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Preface

This book introduces fundamental concepts and principles of 2D and 3D 
graphics and is written for under- and postgraduate students studying graphics- and/

or multimedia-related subjects. Most of the books on graphics use C programming envi-
ronments to illustrate practical implementations. This book deviates from this common 
practice and illustrates the use of MATLAB® for the purpose. MATLAB by MathWorks, 
Inc. is a data analysis and visualization tool suitable for algorithmic development and sim-
ulation applications. One of the advantages of MATLAB is that it contains large libraries 
of in-built functions which can be utilized to reduce program-development time as com-
pared to other contemporary programming environments. It is assumed that the student 
has basic knowledge of MATLAB, especially various matrix operations and plotting func-
tions. The MATLAB codes have been provided as answers to specific examples, and the 
reader can simply copy and paste the codes to execute them. In general, the codes display 
answers to expected results like equation of curves, blending functions, and transforma-
tion matrices as well as plot the final results to provide a visual representation of the solu-
tion. The objectives of this book are, first, to demonstrate how MATLAB can be used to 
solve problems in graphics and, second, to help the student gain an in-depth knowledge 
about the subject matter through visual representations and practical examples.

This book is roughly divided into two parts: 2D graphics and 3D graphics, although in 
some places both of these concepts overlap mainly to highlight the differences between 
them or for using simpler concepts to prepare the reader for more complex ones.

The first part of this book mainly deals with concepts and problems related to 2D 
graphics, and spans over five chapters: (1) Interpolating Splines, (2) Blending Functions 
and Hybrid Splines, (3) Approximating Splines, (4) 2D Transformations, and (5)  Spline 
Properties.

Chapter 1 provides an introduction regarding the various types of interpolating splines 
and their representations using polynomials. The theoretical concepts about how spline 
equations are derived and the matrix algebra involved are discussed in detail followed by 
numerical examples and MATLAB codes to illustrate the processes. Most of the examples 
are followed by graphical plots to enable the reader visualize how the equations get 
translated into corresponding curves given their start points, end points, and other related 
parameters. The chapter also highlights the differences in these procedures for both stan-
dard or spatial form and parametric form of the spline equations using linear, quadratic, 
and cubic variants.
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Chapter 2 introduces the concept of blending functions and how these functions are 
used to derive equations for hybrid splines which pass through only a subset of their control 
points or where conditions other than control points are used for deriving their equations. 
Specifically, the chapter deals with the Hermite spline, Cardinal spline, Catmull–Rom 
spline, and Bezier spline. For Bezier splines, both the quadratic and cubic variants are dis-
cussed along with Bernstein polynomials used to formulate their blending functions. As 
in other chapters, the theoretical concepts are followed by numerical examples, MATLAB 
codes and graphical plots for visualization. The chapter ends with a discussion about how 
one spline type can be converted to another.

Chapter 3 discusses how polynomial equations are derived for approximating splines 
that do not pass through any of their control points and how their blending functions 
are computed. Specifically, the chapter provides detailed discussions about the Cox de 
Boor algorithm and how it can used to derive equations for linear, quadratic, and cubic 
B-splines. Essentially, B-splines consist of multiple curve segments with continuity at join 
points. Values of the parametric variable at the join points are stored in a vector called 
the knot vector. If the knot values are equally spaced, then the resulting spline is called 
uniform B-spline; otherwise, it is referred to as non-uniform. B-splines are called open-
uniform when knot vector values are repeated. The chapter provides representations of the 
knot vector and illustrates how the spacing in the vector generates the above-mentioned 
variants. As before, the theoretical concepts are followed by numerical examples, MATLAB 
codes, and graphical plots for visualization.

Chapter 4 formally introduces a 2D coordinate system and then lays the foundations of 
a homogeneous coordinate system using which all the transformations can be represented 
in a uniform manner. Two-dimensional transformations are used to change the location, 
orientation, and shapes of splines in 2D plane. These transformations are translation, rotation, 
scaling, reflection, and shear applied individually or in combination of two or more; hence, they 
are known as composite transformations. Given known coordinates of a point, each of these 
transformations is represented by a matrix which when multiplied to the original coordinates 
produces a new set of transformed coordinates. The transformation matrices are first derived, 
and then their applications are illustrated using examples, MATLAB codes, and graphical 
plots. Both affine and perspective transformation types are discussed. The chapter ends with a 
discussion on viewing transformations used for mapping a window to a viewport, and coordi-
nate system transformation used for mapping between multiple coordinate systems.

Chapter 5 enumerates some of the common properties of splines and how these can be 
calculated from spline equations. First, it discusses the critical points namely minimum 
and maximum of spline curves. Additionally for splines of degree 3 or more, the point of 
inflection (POI) is of interest. Next, it discusses how the tangent and normal to a spline 
curve can be calculated. The tangent to a curve is the derivative of the curve equation, 
while the normal is the line perpendicular to the tangent. The third property is calculation 
of length of a spline curve between any two given points, both for spatial and parametric 
equations. The fourth property is to calculate the area under a curve, which is bounded 
by a primary axis and two horizontal or vertical lines. An extension to this is calculation 
of area bounded by two curves. The fifth property is calculation of centroid of an area, 
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the point of the center of gravity for plates of uniform density. The chapter ends with a 
discussion on interpolation and curve fitting for data points and a list of some commonly 
used built-in MATLAB functions for plotting 2D graphs and plots.

