

Fundamentals of Graphics
Using MATLAB®

https://www.taylorandfrancis.com

Fundamentals of Graphics
Using MATLAB®

Ranjan Parekh

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-367-18482-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users.
For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents

Preface, xi

Author, xv

Chapter 1    ◾   � Interpolating Splines	 1
1.1	 INTRODUCTION	 1

1.2	 LINEAR SPLINE (STANDARD FORMS)	 4

1.3	 LINEAR SPLINE (PARAMETRIC FORM)	 10

1.4	 QUADRATIC SPLINE (STANDARD FORM)	 13

1.5	 QUADRATIC SPLINE (PARAMETRIC FORM)	 15

1.6	 CUBIC SPLINE (STANDARD FORM)	 18

1.7	 CUBIC SPLINE (PARAMETRIC FORM)	 22

1.8	 PIECEWISE SPLINES (STANDARD FORM)	 25

1.9	 PIECEWISE SPLINES (PARAMETRIC FORM)	 31

1.10	 CHAPTER SUMMARY	 39

1.11	 REVIEW QUESTIONS	 39

1.12	 PRACTICE PROBLEMS	 40

Chapter 2    ◾   � Blending Functions and Hybrid Splines	 41
2.1	 INTRODUCTION	 41

2.2	 BLENDING FUNCTIONS	 41

2.3	 BLENDING FUNCTIONS OF INTERPOLATING SPLINES	 46

2.4	 HERMITE SPLINE	 52

2.5	 CARDINAL SPLINE	 57

2.6	 CATMULL–ROM SPLINE	 61

2.7	 BEZIER SPLINE	 63

2.8	 SPLINE CONVERSIONS	 69

vi    ◾    Contents

2.9	 CHAPTER SUMMARY	 74

2.10	 REVIEW QUESTIONS	 74

2.11	 PRACTICE PROBLEMS	 75

Chapter 3    ◾   � Approximating Splines	 77
3.1	 INTRODUCTION	 77

3.2	 LINEAR UNIFORM B-SPLINE	 78

3.3	 CHANGING NUMBER OF CONTROL POINTS	 88

3.4	 QUADRATIC UNIFORM B-SPLINE	 89

3.5	 JUSTIFICATION FOR KNOT-VECTOR VALUES	 102

3.6	 QUADRATIC OPEN-UNIFORM B-SPLINE	 105

3.7	 QUADRATIC NON-UNIFORM B-SPLINE	 108

3.8	 CUBIC UNIFORM B-SPLINE	 109

3.9	 CHAPTER SUMMARY	 131

3.10	 REVIEW QUESTIONS	 131

3.11	 PRACTICE PROBLEMS	 132

Chapter 4    ◾   � 2D Transformations	 133
4.1	 INTRODUCTION	 133

4.2	 HOMOGENEOUS COORDINATES	 135

4.3	 TRANSLATION	 136

4.4	 SCALING	 138

4.5	 ROTATION	 140

4.6	 FIXED-POINT SCALING	 143

4.7	 FIXED-POINT ROTATION	 145

4.8	 REFLECTION	 147

4.9	 FIXED-LINE REFLECTION	 149

4.10	 SHEAR	 152

4.11	 AFFINE TRANSFORMATIONS	 155

4.12	 PERSPECTIVE TRANSFORMATIONS	 159

4.13	 VIEWING TRANSFORMATIONS	 163

4.14	 COORDINATE SYSTEM TRANSFORMATIONS	 167

4.15	 CHAPTER SUMMARY	 168

4.16	 REVIEW QUESTIONS	 169

4.17	 PRACTICE PROBLEMS	 169

Contents    ◾    vii

Chapter 5    ◾   � Spline Properties	 171
5.1	 INTRODUCTION	 171

5.2	 CRITICAL POINTS	 172

5.3	 TANGENT AND NORMAL	 176

5.4	 LENGTH OF A CURVE	 181

5.5	 AREA UNDER A CURVE	 183

5.6	 CENTROID	 189

5.7	 INTERPOLATION AND CURVE FITTING	 192

5.8	 NOTES ON 2D PLOTTING FUNCTIONS	 199

5.9	 CHAPTER SUMMARY	 205

5.10	 REVIEW QUESTIONS	 205

5.11	 PRACTICE PROBLEMS	 206

Chapter 6    ◾   � Vectors	 207
6.1	 INTRODUCTION	 207

6.2	 UNIT VECTOR	 208

6.3	 DIRECTION COSINES	 210

6.4	 DOT PRODUCT	 212

6.5	 CROSS PRODUCT	 214

6.6	 VECTOR EQUATION OF A LINE	 215

6.7	 VECTOR EQUATION OF PLANE	 218

6.8	 VECTOR ALIGNMENT (2D)	 222

6.9	 VECTOR EQUATIONS IN HOMOGENEOUS COORDINATES (2D)	 225

6.10	 VECTOR EQUATIONS IN HOMOGENEOUS COORDINATES (3D)	 229

6.11	 NORMAL VECTOR AND TANGENT VECTOR	 234

6.12	 CHAPTER SUMMARY	 239

6.13	 REVIEW QUESTIONS	 239

6.14	 PRACTICE PROBLEMS	 240

Chapter 7    ◾   � 3D Transformations	 241
7.1	 INTRODUCTION	 241

7.2	 TRANSLATION	 241

7.3	 SCALING	 245

7.4	 ROTATION	 248

7.5	 FIXED-POINT SCALING	 251

viii    ◾    Contents

7.6	 FIXED-POINT ROTATION	 254

7.7	 ROTATION PARALLEL TO PRIMARY AXES	 256

7.8	 VECTOR ALIGNMENT (3D)	 264

7.9	 ROTATION AROUND A VECTOR	 270

7.10	 ROTATION AROUND AN ARBITRARY LINE	 273

7.11	 REFLECTION	 277

7.12	 SHEAR	 280

7.13	 CHAPTER SUMMARY	 283

7.14	 REVIEW QUESTIONS	 284

7.15	 PRACTICE PROBLEMS	 284

Chapter 8    ◾   � Surfaces	 287
8.1	 INTRODUCTION	 287

8.2	 PARAMETRIC SURFACES	 288

8.3	 BEZIER SURFACES	 293

8.4	 IMPLICIT SURFACES	 298

8.5	 EXTRUDED SURFACES	 307

8.6	 SURFACES OF REVOLUTION	 308

8.7	 NORMAL VECTOR AND TANGENT PLANE	 312

8.8	 AREA AND VOLUME OF SURFACE OF REVOLUTION	 317

8.9	 TEXTURE MAPPING	 320

8.10	 SURFACE ILLUMINATION	 329

8.11	 NOTES ON 3D PLOTTING FUNCTIONS	 335

8.12	 CHAPTER SUMMARY	 349

8.13	 REVIEW QUESTIONS	 350

8.14	 PRACTICE PROBLEMS	 350

Chapter 9    ◾   � Projection	 353
9.1	 INTRODUCTION	 353

9.2	 2D PROJECTION	 354

9.3	 3D PROJECTION	 361

9.4	 MULTI-VIEW PROJECTION	 366

9.5	 AXONOMETRIC PROJECTION	 369

9.6	 FORESHORTENING FACTORS	 371

9.7	 ISOMETRIC, DIMETRIC, AND TRIMETRIC	 375

9.8	 OBLIQUE PROJECTION	 382

Contents    ◾    ix

9.9	 PERSPECTIVE PROJECTION	 387

9.10	 CHAPTER SUMMARY	 391

9.11	 REVIEW QUESTIONS	 392

9.12	 PRACTICE PROBLEMS	 392

APPENDIX I: MATLAB® FUNCTION SUMMARY� 395

APPENDIX II: ANSWERS TO PRACTICE PROBLEMS� 399

REFERENCES� 407

INDEX� 409

https://www.taylorandfrancis.com

xi

Preface

This book introduces fundamental concepts and principles of 2D and 3D
graphics and is written for under- and postgraduate students studying graphics- and/

or multimedia-related subjects. Most of the books on graphics use C programming envi-
ronments to illustrate practical implementations. This book deviates from this common
practice and illustrates the use of MATLAB® for the purpose. MATLAB by MathWorks,
