2 2 	 (214)

Because

	 [ ][ ]η η = ξ ξ ξ η η =λ λ λ  n nk1, 0 , , 01 11 2 2 	 (215)
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then

	 ∑ξ ξ ξ

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
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η η
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





=λ λ λ

λ

  nkexp , 011 2 2 	 (216)

And this takes into consideration the relations

	
n∑ ∑ξ ξ
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



= ξ ξ











η η










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∗

λ

λ

λ
∗

λ

λ

exp , 0 , exp , 01
	 (217)

Consider the general Hamiltonian determinant in normal order to be an operator of the form

	 ∑Η = λ λ Η µ µ ξ ξ ξ ξ
λ λ µ µ

λ λ µ µ   

 

n n n

n n

n n
ˆ 1

!
, ,1

, ,

1
† †

1 1

1 1	 (218)

Therefore, for any operator, there is always an even combination of creation and annihilation operators. 
Hence,

	 { }− εΗ ψ ψ  ξ



 =i kexp ˆ , ˆ , 0† 	 (219)

Also, for any even Grassmann function ( )ξf  and any Grassmann function ( )ξg , it follows that

	 { }( ) ( )ξ ξ  =fexp ,g 0	 (220)

2.3.1.3  Involution of Grassmann Numbers

We consider each even Grassmann algebra of =n l2  for which we introduce an involution operation. 
This is done by associating one generator ξ∗

k with each generator ξk and requesting that

	 ( ) ( )( ) ( )ξ = ξ ξ = ξ λξ = λ ξ ξ ξ ξ = ξ ξ ξ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ λ λ

∗
λ
∗

λ
∗

λ
∗

− k k k k k k n n n, , , ,1 2 1 1	 (221)

Here, λ is complex valued index. Note that the generators ξk and ξ∗
k are completely independent. Hence, 

all rules previously derived are applicable. Involuted Grassmann numbers as well as objects of the 
form ξ + ξ1 2 are sometimes called complex Grassmann numbers.

2.3.1.4  Bilinear Form of Operators

We simplify notation by considering the general element of Grassmann algebra with two generators 
{ }ξ ξ∗ , , which are analytic functions of ξ∗ and ξ with bilinear form:

	 ( )ξ ξ = + ξ + ξ+ ξ ξ∗ ∗ ∗f f f f f, 0 1 2 12 	 (222)

Via the differentiation and integration rules, we find that

	 , ,2 12 1 12

2

12∫ ∫ ∫∂
∂ξ

= ξ = − ξ ∂
∂ξ

= ξ = + ξ ∂
∂ξ ∂ξ

= ξ ξ = −∗
∗

∗
∗

∗f d f f f f d f f f f d d f f 	 (223)
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From here, we see that

	 ∂
∂ξ ∂ξ

= − ∂
∂ξ∂ξ

= −∗ ∗
f f f

2 2

12	 (224)

and so

	 ∂
∂ξ

∂
∂ξ









=∗ , 0	 (225)

This again confirms the fact that the operator ∂
∂ξi

 is nilpotent, ∂
∂ξ

= 0
2

2 , and that the function f  is at 

most of order 1 in each variable. So, for the two generators { }ξ ξ∗ ,  the algebra is generated by the four 
numbers { }ξ ξ ξ ξ∗ ∗1, , , . Further, the linear function in equation (210) will be the coherent state rep‑
resentation of a wave function, and the coherent state representation of an operator in Grassmann 
algebra will be a function of ξ∗ and ξ that should have the form of equation (222).

2.3.1.5  Berezin Integration

When explaining the definite integral, there is no equivalent for the familiar sum motivating the 
Riemann integral for ordinary variables. Therefore, integration over Grassmann variables can be 
defined as linear mapping with the fundamental property of ordinary integrals over functions vanish-
ing at infinity. In this case, the integral of an exact differential form is zero. This constraint means the 
integral of 1 is zero because 1 is the derivative of ξ. The nonvanishing integral is only ξ∗ because ξ is not 
a derivative. So, the Berezin definite integral over Grassmann numbers is defined as [10]:

	 ∫ ∫ξ = ξξ =d d1 0 , 1	 (226)

In the case of a derivative, to apply the second equation in (226), we must first anticommute the 
variable ξ so as to bring it next to ξd . This definition simply imitates Grassmann integration, which is 
equivalent to Grassmann differentiation. Because half of the generators ξi  are defined arbitrarily to be 
conjugate variables but are otherwise equivalent to the generators ξ∗

i , we define integration over conju-
gate variables similarly:

	 ∫ ∫ξ = ξ ξ =∗ ∗ ∗d d1 0 , 1	 (227)

This implies again that integration is equivalent to differentiation. The aforementioned definitions tailor 
integration to obey the usual rules of partial integration and in particular

	 ∫ ( )ξ
∂ ξ

∂ξ
=d

f
0	 (228)

for any function ( )ξ = + ξf f f0 1 . Note that condition (228) requires the satisfaction of the first equations 
in (226) and (227). Therefore, the last equations in (226) and (227) are solely for normalization purposes. 
Then the integral of the function ( )ξf :

	 ∫ ∫ ( )( )ξ ξ = ξ + ξ =d f d f f f0 1 1	 (229)
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From here, we see that for the Grassmann integral to have meaning, we have

	 ∫ ∫( ) ( )ξ ξ + η = ξ ξd f d f 	 (230)

where η is a Grassmann variable.
Similarly, we have

	 0 , 0 , 0 , 1 , 1∫ ∫ ∫ ∫ ∫ξ ξ = ξ ξ ξ = ξ ξ ξ = ξ ξ ξ ξ = ξ ξ ξξ = −∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗d d d d d d d d d d 	 (231)

2.3.1.6  Grassmann Delta Function

The Grassmann delta function can be defined by

	 ∫ ∫{ } ( )( ) ( ) ( ) ( )δ ξ ′ξ = η −η ξ − ′ξ = η − η ξ − ′ξ = − ξ − ′ξd d, exp 1 	 (232)

Here, η is a Grassmann variable. We verify that this definition has the desired behavior by using the 
function ( )ξ = + ξf f f0 1 , and we have

	 ∫ ∫ ( )( ) ( ) ( ) ( )′ξ δ ξ ′ξ ′ξ = − ′ξ ξ− ′ξ + ′ξ = + ξ = ξd f d f f f f f, 0 1 0 1 	 (233)

2.3.1.7  Scalar Product of Grassmann Algebra

We define the scalar product in such a way that, on the one hand, it imitates the form of a scalar product 
with bosonic coherent states, and on the other hand, it allows functions of a Grassmann variable to have 
the structure of a Hilbert space.

	
∫ ∫

∫ ∫

{ } ( ) ( )( )( )( )= ξ ξ −ξξ ξ ξ = ξ ξ − ξξ + ξ + ξ =

= − ξ ξ ξξ + ξ ξ ξ ξ = +

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

f g d d f g d d f f g g

d d f g d d f g f g f g

exp 1 0 1 0 1

0 0 1 1 0 0 1 1

	 (234)

The results presented for the two generators ξ∗ and ξ can be applied to k2  generators ξ ξ ξ ξ∗ ∗
 k k,1 2 1 .

2.3.2  Fermions

Employing anticommuting Grassmann variables for calculating physical quantities for fermionic sys-
tems is a well-established technique [11]. This involves, in particular, the calculation of expectation 
values of quasifree (Gaussian) fermion states. This notion entails replacing the linear combinations of 
canonically anticommuting Fermi field operators with complex coefficients by linear combinations with 
coefficients that are anticommuting Grassmann numbers [11]. Consequently, these linear combina-
tions achieve canonical commutation relations.

This section provides a mathematical background that imports the Grassmann calculus into the 
description of fermion systems. We set up a formalism that can be viewed as the fermionic analog of a 
quantum harmonic analysis on phase space. We present basic theorems that will aid in the understand-
ing of Grassmann algebra.
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Consider the anticommuting fermionic operators ψ̂† and ψ̂  that create or annihilate, respectively, a 
fermion in state ξ  and that serve as a basis for many-particle operators:

	 ψψ + ψ ψ =ˆ ˆ ˆ ˆ 1† † 	 (235)

We find

	 ( ) ( )= ψ ψ = ψ ψ − ψψn̂ ˆ ˆ ˆ ˆ 1 ˆ ˆ2 † 2 † † 	 (236)

Then, from ψ =ˆ 02 , we have

	 ( ) ( )= ψ ψ = ψ ψ − ψψ = ψ ψ =n nˆ ˆ ˆ ˆ ˆ 1 ˆ ˆ ˆ ˆ ˆ2 † 2 † † † 	 (237)

We see that =n n2 . This implies that the occupation number in each state can only be =n 0 or =n 1.
Consider the eigenstates of the fermionic creation ψ̂† or annihilation operator ψ̂ :