The second part of this book focuses on concepts and problems related to 3D graphics 
and spans over the remaining four chapters namely (6) Vectors, (7) 3D Transformations, 
(8) Surfaces, and (9) Projections.

Chapter 6 introduces the concept of vectors and their mathematical representations in 
2D and 3D spaces. Vectors involve both magnitude and direction. They are represented 
in terms of orthogonal reference components of unit magnitudes along the primary axes 
together with a set of scaling factors. The chapter discusses how vectors can be added and 
multiplied together. Vector products can either be scalar, called a dot product, or vector, 
called a cross product. Using these concepts, the chapter then provides details of how vec-
tor equations of lines and planes can be derived. Next, the chapter discusses how vectors 
can be aligned to specific directions and finally how vector equations can be represented 
using homogeneous coordinates. The chapter ends with a section on how the tangent vector 
and the normal vector can be calculated for a curve. As before, the theoretical concepts are 
followed by numerical examples, MATLAB codes, and graphical plots for visualization.

Chapter 7 demonstrates how 3D transformations can be treated as extensions of 2D 
transformations. These are used to change the location, orientation, and shapes of splines 
in 3D space. These transformations are translation, rotation, scaling, reflection, shear 
applied individually or in combination of two or more, known as composite transforma-
tion. This chapter formally introduces a 3D coordinate system and then uses homogeneous 
coordinates to derive transformation matrices for the above operations. Their applications 
are then illustrated using examples, MATLAB codes and graphical plots for visualization. 
The  latter part of the chapter deals with vector alignment in 3D space and uses these 
concepts to derive rotation matrices in 3D space around vectors and arbitrary lines.

Chapter 8 takes a look at how surfaces can be created and represented using parametric 
and implicit equations, and how the nature of the surface depends on the parameters of 
the equations. Depending on creation process, surfaces can be categorized as extruded 
and surfaces of revolution, both of which are discussed with examples and graphical plots. 
The chapter then takes a look at how tangent planes of surfaces can be computed and 
provides methods for computing area and volume of surfaces. The latter part of the chapter 
deals with surface appearances namely how textures can be mapped on surfaces and how 
illumination models can be used to determine brightness intensities at a point on the 
surface. The chapter ends with a discussion on some commonly used built-in MATLAB 
functions for plotting 3D graphs.

Chapter 9 studies various types of projections and derives matrices for each. Projection 
is used to map a higher-dimensional object to a lower-dimensional view. Projection can be 
of two types: parallel and perspective. In parallel projection, projection lines are parallel to 
each other, while in perspective projection, projection lines appear to converge to a reference 
point. Parallel projection can again be of two types: orthographic and oblique. In parallel 
orthographic projection, the projection lines are perpendicular to the view plane, while 
in parallel oblique projection, the projection lines can be oriented at any arbitrary angle 
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to the view plane. Usually for 3D projection, parallel orthographic projection can also be 
sub-divided into two types: multi-view and axonometric. In multi-view projection, the 
projection occurs on the primary planes i.e. XY-, YZ-, or XZ-planes, while in axonometric 
projection, the projection occurs on any arbitrary plane. The chapter illustrates each type 
of projection using examples, MATLAB codes, and graphical plots for visualization.

Each chapter is followed by a summarized list of salient points discussed in the chapter. 
A set of review questions and a list of practice problems are provided at the end of each 
chapter for self-evaluation. This book contains more than 90 solved numerical examples 
with their corresponding MATLAB codes and an additional 90 problems given for prac-
tice. Readers are encouraged to execute the codes given in the examples and also write 
their own codes to solve the practice problems. Most of the MATLAB codes given in this 
book will require MATLAB version 2015 or later to execute properly. Some of the func-
tions mentioned have been specifically introduced from version 2016 and these have been 
mentioned at the appropriate places. The usage of about 70 different MATLAB functions 
related to graphics and plotting have been demonstrated in this book and a list of these 
functions with a short description is provided at Appendix I. Readers are asked to use 
MATLAB help utilities to get further information on these. The MATLAB codes are writ-
ten in a verbose manner for a better understanding of the readers who are new to the 
subject matter. Some of the codes could have been written in a more compact manner but 
that might have reduced their comprehensibility. Around 170 figures have been included in 
this book to help the readers get proper visualization cues of the problems especially for 3D 
environments. Answers to the practice problems are provided in Appendix II.

All readers are encouraged to provide feedback about the content matter of the book as 
well as any omissions or typing errors. The author can be contacted at ranjan_parekh@
yahoo.com.

Ranjan Parekh
Jadavpur University

Calcutta 700032, India
2019

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1

C h a p t e r  1

Interpolating Splines

1.1  INTRODUCTION
Splines are irregular curve segments with known mathematical properties. Splines are fre-
quently encountered in vector graphics when graphic objects are required to have a defined 
shape in 2D planes (Figure 1.1a) or 3D space (Figure 1.1b) or moved along a specified path 
(Figure 1.1c). Based on the coordinates of some of the points on the curves, or slopes of 
lines along the curves, the graphics system needs to calculate a mathematical representa-
tion of the curve before storing them onto a disk. This representation usually takes the 
form of “vectors” or a series of values stored in matrices. The values are calculated using 
an orthogonal 2D coordinate system consisting of the origin, X-axis, and Y-axis. These 
coordinate axes are often called the primary or principal axes.