Inc. is a data analysis and visualization tool suitable for algorithmic development and sim-
ulation applications. One of the advantages of MATLAB is that it contains large libraries
of in-built functions which can be utilized to reduce program-development time as com-
pared to other contemporary programming environments. It is assumed that the student
has basic knowledge of MATLAB, especially various matrix operations and plotting func-
tions. The MATLAB codes have been provided as answers to specific examples, and the
reader can simply copy and paste the codes to execute them. In general, the codes display
answers to expected results like equation of curves, blending functions, and transforma-
tion matrices as well as plot the final results to provide a visual representation of the solu-
tion. The objectives of this book are, first, to demonstrate how MATLAB can be used to
solve problems in graphics and, second, to help the student gain an in-depth knowledge
about the subject matter through visual representations and practical examples.

This book is roughly divided into two parts: 2D graphics and 3D graphics, although in
some places both of these concepts overlap mainly to highlight the differences between
them or for using simpler concepts to prepare the reader for more complex ones.

The first part of this book mainly deals with concepts and problems related to 2D
graphics, and spans over five chapters: (1) Interpolating Splines, (2) Blending Functions
and Hybrid Splines, (3) Approximating Splines, (4) 2D Transformations, and (5) Spline
Properties.

Chapter 1 provides an introduction regarding the various types of interpolating splines
and their representations using polynomials. The theoretical concepts about how spline
equations are derived and the matrix algebra involved are discussed in detail followed by
numerical examples and MATLAB codes to illustrate the processes. Most of the examples
are followed by graphical plots to enable the reader visualize how the equations get
translated into corresponding curves given their start points, end points, and other related
parameters. The chapter also highlights the differences in these procedures for both stan-
dard or spatial form and parametric form of the spline equations using linear, quadratic,
and cubic variants.

xii    ◾    Preface

Chapter 2 introduces the concept of blending functions and how these functions are
used to derive equations for hybrid splines which pass through only a subset of their control
points or where conditions other than control points are used for deriving their equations.
Specifically, the chapter deals with the Hermite spline, Cardinal spline, Catmull–Rom
spline, and Bezier spline. For Bezier splines, both the quadratic and cubic variants are dis-
cussed along with Bernstein polynomials used to formulate their blending functions. As
in other chapters, the theoretical concepts are followed by numerical examples, MATLAB
codes and graphical plots for visualization. The chapter ends with a discussion about how
one spline type can be converted to another.

Chapter 3 discusses how polynomial equations are derived for approximating splines
that do not pass through any of their control points and how their blending functions
are computed. Specifically, the chapter provides detailed discussions about the Cox de
Boor algorithm and how it can used to derive equations for linear, quadratic, and cubic
B-splines. Essentially, B-splines consist of multiple curve segments with continuity at join
points. Values of the parametric variable at the join points are stored in a vector called
the knot vector. If the knot values are equally spaced, then the resulting spline is called
uniform B-spline; otherwise, it is referred to as non-uniform. B-splines are called open-
uniform when knot vector values are repeated. The chapter provides representations of the
knot vector and illustrates how the spacing in the vector generates the above-mentioned
variants. As before, the theoretical concepts are followed by numerical examples, MATLAB
codes, and graphical plots for visualization.

Chapter 4 formally introduces a 2D coordinate system and then lays the foundations of
a homogeneous coordinate system using which all the transformations can be represented
in a uniform manner. Two-dimensional transformations are used to change the location,
orientation, and shapes of splines in 2D plane. These transformations are translation, rotation,
scaling, reflection, and shear applied individually or in combination of two or more; hence, they
are known as composite transformations. Given known coordinates of a point, each of these
transformations is represented by a matrix which when multiplied to the original coordinates
produces a new set of transformed coordinates. The transformation matrices are first derived,
and then their applications are illustrated using examples, MATLAB codes, and graphical
plots. Both affine and perspective transformation types are discussed. The chapter ends with a
discussion on viewing transformations used for mapping a window to a viewport, and coordi-
nate system transformation used for mapping between multiple coordinate systems.