( ) ( )ψ = ψ = ψ = =






=






ψ = =






=






ˆ 0 1 , ˆ 1 0 , ˆ 1 0 1
0 0 1 0 1

0 0
, ˆ 0 1 0

1
1 0 0 0

1 0
† †

(238)

where

	 =






=






0 0
1

, 1 1
0

	 (239)

From here, there should be a problem in dealing with the anticommuting behavior of the fermionic 
creation ψ̂† and annihilation ψ̂  operators:

ψ ψ =












=






ψψ =












=






ψ ψ + ψψ =






=ˆ ˆ 0 1
0 0

0 0
1 0

1 0
0 0

, ˆ ˆ 0 0
1 0

0 1
0 0

0 0
0 1

, ˆ ˆ ˆ ˆ 1 0
0 1

1̂† † † †

(240)

Therefore, we require Grassmann numbers to define fermionic coherent states where we resort to the 
Grassmann numbers ξ and ξ∗ when considering the anticommuting eigenvalues of the operators ψ̂† 
and ψ̂ . The set { }ξ ξ ξ ξ∗ ∗1, , , , and their linear combinations with complex coefficients, form Grassmann 
algebra (this mimics the behavior of Fock space algebra). Therefore, the regular Fock space is a buildup 
of the direct sum of all n-dimensional Hilbert spaces (1) and has to be extended in order to contain 
Grassmann numbers. In this case, the extended Fock space is then formed by building the linear combi-
nation of the regular Fock space states and the Grassmann coefficients. Hence, the basis of Grassmann 
algebra is all distinct products, and we show that Grassmann numbers can be multiplied together and 
anticommute under multiplication from the following definitions:

	 ξ = ξ ξ = − ξ ξ = ξ ξ = −ξ∗ ∗ ∗ ∗0 0 , 1 1 , 0 0 , 1 1 	 (241)

	 ξ + ξ = ξ = − ξ0 1 0 1 0 , 0 0 1 1 	 (242)

	 { } ( )ξ ψ = ξ + ξ = ξ − ξ + ξ = ξ = − ξ, ˆ 0 1 0 1 0 1 0 1 0 , 1 1 	 (243)
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The presence of the sign change when there is a swap is a direct consequence of the anticommutation 
relations between Grassmann variables and Fock space operators as seen earlier. So, the Grassmann 
numbers can be multiplied together and anticommute under multiplication:

	 ( ){ }ξ ξ = ξ = ξ =∗, 0 , 0 , 02 2
	 (244)

This guarantees any analytic function will be linear in Grassmann algebra.
Grassmann numbers can be multiplied by complex numbers, and the multiplication by a complex 

number is distributive:

	 ( )α ξ + ξ = αξ + αξ1 2 1 2	 (245)

Considering the fact that Grassmann numbers occur only inside time-ordered products, then it suffices 
to define the adjoint in such a way that it also anticommutes. So, the quantities

	 ξ = ξ + ξ ξ = ξ − ξ∗i i,1 2 1 2	 (246)

can be treated as independent Grassmann variables:

	 { }ξ ξ =∗, 0	 (247)

Considering that the square and higher powers of a Grassmann number vanish, then the Taylor 
expansion of a wave function with Grassmann variables has only two terms. For example, say,

	 { }ξ = + ξexp 1 	

2.4  Fermions and Coherent States

Considering the aforementioned, we see that fermionic systems such as electrons in a metal or ultracold 
fermionic atoms in a magnetic trap can be described by Grassmann variables. So, to construct coherent 
states for fermions, we must enlarge the fermion Fock space. It is useful to note that an important prop-
erty needed for setting up path integration is the completeness of the states. We now examine coherent 
states and define them as eigenstates of the operator ψ̂ :

{ } ( ) { } ( )ξ = −ξψ = − ξψ = − ξ ξ = −ξ ψ = − ξ ψ = − ξ∗ ∗ ∗exp ˆ 0 1 ˆ 0 0 1 , 0 exp ˆ 0 1 ˆ 0 1† †

(248)

We apply ψ̂  or ψ̂† on these states, and then we have

	 ( )ψ ξ = ψ − ψξ = ψ + ξψ = ξ − ξ = ξ ξˆ 0 ˆ 1 ˆ 0 ˆ 1 0 1 	 (249)

	 ψ ξ = ξ ξˆ 	 (250)

	 ξ ψ = ξ ξ∗ˆ † 	 (251)

Relations (250) and (251) are fundamental properties of fermionic coherent states and are also true for 
bosons. It is important to note that in addition to the space-time variables, fermionic fields require a 
spin index α =↑ ↓, . So, if