The term “spline” has been derived from the ship building industry where it is used to 
refer to wooden planks bent between wooden posts for building the curved hull of ships 
(O’Rourke, 2003). The location of the fixed posts controlled the shape of the plank. In 
graphics, we use specific points along the spline curve to control the shape of the spline 
and hence they are aptly referred to as “control points,” shortened as CPs. Depending on 
the relationship between the CPs and the actual curves, the splines can be broadly cat-
egorized into three types: (1) interpolating splines, where the spline actually goes through 
the CPs; (2) approximating splines, where the spline goes near the CPs but not actually 
through them; and (3) hybrid splines, where the spline goes through some of the CPs but 
not through all (Hearn and Baker, 1996) (see Figure 1.2).

Splines are mathematically modeled using polynomials. Polynomials are expressions 
constructed from variables and constants, and involve addition, subtraction, multiplication, 
and non-negative integer exponents. A polynomial can be 0 (zero) or a sum of non-zero 
terms. Each term consists of a constant, called coefficient, multiplied by a variable. The 
exponent of the variable is called its degree. The first example is a valid polynomial, but 
the second example is not, because the variable is associated with a division operation and 
also because of the fractional exponent. The general nth degree polynomial is shown in the 
third example.
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A polynomial equation is written when one polynomial is set equal to another. It can 
either be in explicit form e.g. = ( )y f x  when either side of the equation contains variables of 
explicit type, or it can be in implicit form e.g. =( , ) 0f x y  where multiple types of variables 
can be on the same side. Examples are shown below:
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Polynomial equations can also be represented in parametric form where the variables are 
expressed as functions of another variable t e.g. = =( ), ( )x f t y g t . The advantage of para-
metric equations is that the variables x and y do not need to be constrained by a single 
equation and can be changed independently of each other, which offers more flexibility for 
representing complex curves. As a convention, the value of t is usually taken to lie between 
0 and 1 unless otherwise specified. The value of t = 0 corresponds to the start point and 
t = 1 to the end point of the spline curve. Examples are shown below:
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A polynomial equation is frequently represented using graphs, which are useful in visually 
depicting how one variable changes with another. The graph of a zero polynomial i.e. =( ) 0f x  
is the X-axis. The graph of a zero degree polynomial represented by =( )f x a, where a is a 
constant, is a line parallel to the X-axis at a distance a from it. The graph of a degree 1 polyno-
mial, represented by = +( )f x a bx , is a straight line with a slope b and intercept a. The graph 
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FIGURE 1.2  Types of splines.
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of a degree 2 polynomial, represented by = + +( ) 2f x a bx cx , is a parabolic curve and can be 
specified if at least three points are known on the curve. The graph of a degree 3 polynomial, 
represented by = + + +( ) 2 3f x a bx cx dx , is a cubic curve and can be specified if at least four 
points are known on the curve. Instead of explicit equations, implicit equations =( , ) 0f x y  
can also be plotted by varying the independent variable by fixed intervals and computing 
the corresponding values of the dependent variables. Plots of parametric equations consist of 
three different graphs: the first is the t vs. x graph generated from the function = ( )x f t , the 
second is the t vs. y graph generated from the function = ( )y g t , while the third graph is x vs. y 
generated by plotting the x and y values from the same values of t obtained from the previous 
plots. Thus, even if we always do not generate an equation between x and y by eliminating t, 
we can always plot a graph of x vs. y. Figure 1.3 shows graphs of various polynomial equations.

In the following sections, we take a look at few types of interpolating splines and how 
their equations are derived.

1.2 � LINEAR SPLINE (STANDARD FORMS)
A linear spline is a straight line represented by a first-degree polynomial and can be gen-
erated given two points are known along it. Standard form of a linear spline implies the 
spline equation is computed in the spatial domain i.e. the x-y plane. Let the given points 
be P1(x1, y1) and P2(x2, y2). Choose a starting linear equation that is written in matrix form

	 = + = 













1y a bx x a

b
	 (1.1)

Substitute the given points in the starting equation to generate two equations. Two equa-
tions are sufficient to solve for the two unknown coefficients a and b
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FIGURE 1.3  Graphs of polynomial equations.
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The two equations are written in matrix form Y = C·A, where C is the constraint matrix and 
A is the coefficient matrix:
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The equations are solved to find the values of the unknown coefficients. Thus, we have 
A = inv(C)·Y

	








 =

























−
1
1

1

2

1
1

2

a
b

x
x

y
y

	 (1.4)

The values of the coefficients are substituted in the starting equation to arrive at the 
equation of the spline.

	 = 




























−

1
1
1

1

2

1
1

2
y x

x
x

y
y

	 (1.5)

Example 1.1

Find the equation of a line through points P1(3, 2) and P2(8, −4).
Choose a starting equation

	 = + = 













1y a bx x a

b
	

Substitute given points in the equation

	
= +

− = +

2 (3)

4 (8)

a b

a b
	

Write in matrix form Y = C·A

	
−









 =




















2
4

1 3
1 8

a
b
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Solve the matrix equation A = C−1·Y

	








 = −

−








 −








 =

−










1.6 0.6
0.2 0.2

2
4

5.6
1.2

a
b

	

Substitute the coefficient values in the starting equation

	 = −5.6 1.2y x 	

Verification: In most graphics problems, it is usually possible to verify the results 
obtained by substituting the given data in it. Putting x = 3, we get y = 2, and putting 
x  = 8, we get y = −4. Hence, the line does indeed pass through the given points 
(Figure 1.4).