Chapter 5 enumerates some of the common properties of splines and how these can be
calculated from spline equations. First, it discusses the critical points namely minimum
and maximum of spline curves. Additionally for splines of degree 3 or more, the point of
inflection (POI) is of interest. Next, it discusses how the tangent and normal to a spline
curve can be calculated. The tangent to a curve is the derivative of the curve equation,
while the normal is the line perpendicular to the tangent. The third property is calculation
of length of a spline curve between any two given points, both for spatial and parametric
equations. The fourth property is to calculate the area under a curve, which is bounded
by a primary axis and two horizontal or vertical lines. An extension to this is calculation
of area bounded by two curves. The fifth property is calculation of centroid of an area,

Preface    ◾    xiii

the point of the center of gravity for plates of uniform density. The chapter ends with a
discussion on interpolation and curve fitting for data points and a list of some commonly
used built-in MATLAB functions for plotting 2D graphs and plots.

The second part of this book focuses on concepts and problems related to 3D graphics
and spans over the remaining four chapters namely (6) Vectors, (7) 3D Transformations,
(8) Surfaces, and (9) Projections.

Chapter 6 introduces the concept of vectors and their mathematical representations in
2D and 3D spaces. Vectors involve both magnitude and direction. They are represented
in terms of orthogonal reference components of unit magnitudes along the primary axes
together with a set of scaling factors. The chapter discusses how vectors can be added and
multiplied together. Vector products can either be scalar, called a dot product, or vector,
called a cross product. Using these concepts, the chapter then provides details of how vec-
tor equations of lines and planes can be derived. Next, the chapter discusses how vectors
can be aligned to specific directions and finally how vector equations can be represented
using homogeneous coordinates. The chapter ends with a section on how the tangent vector
and the normal vector can be calculated for a curve. As before, the theoretical concepts are
followed by numerical examples, MATLAB codes, and graphical plots for visualization.

Chapter 7 demonstrates how 3D transformations can be treated as extensions of 2D
transformations. These are used to change the location, orientation, and shapes of splines
in 3D space. These transformations are translation, rotation, scaling, reflection, shear
applied individually or in combination of two or more, known as composite transforma-
tion. This chapter formally introduces a 3D coordinate system and then uses homogeneous
coordinates to derive transformation matrices for the above operations. Their applications
are then illustrated using examples, MATLAB codes and graphical plots for visualization.
The latter part of the chapter deals with vector alignment in 3D space and uses these
concepts to derive rotation matrices in 3D space around vectors and arbitrary lines.

Chapter 8 takes a look at how surfaces can be created and represented using parametric
and implicit equations, and how the nature of the surface depends on the parameters of
the equations. Depending on creation process, surfaces can be categorized as extruded
and surfaces of revolution, both of which are discussed with examples and graphical plots.
The chapter then takes a look at how tangent planes of surfaces can be computed and
provides methods for computing area and volume of surfaces. The latter part of the chapter
deals with surface appearances namely how textures can be mapped on surfaces and how
illumination models can be used to determine brightness intensities at a point on the
surface. The chapter ends with a discussion on some commonly used built-in MATLAB
functions for plotting 3D graphs.

Chapter 9 studies various types of projections and derives matrices for each. Projection
is used to map a higher-dimensional object to a lower-dimensional view. Projection can be
of two types: parallel and perspective. In parallel projection, projection lines are parallel to
each other, while in perspective projection, projection lines appear to converge to a reference
point. Parallel projection can again be of two types: orthographic and oblique. In parallel
orthographic projection, the projection lines are perpendicular to the view plane, while
in parallel oblique projection, the projection lines can be oriented at any arbitrary angle

xiv    ◾    Preface

to the view plane. Usually for 3D projection, parallel orthographic projection can also be
sub-divided into two types: multi-view and axonometric. In multi-view projection, the
projection occurs on the primary planes i.e. XY-, YZ-, or XZ-planes, while in axonometric
projection, the projection occurs on any arbitrary plane. The chapter illustrates each type
of projection using examples, MATLAB codes, and graphical plots for visualization.

Each chapter is followed by a summarized list of salient points discussed in the chapter.
A set of review questions and a list of practice problems are provided at the end of each
chapter for self-evaluation. This book contains more than 90 solved numerical examples
with their corresponding MATLAB codes and an additional 90 problems given for prac-
tice. Readers are encouraged to execute the codes given in the examples and also write
their own codes to solve the practice problems. Most of the MATLAB codes given in this
book will require MATLAB version 2015 or later to execute properly. Some of the func-
tions mentioned have been specifically introduced from version 2016 and these have been
mentioned at the appropriate places. The usage of about 70 different MATLAB functions
related to graphics and plotting have been demonstrated in this book and a list of these
functions with a short description is provided at Appendix I. Readers are asked to use
MATLAB help utilities to get further information on these. The MATLAB codes are writ-
ten in a verbose manner for a better understanding of the readers who are new to the
subject matter. Some of the codes could have been written in a more compact manner but
that might have reduced their comprehensibility. Around 170 figures have been included in
this book to help the readers get proper visualization cues of the problems especially for 3D
environments. Answers to the practice problems are provided in Appendix II.

All readers are encouraged to provide feedback about the content matter of the book as
well as any omissions or typing errors. The author can be contacted at ranjan_parekh@
yahoo.com.

Ranjan Parekh
Jadavpur University

Calcutta 700032, India
2019

MATLAB® is a registered trademark of The MathWorks, Inc. For product information,
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:ranjan_parekh@yahoo.com
mailto:ranjan_parekh@yahoo.com
mailto:info@mathworks.com
http://www.mathworks.com

xv

Author

Dr. Ranjan Parekh, PhD (Engineering), �is Professor at the School of Education
Technology, Jadavpur University, Calcutta, India, and is involved with teaching subjects
related to Graphics and Multimedia at the post graduate level. His research interests
include multimedia information processing, pattern recognition, and computer vision.
He is also the author of Principles of Multimedia (McGraw Hill, 2012; http://www.mhhe.
com/parekh/multimedia2).

http://www.mhhe.com
http://www.mhhe.com

https://www.taylorandfrancis.com

1

C h a p t e r 1

Interpolating Splines

1.1  INTRODUCTION
Splines are irregular curve segments with known mathematical properties. Splines are fre-
quently encountered in vector graphics when graphic objects are required to have a defined
shape in 2D planes (Figure 1.1a) or 3D space (Figure 1.1b) or moved along a specified path
(Figure 1.1c). Based on the coordinates of some of the points on the curves, or slopes of
lines along the curves, the graphics system needs to calculate a mathematical representa-
tion of the curve before storing them onto a disk. This representation usually takes the
form of “vectors” or a series of values stored in matrices. The values are calculated using
an orthogonal 2D coordinate system consisting of the origin, X-axis, and Y-axis. These
coordinate axes are often called the primary or principal axes.