	 ∑ ∏( )ξ = − ξ ψ











= − ξ ψα α

α

α α

α

exp ˆ 0 1 ˆ 0† † 	 (252)
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then we again prove relations (250) and (251):

( ) ( ) ( )( )ψ − ξ ψ = ψ − ψ ξ = ξ ψ = ξ = ξ − = ξ − ξ ψ = ξ − ξ ψα α α α α α α α α α α α α α α αˆ 1 ˆ 0 ˆ 0 ˆ 1 ˆ 1 0 0 0 ˆ 0 1 ˆ 0† 2 † †

(253)

So,

∏ ∏ ∏( ) ( ) ( )( ) ( )ψ ξ = ψ − ξ ψ = ψ − ξ ψ − ξ ψ = ψ + ξ ψ ψ − ξ ψα α β β
β

α β β α α

β≠α

α β α β α α

β≠α

ˆ ˆ 1 ˆ 0 ˆ 1 ˆ 1 ˆ 0 ˆ ˆ ˆ 1 ˆ 0† † † † †

(254)

Swapping the positions of the operators ψαˆ  and ψβ
ˆ † in the first term of the product in the last expression, 

there is a sign change, and we have

∏ ∏

∏ ∏ ∏

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

ψ ξ = ψ − ξ ψ ψ − ξ ψ = − ξ ψ ψ − ξ ψ =

= − ξ ψ ξ − ξ ψ = ξ − ξ ψ − ξ ψ = ξ − ξ ψ = ξ ξ

α α β β α

β≠α

α α β β α

β≠α

α α

β β
β≠α

α α α α β β
β≠α

α α α α α

α

α

ˆ ˆ ˆ ˆ 1 ˆ 0 1 ˆ ˆ 1 ˆ 0

1 ˆ 1 ˆ 0 1 ˆ 1 ˆ 0 1 ˆ 0

† † † †

† † † † †
� (255)

Therefore ξ  is an eigenstate, which implies that it is a coherent state. From the coherent state, its adjoint 
is a left eigenstate of the creation operator:

	
∑ ∏ ∏

∏ ∏

( ) ( ) ( )

( ) ( )

ξ ψ = − ψ ξ











ψ = − ψ ξ ψ = − ψ ξ ψ − ψ ξ =

= ψ ψ ξ − ψ ξ = − ψ ξ ξ = ξ ξ

α β β
∗

β

α β β
∗

β

α α α
∗

α β β
∗

β≠α

α α α
∗

β β
∗

β≠α

β β
∗

β

α
∗

α
∗

ˆ 0 exp ˆ ˆ 0 1 ˆ ˆ 0 1 ˆ ˆ 1 ˆ

0 ˆ ˆ 1 ˆ 0 1 ˆ

† † † †

†

	 (256)

So

	 ξ ψ = ξ ξα α
∗ˆ † 	 (257)

It is useful to note that these coherent states are not orthonormal.
Similarly, we consider the application of a creation operator on a coherent state as for bosons:

	 ∑ ∏ ∏( ) ( )( )ψ ξ = ψ − ξ ψ











= ψ − ξ ψ = ψ − ξ ψ − ξ ψα α β β

β

α β β
β

α α α β β
β≠α

ˆ ˆ exp ˆ 0 ˆ 1 ˆ 0 ˆ 1 ˆ 1 ˆ 0† † † † † † † † 	 (258)

Consider that ( )ψ =αˆ 0† 2
 in the last expression, then

∏ ∏ ∏( ) ( ) ( ) ( )( ) ( )ψ ξ = ψ + ξ ψ − ξ ψ = ψ − ξ ψ = − ∂
∂ξ

− ξ ψ − ξ ψα α α α β β
β≠α

α β β
β≠α α

α α β β
β≠α

ˆ ˆ ˆ 1 ˆ 0 ˆ 1 ˆ 0 1 ˆ 1 ˆ 0† † † 2 † † † † †

(259)

or

	 ∏ ∏( ) ( )( )ψ ξ = − ∂
∂ξ

− ξ ψ − ξ ψ = − ∂
∂ξ

− ξ ψ = − ∂
∂ξ

ξα
α

α α β β
β≠α α

β β
β α

ˆ 1 ˆ 1 ˆ 0 1 ˆ 0† † † † 	 (260)
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So,

	 ψ ξ = − ∂
∂ξ

ξα
α

ˆ † 	 (261)