MATLAB® Code 1.1

clear all; clc;
syms x;
x1 = 3; y1 = 2;
x2 = 8; y2 = -4;
X = [x1 x2]; Y = [y1 y2];
C = [1 x1; 1 x2];
A = inv(C)*Y';
a = A(1);

0 2 4 6 8 10

x

-5

-4

-3

-2

-1

0

1

2

3

y

P1

P2

FIGURE 1.4  Plot for Example 1.1.
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b = A(2);
fprintf('Required equation : \n');
y = a + b*x;
y = vpa(y)
 
%plotting
xx = linspace(x1, x2);
yy = subs(y, x, xx);
plot(xx, yy, 'b-'); hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
grid; axis square;
axis([0 10 -5 3]);
d = 0.5;
text(x1+d, y1, 'P_1');
text(x2+d, y2, 'P_2');
hold off;

An alternate form of the standard line equation can be formed where, instead of two 
given points, only one point and the slope of the line are given. This aspect is discussed 
below.

Let the given points be P1(x1, y1) and s be the slope of the line. Choose a starting linear 
equation that is written in matrix form as before in Equation (1.1).

	 = + = 













1y a bx x a

b
	

NOTE

%: signifies a comment line
axis: controls appearance of the axes of the plot, specifies ordered range of values to display
clc: clears workspace of previous text
clear: clears memory of all stored variables
fprintf: prints out strings and values using formatting options
grid: turns on display of grid lines in a plot
hold: holds the current graph state so that subsequent commands can add to the same graph
inv: computes inverse of a matrix
linspace: creates 100 linearly spaced values between the two end-points specified
plot: creates a graphical plot from a set of values
scatter: type of plot where the data is represented by colored circles
subs: substitutes symbolic variable with a matrix of values for generating a plot
syms: declares the arguments following as symbolic variables
text: inserts textual strings at specified locations in the graph
title: displays a title on top of the graph
vpa: displays symbolic values as variable precision floating point values
xlabel, ylabel: puts text labels along the corresponding primary axes
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Calculate derivative of the starting equation

	 ′ = =y dy
dx

b	 (1.6)

Substitute the given values in the starting equation to generate two equations

	
= +

=

1 1y a bx

s b
	 (1.7)

The two equations are written in matrix form Y = C·A as before

	












=



















1
0 1

1 1y
s

x a
b

	 (1.8)

The equations are solved to find the values of the coefficients: A = C−1·Y

	








 =























−
1
0 1

1
1

1a
b

x y
s

	 (1.9)

The values of the coefficients are substituted in the starting equation to arrive at the 
equation of the spline.

	 = 


























−

1 1
0 1

1
1

1y x x y
s

	 (1.10)

Example 1.2

Find the equation of a line through the point P(−1, 1) and having slope 2.
Choose a starting equation

	 = + = 













1y a bx x a

b
	

Calculate derivative of the starting equation

	 ′ = =y dy
dx

b	

Substitute given values in the equation

	
= + −

=

1 ( 1)

2

a b

b
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Write in matrix form Y = C·A

	








 = −


















1
2

1 1
0 1

a
b

	

Solve the matrix equation A = C−1·Y

	








 =


















 =











1 1
0 1

1
2

3
2

a
b

	

Substitute the coefficient values in the starting equation

	 = +2 3y x 	

Verification: Putting = −1x  in the above equation, we get =1y . Also, slope = 2dy
dx

 

(Figure 1.5).

MATLAB Code 1.2

clear all; clc;
syms x;
x1 = -1; y1 = 1; s = 2;
Y = [y1 s];
C = [1 x1; 0 1];

-4 -3 -2 -1 0 1 2

x

-4

-2

0

2

4

6

y

P

FIGURE 1.5  Plot for Example 1.2.



10    ◾    Fundamentals of Graphics Using MATLAB®

A = inv(C)*Y';
a = A(1);
b = A(2);
fprintf('Required equation:\n');
y = a + b*x;
y = vpa(y)
 
%plotting
xx = linspace(x1-3, x1+3);
yy = subs(y, x, xx);
plot(xx, yy, 'b-', x1, y1, 'bo'); hold on;
scatter(x1, y1, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
grid; axis square; axis tight;
text(x1+0.5, y1, 'P');
hold off;

1.3 � LINEAR SPLINE (PARAMETRIC FORM)
A linear spline can also be represented by parametric equations. Let the given points 
through which the spline passes be P0 and P1. As per the convention mentioned before 

≡ (0)0P P  i.e. the first point corresponds to the point where t = 0. Similarly, ≡ (1)1P P  i.e. the 
second point corresponds to the point where t = 1. Note that in some cases, the first point 
may not always correspond to t = 0 or the last point may not always correspond to t = 1. 
We will discuss these issues subsequently.

Choose a starting linear parametric equation written in matrix form

	 = + = 













( ) 1P t a bt t a

b
	 (1.11)

Substitute given points in the starting equation by choosing t = 0 at start and t = 1 at end.