The term “spline” has been derived from the ship building industry where it is used to
refer to wooden planks bent between wooden posts for building the curved hull of ships
(O’Rourke, 2003). The location of the fixed posts controlled the shape of the plank. In
graphics, we use specific points along the spline curve to control the shape of the spline
and hence they are aptly referred to as “control points,” shortened as CPs. Depending on
the relationship between the CPs and the actual curves, the splines can be broadly cat-
egorized into three types: (1) interpolating splines, where the spline actually goes through
the CPs; (2) approximating splines, where the spline goes near the CPs but not actually
through them; and (3) hybrid splines, where the spline goes through some of the CPs but
not through all (Hearn and Baker, 1996) (see Figure 1.2).

Splines are mathematically modeled using polynomials. Polynomials are expressions
constructed from variables and constants, and involve addition, subtraction, multiplication,
and non-negative integer exponents. A polynomial can be 0 (zero) or a sum of non-zero
terms. Each term consists of a constant, called coefficient, multiplied by a variable. The
exponent of the variable is called its degree. The first example is a valid polynomial, but
the second example is not, because the variable is associated with a division operation and
also because of the fractional exponent. The general nth degree polynomial is shown in the
third example.

2    ◾    Fundamentals of Graphics Using MATLAB®

-10

-5

10 10

0z

5 5

5

y

0

x

10

0
-5-5 -10

-10

(a)

(b)

(c)

FIGURE 1.1  Use of splines in graphics for creating (a) 2D shapes (b) 3D surfaces (c) motion path
trajectory

Interpolating Splines    ◾    3

	 − +1 2 3 2x x 	

	 − +1 2 3 2.5

x
x 	

	 + + + +−
−

1
1

1 0a x a x a x an
n

n
n 	

A polynomial equation is written when one polynomial is set equal to another. It can
either be in explicit form e.g. = ()y f x when either side of the equation contains variables of
explicit type, or it can be in implicit form e.g. =(,) 0f x y where multiple types of variables
can be on the same side. Examples are shown below:

	
=

+ − =5 0

2

3 3

y x

x y xy
	

Polynomial equations can also be represented in parametric form where the variables are
expressed as functions of another variable t e.g. = =(), ()x f t y g t . The advantage of para-
metric equations is that the variables x and y do not need to be constrained by a single
equation and can be changed independently of each other, which offers more flexibility for
representing complex curves. As a convention, the value of t is usually taken to lie between
0 and 1 unless otherwise specified. The value of t = 0 corresponds to the start point and
t = 1 to the end point of the spline curve. Examples are shown below:

	
= =

= ⋅ = ⋅

,

cos , sin

2x t y t

x r t y r t
	

A polynomial equation is frequently represented using graphs, which are useful in visually
depicting how one variable changes with another. The graph of a zero polynomial i.e. =() 0f x
is the X-axis. The graph of a zero degree polynomial represented by =()f x a, where a is a
constant, is a line parallel to the X-axis at a distance a from it. The graph of a degree 1 polyno-
mial, represented by = +()f x a bx , is a straight line with a slope b and intercept a. The graph

-20

-15

-10

-5

0

5

Interpolating

2 4 6 8 10 -2 0 2 4
-10

-5

0

5

10
Approximating

0 2 4 6
-3

-2

-1

0

1

2

3

4
Hybrid

FIGURE 1.2  Types of splines.

4    ◾    Fundamentals of Graphics Using MATLAB®

of a degree 2 polynomial, represented by = + +() 2f x a bx cx , is a parabolic curve and can be
specified if at least three points are known on the curve. The graph of a degree 3 polynomial,
represented by = + + +() 2 3f x a bx cx dx , is a cubic curve and can be specified if at least four
points are known on the curve. Instead of explicit equations, implicit equations =(,) 0f x y
can also be plotted by varying the independent variable by fixed intervals and computing
the corresponding values of the dependent variables. Plots of parametric equations consist of
three different graphs: the first is the t vs. x graph generated from the function = ()x f t , the
second is the t vs. y graph generated from the function = ()y g t , while the third graph is x vs. y
generated by plotting the x and y values from the same values of t obtained from the previous
plots. Thus, even if we always do not generate an equation between x and y by eliminating t,
we can always plot a graph of x vs. y. Figure 1.3 shows graphs of various polynomial equations.

In the following sections, we take a look at few types of interpolating splines and how
their equations are derived.

1.2 � LINEAR SPLINE (STANDARD FORMS)
A linear spline is a straight line represented by a first-degree polynomial and can be gen-
erated given two points are known along it. Standard form of a linear spline implies the
spline equation is computed in the spatial domain i.e. the x-y plane. Let the given points
be P1(x1, y1) and P2(x2, y2). Choose a starting linear equation that is written in matrix form

	 = + = 













1y a bx x a

b
	 (1.1)

Substitute the given points in the starting equation to generate two equations. Two equa-
tions are sufficient to solve for the two unknown coefficients a and b

-5
-5

0

5
f(x) = 0

-5

0

5
f(x) = a

-5

0

5
f(x) = a + bx

-5
-5

0

5
f(x) = a + bx + cx2

-5
-5

0

5
f(x) = a + bx + cx2 + dx3 f(x,y) = x3 + y3 - 5*x*y = 0

-10 -5 10
x

-10

0

10

y

-4 -2
-1

0

1
x = cos(t)

0 5 -5 0 5 -5 0 5

0 5 0 5 0 5

0 2 4 -4 -2 0 2 4
-1

0

1
x = sin(t)

-1 -0.5 0 0.5 1
-1

0

1
x = sin(t), y = cos(t)

FIGURE 1.3  Graphs of polynomial equations.

Interpolating Splines    ◾    5

	
= +

= +

1 1

2 2

y a bx

y a bx
	 (1.2)

The two equations are written in matrix form Y = C·A, where C is the constraint matrix and
A is the coefficient matrix:

	












=






















1
1

1

2

1

2

y
y

x
x

a
b

	 (1.3)

The equations are solved to find the values of the unknown coefficients. Thus, we have
A = inv(C)·Y

	








 =

























−
1
1

1

2

1
1

2

a
b

x
x

y
y

	 (1.4)

The values of the coefficients are substituted in the starting equation to arrive at the
equation of the spline.