Similarly,

	 ∏ ∏( )( ) ( )ξ ψ = − ψ ξ − ψ ξ ψ = ∂
∂ξ

− ψ ξ = ∂
∂ξ

ξα β β
∗

α α
∗

β≠α

α
α

β β
∗

β α

ˆ 0 1 ˆ 1 ˆ ˆ 0 1 ˆ 	 (262)

or

	 ξ ψ = ∂
∂ξ

ξα
α

ˆ 	 (263)

Also,

	 ∑ ∏ ∏( ) ( ) ( )ξ ψ = − ξ ψ











ψ = − ξ ψ ψ = − ξ ψ ψ − ξ ψα β

∗
β

β

α β
∗

β

β

α α
∗

α α β
∗

β

β≠α

ˆ 0 exp ˆ ˆ 0 1 ˆ ˆ 0 1 ˆ ˆ 1 ˆ† † † † 	 (264)

From where

	 ∏ ∏( ) ( )ξ ψ = ψ ψ ξ − ξ ψ = − ξ ψ ξ = ξ ξα α α α
∗

β
∗

β

β≠α

β
∗

β

β

α
∗

α
∗ˆ 0 ˆ ˆ 1 ˆ 0 1 ˆ† † 	 (265)

Here, we considered that

	 ψ ψ  =α α +
0 ˆ , ˆ 0† 	 (266)

The inner product of two coherent states:

	

∑ ∑ ∏ ∏

∏ ∏

∏

( ) ( )

( )( ) ( )

( )

ξ ′ξ = ξ ψ











− ′ξ ψ












= + ξ ψ − ′ξ ψ =

= + ξ ψ − ′ξ ψ = − ′ξ ψ + ξ ψ − ξ ψ ′ξ ψ =

= − ′ξ α + ξ ψ + ξ ′ξ ψ ψ

α
∗

α

α

α α

α

α
∗

α

α

α α

α

α
∗

α

α

α α α α α
∗

α α
∗

α α α

α

α α
∗

α α
∗

α α α

α

0 exp ˆ exp ˆ 0 0 1 ˆ 1 ˆ 0

0 1 ˆ 1 ˆ 0 0 1 ˆ ˆ ˆ ˆ 0

0 0 0 0 ˆ 0 0 ˆ ˆ 0

† †

† † †

†

	 (267)

From

	 ψ = ψ ψ =α α αˆ 0 0 , 0 ˆ ˆ 0 1† 	 (268)

then

	 ∑∏( )ξ ′ξ = + ξ ′ξ = ξ ′ξ











α
∗

α α
∗

α

αα

1 exp 	 (269)
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Using the overcompleteness relation, we represent a state of the extended Fock space in terms of 
coherent states as follows:

	 d d d d∑∏∫ ∑∏∫ ( )ψ = ξ ξ − ξ ξ











ξ ξ ψ = ξ ξ − ξ ξ












ψ ξ ξα

∗
α α

∗
α

αα

α
∗

α α
∗

α

α

∗

α

exp exp 	 (270)

where

	 ( )ξ ψ = ψ ξ∗ 	 (271)

2.4.1  Coherent State Overcompleteness Relation Proof

We show also that the overcompleteness relation for a coherent state basis is reflected in the closure 
relation:

	

d d d d∏∫ ∑ ∫∏

∏

( )( ) ( )

( )

ξ ξ − ξ ξ











ξ ξ = ξ ξ − ξ ξ − ξ ψ − ψ ξ

= + =

α
∗

α

α

α
∗

α

α

α
∗

α α
∗

α α α

α

α α
∗

α

exp 1 1 ˆ 0 0 1 ˆ

0 0 1 1 1̂

†

	 (272)

Therefore,

	 ∏∫ ∑ξ ξ − ξ ξ











ξ ξ =α

∗
α

α

α
∗

α

α

d d exp 1̂	 (273)

and this also holds for bosons when

	 ∑ξ = χ ξ ψ











α α

α

exp ˆ 0† 	 (274)

In (273), ̂1 is the Fock space identity operator. As shown in (273), because the coherent states generally are 
not orthogonal, the set of coherent states is overcomplete. We can then rewrite the overcompleteness 
relation in (273) as follows

	 ∫ ∑[ ]ξ  ξ − ξ ξ











ξ ξ = =

π




α
∗

α α
∗

α

α

d d N
i

exp 1̂ ,
2 , Bosons
1 , Fermions

	 (275)

so as to include the bosonic case. The integration measure in this case:

	 ∫ ∏∫[ ]ξ  ξ ≡ ξ ξ
α
∗

α
α
∗

α

α

d d d d
N

	 (276)

Relation (273) can be proven exactly as in the case of bosons via Schur’s lemma.