	
= +

= +

(0)

(1)

0

1

P a b

P a b
	 (1.12)

Write equations in matrix form G = C·A, where G is called the geometry matrix

	












=



















1 0
1 1

0

1

P
P

a
b

	 (1.13)

Solve the equation for A i.e. A = C−1·G = B·G, where B is called the basis matrix

	








 =























−
1 0
1 1

1
0

1

a
b

P
P

	 (1.14)
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Substitute the coefficient values in the starting equation

	 = 


























−

( ) 1 1 0
1 1

1
0

1
P t t

P
P

	 (1.15)

Example 1.3

Find the equation of a line through points P0(3, 2) and P1(8, −4) in parametric form.
Choose a starting equation.

	 = + = 













( ) 1P t a bt t a

b
	

Write equations in matrix form G = C·A, where G is called the geometry matrix

	
−









 =




















3 2
8 4

1 0
1 1

a
b

	

Solve the equation for A i.e. A = C−1·G = B·G

	








 =









 −









 =

−










−
1 0
1 1

3 2
8 4

3 2
5 6

1
a
b

	

Substitute the coefficient values in the starting equation

	 = 



 −









( ) 1 3 2

5 6
P t t 	

The required parametric equations are obtained by separating out the x and y 
components

	
= +

= −

3 5

2 6

x t

y t
	

Verification: = = = = −(0) 3, (1) 8, (0) 2, (1) 4x x y y  (Figure 1.6).

NOTE

In reality, the parametric equations should be written separately for x and y i.e. 
= + ⋅( )x t a b tx x  and = + ⋅( )y t a b ty y . However, we use a compact notation here by substituting 
= =   =  ( ) [ ( ), ( )], , , ,P t x t y t a a a b b bx y x y . After solving for a and b, we separate out the 

individual components and substitute them in the respective equations for x and y.
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MATLAB Code 1.3

clear all; clc;
syms t;
x1 = 3; y1 = 2;
x2 = 8; y2 = -4;
X = [x1 x2]; Y = [y1 y2];
G = [X ; Y];
C = [1 0; 1 1];
A = inv(C)*G';
ax = A(1,1); ay = A(1,2);
bx = A(2,1); by = A(2,2);
 
fprintf('Required equations : \n');
x = ax + bx*t; x = vpa(x)
y = ay + by*t; y = vpa(y)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
 
subplot(131), plot(tt, xx); grid; axis square;
xlabel('t'); ylabel('x'); title('t - x');
subplot(132), plot(tt, yy); grid; axis square;
xlabel('t'); ylabel('y'); title('t - y');
subplot(133), plot(xx, yy, 'b-', X, Y, 'bo');
grid; axis square; hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); title('x - y');
text(x1+1, y1-0.5, 'P_0');
text(x2-1, y2+0.5, 'P_1');
hold off;

0 0.5 1
t

3

4

5

6

7

8
x

t - x

0 0.5 1
t

-4

-3

-2

-1

0

1

2

y

t - y

2 4 6 8
x

-4

-3

-2

-1

0

1

2

y

x - y

P0

P1

FIGURE 1.6  Plots for Example 1.3.
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1.4 � QUADRATIC SPLINE (STANDARD FORM)
A quadratic spline is a parabolic curve represented by a second-degree polynomial equation 
and can be generated if at least three points are known along the curve. Standard form of a 
quadratic spline implies the spline equation is computed in the spatial domain i.e. the x-y 
plane. Let the given points be P1(x1, y1), P2(x2, y2), and P3(x3, y3). Choose a starting quadratic 
equation, which is written in matrix form

	 = + + = 





















12 2y a bx cx x x
a
b
c

	 (1.16)

Substitute the given points in the starting equation to generate three equations. They are 
sufficient to solve for the three unknown coefficients a, b, and c.

	

= + +

= + +

= + +

1 1
2

1

2 2
2

2

3 3
2

3

y a bx cx

y a bx cx

y a bx cx

	 (1.17)

The three equations are written in matrix form Y = C·A as before

	

















=



































1
1
1

1

2

3

1
2

1

2
2

2

3
2

3

y
y
y

x x
x x
x x

a
b
c

	 (1.18)

The equations are solved to find the values of the coefficients: A = C−1·Y

	
















=



































−
1
1
1

1
2

1

2
2

2

3
2

3

1

1

2

3

a
b
c

x x
x x
x x

y
y
y

	 (1.19)

The values of the coefficients are substituted in the starting equation to arrive at the 
equation of the spline

	 = 







































−

1
1
1
1

2

1
2

1

2
2

2

3
2

3

1

1

2

3

y x x
x x
x x
x x

y
y
y

	 (1.20)

NOTE

subplot: displays multiple plots within a single figure window
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Example 1.4

Find the equation of a quadratic spline through points P1(3, 2), P2(6, 5), and P3(8, −4).
Choose starting equation

	 = + + = 





















12 2y a bx cx x x
a
b
c

	

Write equations in matrix form Y = C·A

	 −
















=
































2
4

5

1 3 9
1 8 64
1 6 36

a
b
c

	

Solve for A: A = C−1·Y

	
















=
−

−

















20.8
10.9

1.1

a
b
c

	

Substitute in the starting equation

	 = − + −20.8 10.9 1.1 2y x x 	

Verification: = = = −(3) 2, (6) 5, (8) 4y y y  (Figure 1.7).