	 = 




























−

1
1
1

1

2

1
1

2
y x

x
x

y
y

	 (1.5)

Example 1.1

Find the equation of a line through points P1(3, 2) and P2(8, −4).
Choose a starting equation

	 = + = 













1y a bx x a

b
	

Substitute given points in the equation

	
= +

− = +

2 (3)

4 (8)

a b

a b
	

Write in matrix form Y = C·A

	
−









 =




















2
4

1 3
1 8

a
b

	

6    ◾    Fundamentals of Graphics Using MATLAB®

Solve the matrix equation A = C−1·Y

	








 = −

−








 −








 =

−










1.6 0.6
0.2 0.2

2
4

5.6
1.2

a
b

	

Substitute the coefficient values in the starting equation

	 = −5.6 1.2y x 	

Verification: In most graphics problems, it is usually possible to verify the results
obtained by substituting the given data in it. Putting x = 3, we get y = 2, and putting
x = 8, we get y = −4. Hence, the line does indeed pass through the given points
(Figure 1.4).

MATLAB® Code 1.1

clear all; clc;
syms x;
x1 = 3; y1 = 2;
x2 = 8; y2 = -4;
X = [x1 x2]; Y = [y1 y2];
C = [1 x1; 1 x2];
A = inv(C)*Y';
a = A(1);

0 2 4 6 8 10

x

-5

-4

-3

-2

-1

0

1

2

3

y

P1

P2

FIGURE 1.4  Plot for Example 1.1.

Interpolating Splines    ◾    7

b = A(2);
fprintf('Required equation : \n');
y = a + b*x;
y = vpa(y)

%plotting
xx = linspace(x1, x2);
yy = subs(y, x, xx);
plot(xx, yy, 'b-'); hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
grid; axis square;
axis([0 10 -5 3]);
d = 0.5;
text(x1+d, y1, 'P_1');
text(x2+d, y2, 'P_2');
hold off;

An alternate form of the standard line equation can be formed where, instead of two
given points, only one point and the slope of the line are given. This aspect is discussed
below.

Let the given points be P1(x1, y1) and s be the slope of the line. Choose a starting linear
equation that is written in matrix form as before in Equation (1.1).

	 = + = 













1y a bx x a

b
	

NOTE

%: signifies a comment line
axis: controls appearance of the axes of the plot, specifies ordered range of values to display
clc: clears workspace of previous text
clear: clears memory of all stored variables
fprintf: prints out strings and values using formatting options
grid: turns on display of grid lines in a plot
hold: holds the current graph state so that subsequent commands can add to the same graph
inv: computes inverse of a matrix
linspace: creates 100 linearly spaced values between the two end-points specified
plot: creates a graphical plot from a set of values
scatter: type of plot where the data is represented by colored circles
subs: substitutes symbolic variable with a matrix of values for generating a plot
syms: declares the arguments following as symbolic variables
text: inserts textual strings at specified locations in the graph
title: displays a title on top of the graph
vpa: displays symbolic values as variable precision floating point values
xlabel, ylabel: puts text labels along the corresponding primary axes

8    ◾    Fundamentals of Graphics Using MATLAB®

Calculate derivative of the starting equation

	 ′ = =y dy
dx

b	 (1.6)

Substitute the given values in the starting equation to generate two equations

	
= +

=

1 1y a bx

s b
	 (1.7)

The two equations are written in matrix form Y = C·A as before

	












=



















1
0 1

1 1y
s

x a
b

	 (1.8)

The equations are solved to find the values of the coefficients: A = C−1·Y

	








 =























−
1
0 1

1
1

1a
b

x y
s

	 (1.9)

The values of the coefficients are substituted in the starting equation to arrive at the
equation of the spline.

	 = 


























−

1 1
0 1

1
1

1y x x y
s

	 (1.10)

Example 1.2

Find the equation of a line through the point P(−1, 1) and having slope 2.
Choose a starting equation

	 = + = 













1y a bx x a

b
	

Calculate derivative of the starting equation

	 ′ = =y dy
dx

b	

Substitute given values in the equation

	
= + −

=

1 (1)

2

a b

b
	

Interpolating Splines    ◾    9

Write in matrix form Y = C·A

	








 = −


















1
2

1 1
0 1

a
b

	

Solve the matrix equation A = C−1·Y

	








 =


















 =











1 1
0 1

1
2

3
2

a
b

	

Substitute the coefficient values in the starting equation

	 = +2 3y x 	

Verification: Putting = −1x in the above equation, we get =1y . Also, slope = 2dy
dx

(Figure 1.5).

MATLAB Code 1.2

clear all; clc;
syms x;
x1 = -1; y1 = 1; s = 2;
Y = [y1 s];
C = [1 x1; 0 1];

-4 -3 -2 -1 0 1 2

x

-4

-2

0

2

4

6

y

P

FIGURE 1.5  Plot for Example 1.2.

10    ◾    Fundamentals of Graphics Using MATLAB®

A = inv(C)*Y';
a = A(1);
b = A(2);
fprintf('Required equation:\n');
y = a + b*x;
y = vpa(y)

%plotting
xx = linspace(x1-3, x1+3);
yy = subs(y, x, xx);
plot(xx, yy, 'b-', x1, y1, 'bo'); hold on;
scatter(x1, y1, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
grid; axis square; axis tight;
text(x1+0.5, y1, 'P');
hold off;

1.3 � LINEAR SPLINE (PARAMETRIC FORM)
A linear spline can also be represented by parametric equations. Let the given points
through which the spline passes be P0 and P1. As per the convention mentioned before

≡ (0)0P P i.e. the first point corresponds to the point where t = 0. Similarly, ≡ (1)1P P i.e. the
second point corresponds to the point where t = 1. Note that in some cases, the first point
may not always correspond to t = 0 or the last point may not always correspond to t = 1.
We will discuss these issues subsequently.

Choose a starting linear parametric equation written in matrix form

	 = + = 













() 1P t a bt t a

b
	 (1.11)

Substitute given points in the starting equation by choosing t = 0 at start and t = 1 at end.

	
= +

= +

(0)

(1)

0

1

P a b

P a b
	 (1.12)

Write equations in matrix form G = C·A, where G is called the geometry matrix

	












=



















1 0
1 1

0

1

P
P

a
b

	 (1.13)

Solve the equation for A i.e. A = C−1·G = B·G, where B is called the basis matrix

	








 =























−
1 0
1 1

1
0

1

a
b

P
P

	 (1.14)

Interpolating Splines    ◾    11

Substitute the coefficient values in the starting equation

	 = 


























−

() 1 1 0
1 1

1
0

1
P t t

P
P

	 (1.15)

Example 1.3

Find the equation of a line through points P0(3, 2) and P1(8, −4) in parametric form.
Choose a starting equation.

	 = + = 













() 1P t a bt t a

b
	

Write equations in matrix form G = C·A, where G is called the geometry matrix

	
−









 =




















3 2
8 4

1 0
1 1

a
b

	

Solve the equation for A i.e. A = C−1·G = B·G

	








 =









 −









 =

−










−
1 0
1 1

3 2
8 4

3 2
5 6

1
a
b

	

Substitute the coefficient values in the starting equation

	 = 



 −









() 1 3 2

5 6
P t t 	

The required parametric equations are obtained by separating out the x and y
components

	
= +

= −

3 5

2 6

x t

y t
	

Verification: = = = = −(0) 3, (1) 8, (0) 2, (1) 4x x y y (Figure 1.6).

NOTE

In reality, the parametric equations should be written separately for x and y i.e.
= + ⋅()x t a b tx x and = + ⋅()y t a b ty y . However, we use a compact notation here by substituting
= =   =  () [(), ()], , , ,P t x t y t a a a b b bx y x y . After solving for a and b, we separate out the

individual components and substitute them in the respective equations for x and y.

12    ◾    Fundamentals of Graphics Using MATLAB®

MATLAB Code 1.3

clear all; clc;
syms t;
x1 = 3; y1 = 2;
x2 = 8; y2 = -4;
X = [x1 x2]; Y = [y1 y2];
G = [X ; Y];
C = [1 0; 1 1];
A = inv(C)*G';
ax = A(1,1); ay = A(1,2);
bx = A(2,1); by = A(2,2);

fprintf('Required equations : \n');
x = ax + bx*t; x = vpa(x)
y = ay + by*t; y = vpa(y)

%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);

subplot(131), plot(tt, xx); grid; axis square;
xlabel('t'); ylabel('x'); title('t - x');
subplot(132), plot(tt, yy); grid; axis square;
xlabel('t'); ylabel('y'); title('t - y');
subplot(133), plot(xx, yy, 'b-', X, Y, 'bo');
grid; axis square; hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); title('x - y');
text(x1+1, y1-0.5, 'P_0');
text(x2-1, y2+0.5, 'P_1');
hold off;

0 0.5 1
t

3

4

5

6

7

8
x

t - x

0 0.5 1
t

-4

-3

-2

-1

0

1

2

y

t - y

2 4 6 8
x

-4

-3

-2

-1

0

1

2

y

x - y

P0

P1

FIGURE 1.6  Plots for Example 1.3.

Interpolating Splines    ◾    13

1.4 � QUADRATIC SPLINE (STANDARD FORM)
A quadratic spline is a parabolic curve represented by a second-degree polynomial equation
and can be generated if at least three points are known along the curve. Standard form of a
quadratic spline implies the spline equation is computed in the spatial domain i.e. the x-y
plane. Let the given points be P1(x1, y1), P2(x2, y2), and P3(x3, y3). Choose a starting quadratic
equation, which is written in matrix form

	 = + + = 





















12 2y a bx cx x x
a
b
c

	 (1.16)

Substitute the given points in the starting equation to generate three equations. They are
sufficient to solve for the three unknown coefficients a, b, and c.

	

= + +

= + +

= + +

1 1
2

1

2 2
2

2

3 3
2

3

y a bx cx

y a bx cx

y a bx cx

	 (1.17)

The three equations are written in matrix form Y = C·A as before

	

















=



































1
1
1

1

2

3

1
2

1

2
2

2

3
2

3

y
y
y

x x
x x
x x

a
b
c

	 (1.18)

The equations are solved to find the values of the coefficients: A = C−1·Y

	
















=



































−
1
1
1

1
2

1

2
2

2

3
2

3

1

1

2

3

a
b
c

x x
x x
x x

y
y
y

	 (1.19)

The values of the coefficients are substituted in the starting equation to arrive at the
equation of the spline

	 = 







































−

1
1
1
1

2

1
2

1

2
2

2

3
2

3

1

1

2

3

y x x
x x
x x
x x

y
y
y

	 (1.20)

NOTE

subplot: displays multiple plots within a single figure window

14    ◾    Fundamentals of Graphics Using MATLAB®

Example 1.4

Find the equation of a quadratic spline through points P1(3, 2), P2(6, 5), and P3(8, −4).
Choose starting equation

	 = + + = 





















12 2y a bx cx x x
a
b
c

	

Write equations in matrix form Y = C·A

	 −
















=
































2
4

5

1 3 9
1 8 64
1 6 36

a
b
c

	

Solve for A: A = C−1·Y

	
















=
−

−

















20.8
10.9

1.1

a
b
c

	

Substitute in the starting equation

	 = − + −20.8 10.9 1.1 2y x x 	

Verification: = = = −(3) 2, (6) 5, (8) 4y y y (Figure 1.7).

1 2 3 4 5 6 7 8 9 10

x

-20

-15

-10

-5

0

5

y

P1

P2

P3

FIGURE 1.7  Plot for Example 1.4.

Interpolating Splines    ◾    15

MATLAB Code 1.4

clear all; clc;
syms x;
x1 = 3; y1 = 2;
x2 = 6; y2 = 5;
x3 = 8; y3 = -4;
X = [x1, x2, x3];
Y = [y1, y2, y3];
C = [1, x1, x1^2; 1, x2, x2^2; 1, x3, x3^2];
A = inv(C)*Y';
a = A(1); b = A(2); c = A(3);
fprintf('Required equation : \n');
y = a + b*x + c*x^2; y = vpa(y)

%plotting
d = 0.5;
xx = linspace(x1-2, x3+2);
yy = subs(y, x, xx);
plot(xx,yy, 'b-');
hold on; grid;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
axis square; axis tight;
text(x1+d, y1, 'P_1');
text(x2+d, y2, 'P_2');
text(x3+d, y3, 'P_3');
hold off;

1.5 � QUADRATIC SPLINE (PARAMETRIC FORM)
A quadratic spline can also be represented by parametric equations. Let the given points be
P0, P1, and P2. Here, P0 is the starting point i.e. ≡ (0)0P P and P2 is the end point i.e. ≡ (1)2P P .
To determine the curve uniquely an additional piece of information is required regarding
the value of parameter t at the middle point P1. Let the value of t at P1 be k, where 0 ≤ k ≤ 1
i.e. ≡ ()1P P k . Different values of k referred to as the sub-division ratio, will give rise to
curves with the same start and end points but having different shapes.