1 2 3 4 5 6 7 8 9 10

x

-20

-15

-10

-5

0

5

y

P1

P2

P3

FIGURE 1.7  Plot for Example 1.4.
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MATLAB Code 1.4

clear all; clc;
syms x;
x1 = 3; y1 = 2;
x2 = 6; y2 = 5;
x3 = 8; y3 = -4;
X = [x1, x2, x3];
Y = [y1, y2, y3];
C = [1, x1, x1^2; 1, x2, x2^2; 1, x3, x3^2];
A = inv(C)*Y';
a = A(1); b = A(2); c = A(3);
fprintf('Required equation : \n');
y = a + b*x + c*x^2; y = vpa(y)
 
%plotting
d = 0.5;
xx = linspace(x1-2, x3+2);
yy = subs(y, x, xx);
plot(xx,yy, 'b-');
hold on; grid;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
axis square; axis tight;
text(x1+d, y1, 'P_1');
text(x2+d, y2, 'P_2');
text(x3+d, y3, 'P_3');
hold off;

1.5 � QUADRATIC SPLINE (PARAMETRIC FORM)
A quadratic spline can also be represented by parametric equations. Let the given points be 
P0, P1, and P2. Here, P0 is the starting point i.e. ≡ (0)0P P  and P2 is the end point i.e. ≡ (1)2P P . 
To determine the curve uniquely an additional piece of information is required regarding 
the value of parameter t at the middle point P1. Let the value of t at P1 be k, where 0 ≤ k ≤ 1 
i.e. ≡ ( )1P P k . Different values of k referred to as the sub-division ratio, will give rise to 
curves with the same start and end points but having different shapes.

Choose a starting parametric quadratic equation written in matrix form

	 = + + = 





















( ) 12 2P t a bt ct t t
a
b
c

	 (1.21)

Substitute the given points in the starting equation by choosing t = 0 at start, t = k at the 
middle, and t = 1 at end.
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= + +

= + +

= + +

(0) (0)

( ) ( )

(1) (1)

0
2

1
2

2
2

P a b c

P a b k c k

P a b c

	 (1.22)

Write equations in matrix form G = C·A

	
















=

































1 0 0
1
1 1 1

0

1

2

2
P
P
P

k k
a
b
c

	 (1.23)

Solve the equation for A i.e. A = C−1·G = B·G

	
















=

































−
1 0 0
1
1 1 1

2

1

0

1

2

a
b
c

k k
P
P
P

	 (1.24)

Substitute the coefficient values in the starting equation

	 = 





































−

( ) 1
1 0 0
1
1 1 1

2 2

1

0

1

2

P t t t k k
P
P
P

	 (1.25)

Example 1.5

Find the equation of a quadratic spline through points P0(3, 2), P1(8, −4), 
and P2(6, 5) in parametric form with sub-division ratio k = 0.8.

Choose starting equation

	 = + + = 





















( ) 12 2P t a bt ct t t
a
b
c

	

Write equations in matrix form G = C·A

	 −
















=
































3 2
8 4
6 5

1 0 0
1 0.8 0.64
1 1 1

a
b
c
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Solve the equation for A i.e. A = C−1·G = B·G

	
















= −
−

















3 2
19.25 49.5
16.25 52.5

a
b
c

	

Substitute the coefficient values in the starting equation

	
= + −

= − +

3 19.25 16.25

2 49.5 52.5

2

2

x t t

y t t
	

Verification: = = = = − = =(0) 3, (0) 2, (0.8) 8, (0.8) 0.4, (1) 6, (1) 5x y x y x y  (Figure 1.8).

MATLAB Code 1.5

clear all; clc;
syms t;
x0 = 3; y0 = 2;
x1 = 8; y1 = -4;
x2 = 6; y2 = 5;
k = 0.8;
G = [x0, y0 ; x1, y1 ; x2, y2];
X = [x0 ; x1 ; x2]; Y = [y0 ; y1 ; y2];
C = [1, 0, 0; 1, k, k^2; 1, 1, 1];
A = inv(C)*G;
ax = A(1,1); ay = A(1,2);
bx = A(2,1); by = A(2,2);
cx = A(3,1); cy = A(3,2);
fprintf('Required equations: \n');
x = ax + bx*t + cx*t^2 ; x = vpa(x)
y = ay + by*t + cy*t^2 ; y = vpa(y)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);

0 0.2 0.4 0.6 0.8 1
t

3

4

5

6

7

8

9

x

t - x

0 0.2 0.4 0.6 0.8 1
t

-10

-5

0

5

y

t - y

2 4 6 8 10
x

-10

-5

0

5

y

x - y

P0

P1

P2

FIGURE 1.8  Plots for Example 1.5.
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yy = subs(y, t, tt);
subplot(131), plot(tt, xx);
xlabel('t'); ylabel('x'); title('t - x');
grid; axis square;
subplot(132), plot(tt, yy);
xlabel('t'); ylabel('y'); title('t - y');
grid; axis square;
subplot(133), plot(xx, yy, 'b-');
hold on; grid; axis square;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); title('x - y');
d = 0.5;
text(x0+d, y0, 'P_0');
text(x1+d, y1, 'P_1');
text(x2-1, y2-1, 'P_2');
hold off;