Choose a starting parametric quadratic equation written in matrix form

	 = + + = 





















() 12 2P t a bt ct t t
a
b
c

	 (1.21)

Substitute the given points in the starting equation by choosing t = 0 at start, t = k at the
middle, and t = 1 at end.

16    ◾    Fundamentals of Graphics Using MATLAB®

	

= + +

= + +

= + +

(0) (0)

() ()

(1) (1)

0
2

1
2

2
2

P a b c

P a b k c k

P a b c

	 (1.22)

Write equations in matrix form G = C·A

	
















=

































1 0 0
1
1 1 1

0

1

2

2
P
P
P

k k
a
b
c

	 (1.23)

Solve the equation for A i.e. A = C−1·G = B·G

	
















=

































−
1 0 0
1
1 1 1

2

1

0

1

2

a
b
c

k k
P
P
P

	 (1.24)

Substitute the coefficient values in the starting equation

	 = 





































−

() 1
1 0 0
1
1 1 1

2 2

1

0

1

2

P t t t k k
P
P
P

	 (1.25)

Example 1.5

Find the equation of a quadratic spline through points P0(3, 2), P1(8, −4),
and P2(6, 5) in parametric form with sub-division ratio k = 0.8.

Choose starting equation

	 = + + = 





















() 12 2P t a bt ct t t
a
b
c

	

Write equations in matrix form G = C·A

	 −
















=
































3 2
8 4
6 5

1 0 0
1 0.8 0.64
1 1 1

a
b
c

	

Interpolating Splines    ◾    17

Solve the equation for A i.e. A = C−1·G = B·G

	
















= −
−

















3 2
19.25 49.5
16.25 52.5

a
b
c

	

Substitute the coefficient values in the starting equation

	
= + −

= − +

3 19.25 16.25

2 49.5 52.5

2

2

x t t

y t t
	

Verification: = = = = − = =(0) 3, (0) 2, (0.8) 8, (0.8) 0.4, (1) 6, (1) 5x y x y x y (Figure 1.8).

MATLAB Code 1.5

clear all; clc;
syms t;
x0 = 3; y0 = 2;
x1 = 8; y1 = -4;
x2 = 6; y2 = 5;
k = 0.8;
G = [x0, y0 ; x1, y1 ; x2, y2];
X = [x0 ; x1 ; x2]; Y = [y0 ; y1 ; y2];
C = [1, 0, 0; 1, k, k^2; 1, 1, 1];
A = inv(C)*G;
ax = A(1,1); ay = A(1,2);
bx = A(2,1); by = A(2,2);
cx = A(3,1); cy = A(3,2);
fprintf('Required equations: \n');
x = ax + bx*t + cx*t^2 ; x = vpa(x)
y = ay + by*t + cy*t^2 ; y = vpa(y)

%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);

0 0.2 0.4 0.6 0.8 1
t

3

4

5

6

7

8

9

x

t - x

0 0.2 0.4 0.6 0.8 1
t

-10

-5

0

5

y

t - y

2 4 6 8 10
x

-10

-5

0

5

y

x - y

P0

P1

P2

FIGURE 1.8  Plots for Example 1.5.

18    ◾    Fundamentals of Graphics Using MATLAB®

yy = subs(y, t, tt);
subplot(131), plot(tt, xx);
xlabel('t'); ylabel('x'); title('t - x');
grid; axis square;
subplot(132), plot(tt, yy);
xlabel('t'); ylabel('y'); title('t - y');
grid; axis square;
subplot(133), plot(xx, yy, 'b-');
hold on; grid; axis square;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); title('x - y');
d = 0.5;
text(x0+d, y0, 'P_0');
text(x1+d, y1, 'P_1');
text(x2-1, y2-1, 'P_2');
hold off;

1.6 � CUBIC SPLINE (STANDARD FORM)
A cubic spline is represented by a third-degree polynomial and can be generated if at
least four points along the curve are known. Standard form of a cubic spline implies the
spline equation is computed in the spatial domain i.e. the x-y plane. Let the given points
be P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4). Choose a starting cubic equation, which is
written in matrix form

	 = + + + = 























12 3 2 3y a bx cx dx x x x

a
b
c
d

	 (1.26)

Substitute the given points in the starting equation to generate four equations. Four equa-
tions are sufficient to solve the four unknown coefficients a, b, c, and d

	

= + + +

= + + +

= + + +

= + + +

1 1
2

1
3

1

2 2
2

2
3

2

3 3
2

3
3

3

4 4
2

4
3

4

y a bx cx dx

y a bx cx dx

y a bx cx dx

y a bx cx dx

	 (1.27)

The four equations are written in matrix form Y = C·A

	





















=







































1
1
1
1

1

2

3

4

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

y
y
y
y

x x x
x x x
x x x
x x x

a
b
c
d

	 (1.28)

Interpolating Splines    ◾    19

The equations are solved to find the values of the coefficients: A = C−1·Y

	



















=









































−
1
1
1
1

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

1

1

2

3

4

a
b
c
d

x x x
x x x
x x x
x x x

y
y
y
y

	 (1.29)

The values of the coefficients are substituted in the starting equation to arrive at the
equation of the spline.

	 = 













































−

1

1
1
1
1

2 3

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

1

1

2

3

4

y x x x

x x x
x x x
x x x
x x x

y
y
y
y

	 (1.30)

Example 1.6

Find the equation of a cubic spline through points P1(−1, 2), P2(0, 0), P3(1, −2),
and P4(2, 0).