1.6 � CUBIC SPLINE (STANDARD FORM)
A cubic spline is represented by a third-degree polynomial and can be generated if at 
least four points along the curve are known. Standard form of a cubic spline implies the 
spline equation is computed in the spatial domain i.e. the x-y plane. Let the given points 
be P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4). Choose a starting cubic equation, which is 
written in matrix form

	 = + + + = 























12 3 2 3y a bx cx dx x x x

a
b
c
d

	 (1.26)

Substitute the given points in the starting equation to generate four equations. Four equa-
tions are sufficient to solve the four unknown coefficients a, b, c, and d

	

= + + +

= + + +

= + + +

= + + +

1 1
2

1
3

1

2 2
2

2
3

2

3 3
2

3
3

3

4 4
2

4
3

4

y a bx cx dx

y a bx cx dx

y a bx cx dx

y a bx cx dx

	 (1.27)

The four equations are written in matrix form Y = C·A

	





















=







































1
1
1
1

1

2

3

4

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

y
y
y
y

x x x
x x x
x x x
x x x

a
b
c
d

	 (1.28)
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The equations are solved to find the values of the coefficients: A = C−1·Y

	



















=









































−
1
1
1
1

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

1

1

2

3

4

a
b
c
d

x x x
x x x
x x x
x x x

y
y
y
y

	 (1.29)

The values of the coefficients are substituted in the starting equation to arrive at the 
equation of the spline.

	 = 













































−

1

1
1
1
1

2 3

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

1

1

2

3

4

y x x x

x x x
x x x
x x x
x x x

y
y
y
y

	 (1.30)

Example 1.6

Find the equation of a cubic spline through points P1(−1, 2), P2(0, 0), P3(1, −2), 
and P4(2, 0).

Choose starting equation

	 = + + + = 























12 3 2 3y a bx cx dx x x x

a
b
c
d

	

Write equations in matrix form Y = C·A

	
−



















=

− −



































2
0
2

0

1 1 1 1
1 0 0 0
1 1 1 1
1 2 4 8

a
b
c
d

	

Solve for A: A = C−1·Y

	



















= −


















0
2.67
0

0.67

a
b
c
d
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Substitute in the starting equation

	 = − +2.67 0.67 3y x x 	

Verification: − = = = − =( 1) 2, (0) 0, (1) 2, (2) 0y y y y  (Figure 1.9).
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FIGURE 1.9  Plot for Example 1.6.
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1.7 � CUBIC SPLINE (PARAMETRIC FORM)
A cubic spline can also be represented by parametric equations. Let the given points be P0, 
P1, P2, and P3. Here, P0 is the starting point i.e. ≡ (0)0P P  and P3 is the end point of the curve 
i.e. ≡ (1)3P P . To determine the curve uniquely two additional pieces of information are 
required regarding the value of parameter t at the middle points P1 and P2. Let these values 
of t be m and n, where ≤ ≤0 , 1m n  i.e. ≡ ( )1P P m  and ≡ ( )2P P n . Different values of m and n 
referred to as the sub-division ratios, will give rise to curves with the same start and end 
points but having different shapes.

Choose starting equation written in matrix form

	 = + + + = 























( ) 12 3 2 3P t a bt ct dt t t t

a
b
c
d

	 (1.31)

Substitute the given points in the starting equation by choosing t = 0 at start, t = m, n at the 
middle points, and t = 1 at end.

	

P a b c

P a b m c m

P a b n c n

P a b c

= + +

= + +

= + +

= + +

(0) (0)

( ) ( )

( ) ( )

(1) (1)

0
2

1
2

2
2

3
2

	 (1.32)

Write equations in matrix form G = C·A

	

P
P
P
P

m m m
n n n

a
b
c
d





















=





































1 0 0 0
1
1
1 1 1 1

0

1

2

3

2 3

2 3
	 (1.33)

Solve the equation for A: A = C−1·G = B·G

	

a
b
c
d

m m m
n n n

P
P
P
P



















=







































−
1 0 0 0
1
1
1 1 1 1

2 3

2 3

1
0

1

2

3

	 (1.34)

Substitute the coefficient values in the starting equation
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	 P t t t t m m m
n n n

P
P
P
P

= 











































−

( ) 1

1 0 0 0
1
1
1 1 1 1

2 3
2 3

2 3

1
0

1

2

3

	 (1.35)

Example 1.7

Find the equation of a cubic spline through points (−1, 2), (0, 0), (1, −2), and 
(2, 0) in parametric form with sub-division ratios m = 0.1 and n = 0.9.

Choose starting equation written in matrix form

	 = + + + = 























( ) 12 3 2 3P t a bt ct dt t t t

a
b
c
d

	

Write equations in matrix form G = C·A

	

−

−



















=





































1 2
0 0
1 2
2 0

1 0 0 0
1 0.1 0.01 0.001
1 0.9 0.81 0.729
1 1 1 1

a
b
c
d

	

Solve the equation for A i.e. A = C−1·G = B·G

	



















=

−
−

−



















1 2
12.7222 21.4444
29.1667 13.8889

19.4444 5.5556

a
b
c
d

	

Substitute the coefficient values in the starting equation

	
= − + − +

= − + +

1 12.7222 29.1667 19.4444

2 21.4444 13.8889 5.5556

2 3

2 3

x t t t

y t t t
	

Verification: = − = = = = = = −(0) 1, (0.1) 0, (0.9) 1, (1) 2, (0) 2, (0.1) 0, (0.9) 2,x x x x y y y  
=(1) 0y

The actual values might differ slightly due to round-off errors (Figure 1.10).
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MATLAB Code 1.7

clear all; clc;
syms t;
x0 = -1; y0 = 2;
x1 = 0; y1 = 0;
x2 = 1; y2 = -2;
x3 = 2; y3 = 0;
m = 0.1; n = 0.9;
P = [x0 y0 ; x1 y1 ; x2 y2 ; x3 y3];
X = [x0 ; x1 ; x2 ; x3]; Y = [y0 ; y1 ; y2 ; y3];
C = [1, 0, 0, 0; 1, m, m^2, m^3; 1, n, n^2, n^3; 1, 1, 1, 1];
A = inv(C)*P;
ax = A(1,1); ay = A(1,2); bx = A(2,1); by = A(2,2);
cx = A(3,1); cy = A(3,2); dx = A(4,1); dy = A(4,2);
fprintf('Required equations : \n');
x = ax + bx*t + cx*t^2 + dx*t^3; x = vpa(x, 3)
y = ay + by*t + cy*t^2 + dy*t^3; y = vpa(y, 3)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
subplot(131), plot(tt,xx); grid;
xlabel('t'); ylabel('x'); title('t - x'); axis square;
subplot(132), plot(tt,yy); grid;
xlabel('t'); ylabel('y'); title('t - y'); axis square;
subplot(133), plot(xx,yy,'b-'); grid;
xlabel('x'); ylabel('y'); title('x - y'); axis square;
hold on;
scatter(X, Y, 20, 'r', 'filled');
axis([-2 3 -5 3]);
e = 0.5;
text(x0+e, y0, 'P_0');
text(x1+e, y1, 'P_1');
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FIGURE 1.10  Plots for Example 1.7.
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text(x2+e, y2, 'P_2');
text(x3+e, y3, 'P_3');
hold off;

1.8 � PIECEWISE SPLINES (STANDARD FORM)
Complex curves cannot be appropriately modeled using cubic splines. They are typically 
S-shaped curves while complex curves may contain a number of twists and turns. One 
option is to model the curves using higher order splines; however, they need higher degree 
equations to be solved, which increases the computational overhead and time delay of the 
system. Moreover, higher degree splines are too sensitive to slight changes in CPs, which 
is typically not desirable since we generally want slight changes of the splines to be made 
by small adjustments of their CPs and do not favor drastic changes in shape. Such curves 
are best modeled by using multiple cubic splines joined end to end. These are known as 
piecewise splines.

Consider four given points P1, P2, P3, and P4 and it is required to find equations of piece-
wise splines through them. Essentially, this means that instead of a single cubic spline 
passing through the four points it is required to find three separate splines passing through 
each pair of points as shown in Figure 1.11.

Let the coordinates of the given points be P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4). 
Let the three cubic curve segments be designated as A, B, and C between points P1 and P2, 
P2 and P3, and P3 and P4, respectively. As before, let starting cubic equations be of the form 

= + + +2 3y a bx cx dx . Since now there are three curve segments, there needs to be three 
different sets of coefficients as follows:
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FIGURE 1.11  Piecewise splines.
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= + + +

= + + +

= + + +

:

:

:

1 1 1
2

1
3

2 2 2
2

2
3

3 3 3
2

3
3

A y a b x c x d x

B y a b x c x d x

C y a b x c x d x

	 (1.36)

So altogether there are 12 different unknowns and at least 12 different equations are needed 
to solve them.

In order to formulate these 12 equations, various constraints are used to ensure that three 
separate spline segments join together to form a single smooth curve. The first constraint 
is known as C0 continuity condition, which states that in order to form a smooth curve the 
three splines should physically meet at their joining points (Hearn and Baker, 1996). In 
other words, spline A should pass through points P1 and P2, spline B should pass through 
points P2 and P3, and spline C should pass through points P3 and P4. Substituting the point 
coordinates in the respective starting equations the following six equations are obtained. 
If S(Pk) denotes segment S passing through point Pk, we can write:
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4

A P y a b x c x d x

A P y a b x c x d x

B P y a b x c x d x

B P y a b x c x d x

C P y a b x c x d x

C P y a b x c x d x

	 (1.37)

The second constraint to be obeyed is known as C1 continuity condition, which states that 
to form a smooth curve the slopes of the individual spline segments should be equal at 
their meeting points (Hearn and Baker, 1996). Taking the derivative of the spline equations 
the following are obtained:

	

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

: 2 3

: 2 3

: 2 3

1 1 1
2

2 2 2
2

3 3 3
2

A y b c x d x

B y b c x d x

C y b c x d x

	 (1.38)

In this case: slope of A at P2 = slope of B at P2. If S′(Pk) denotes slope of segment S at point 
Pk we have:

	 A P B P b c x d x b c x d x( ) ( )′ = ′ + ⋅ + ⋅ = + ⋅ + ⋅: 2 3 2 32 2 1 1 2 1
2

2 2 2 2 2
2

2 	

Rearranging:

	 = − − ⋅ − ⋅ + + ⋅ + ⋅0 2 3 2 31 1 2 1
2

2 2 2 2 2
2

2b c x d x b c x d x 	 (1.39)