Choose starting equation

	 = + + + = 























12 3 2 3y a bx cx dx x x x

a
b
c
d

	

Write equations in matrix form Y = C·A

	
−



















=

− −



































2
0
2

0

1 1 1 1
1 0 0 0
1 1 1 1
1 2 4 8

a
b
c
d

	

Solve for A: A = C−1·Y

	



















= −


















0
2.67
0

0.67

a
b
c
d

	

20    ◾    Fundamentals of Graphics Using MATLAB®

Substitute in the starting equation

	 = − +2.67 0.67 3y x x 	

Verification: − = = = − =(1) 2, (0) 0, (1) 2, (2) 0y y y y (Figure 1.9).

-2 -1 0 1 2 3

x

-4

-2

0

2

4

6

8

10

12

y

P1

P2

P3

P4

FIGURE 1.9  Plot for Example 1.6.

Interpolating Splines    ◾    21

M
A
T
L
A
B

C
o
d
e

1
.
6

c
l
e
a
r

a
l
l
;

c
l
c
;

s
y
m
s

x
;

x
1

=
-
1
;

y
1

=
2
;

x
2

=
0
;

y
2

=
0
;

x
3

=
1
;

y
3

=
-
2
;

x
4

=
2
;

y
4

=
0
;

X

=
[
x
1

;

x
2

;

x
3

;

x
4
]
;

Y

=
[
y
1

;

y
2

;

y
3

;

y
4
]
;

C

=
[
1
,

x
1
,

x
1
^
2
,

x
1
^
3
;

1
,

x
2
,

x
2
^
2
,

x
2
^
3
;

1
,

x
3
,

x
3
^
2
,

x
3
^
3
;

1
,

x
4
,

x
4
^
2
,

x
4
^
3
]
;

A

=
i
n
v
(
C
)

*Y
;

a

=
A
(
1
)
;

b

=
A
(
2
)
;

c

=
A
(
3
)
;

d

=
A
(
4
)
;

f
p
r
i
n
t
f
(
'
R
e
q
u
i
r
e
d

e
q
u
a
t
i
o
n

:

\
n
'
)
;

y

=
a

+
b

*x

+
c

*x
^
2

+
d

*x
^
3
;

y

=
v
p
a
(
y
,

3
)

 %
p
l
o
t
t
i
n
g

X

=
[
x
1
,

x
2
,

x
3
,

x
4
]
;

m

=
m
i
n
(
X
)
;

n

=
m
a
x
(
X
)
;

x
x

=
l
i
n
s
p
a
c
e
(
m

-

1
,

n

+
1
)
;

y
y

=
s
u
b
s
(
y
,

x
,

x
x
)
;

p
l
o
t
(
x
x
,
y
y
,

'
b
'
)
;

h
o
l
d

o
n
;

g
r
i
d
;

s
c
a
t
t
e
r
(
X
,

Y
,

2
0
,

'
r
'
,

'
f
i
l
l
e
d
'
)
;

x
l
a
b
e
l
(
'
x
'
)
;

y
l
a
b
e
l
(
'
y
'
)
;

a
x
i
s

s
q
u
a
r
e
;

e

=
1
;

t
e
x
t
(
x
1
,

y
1

+e
,

'
P
_
1
'
)
;

t
e
x
t
(
x
2
,

y
2

+e
,

'
P
_
2
'
)
;

t
e
x
t
(
x
3
,

y
3

+e
,

'
P
_
3
'
)
;

t
e
x
t
(
x
4
,

y
4

+2
*e
,

'
P
_
4
'
)
;

h
o
l
d

o
f
f
;

22    ◾    Fundamentals of Graphics Using MATLAB®

1.7 � CUBIC SPLINE (PARAMETRIC FORM)
A cubic spline can also be represented by parametric equations. Let the given points be P0,
P1, P2, and P3. Here, P0 is the starting point i.e. ≡ (0)0P P and P3 is the end point of the curve
i.e. ≡ (1)3P P . To determine the curve uniquely two additional pieces of information are
required regarding the value of parameter t at the middle points P1 and P2. Let these values
of t be m and n, where ≤ ≤0 , 1m n i.e. ≡ ()1P P m and ≡ ()2P P n . Different values of m and n
referred to as the sub-division ratios, will give rise to curves with the same start and end
points but having different shapes.

Choose starting equation written in matrix form

	 = + + + = 























() 12 3 2 3P t a bt ct dt t t t

a
b
c
d

	 (1.31)

Substitute the given points in the starting equation by choosing t = 0 at start, t = m, n at the
middle points, and t = 1 at end.

	

P a b c

P a b m c m

P a b n c n

P a b c

= + +

= + +

= + +

= + +

(0) (0)

() ()

() ()

(1) (1)

0
2

1
2

2
2

3
2

	 (1.32)

Write equations in matrix form G = C·A

	

P
P
P
P

m m m
n n n

a
b
c
d





















=





































1 0 0 0
1
1
1 1 1 1

0

1

2

3

2 3

2 3
	 (1.33)

Solve the equation for A: A = C−1·G = B·G

	

a
b
c
d

m m m
n n n

P
P
P
P



















=







































−
1 0 0 0
1
1
1 1 1 1

2 3

2 3

1
0

1

2

3

	 (1.34)

Substitute the coefficient values in the starting equation

Interpolating Splines    ◾    23

	 P t t t t m m m
n n n

P
P
P
P

= 











































−

() 1

1 0 0 0
1
1
1 1 1 1

2 3
2 3

2 3

1
0

1

2

3

	 (1.35)

Example 1.7

Find the equation of a cubic spline through points (−1, 2), (0, 0), (1, −2), and
(2, 0) in parametric form with sub-division ratios m = 0.1 and n = 0.9.

Choose starting equation written in matrix form

	 = + + + = 























() 12 3 2 3P t a bt ct dt t t t

a
b
c
d

	

Write equations in matrix form G = C·A

	

−

−



















=





































1 2
0 0
1 2
2 0

1 0 0 0
1 0.1 0.01 0.001
1 0.9 0.81 0.729
1 1 1 1

a
b
c
d

	

Solve the equation for A i.e. A = C−1·G = B·G

	



















=

−
−

−



















1 2
12.7222 21.4444
29.1667 13.8889

19.4444 5.5556

a
b
c
d

	

Substitute the coefficient values in the starting equation

	
= − + − +

= − + +

1 12.7222 29.1667 19.4444

2 21.4444 13.8889 5.5556

2 3

2 3

x t t t

y t t t
	

Verification: = − = = = = = = −(0) 1, (0.1) 0, (0.9) 1, (1) 2, (0) 2, (0.1) 0, (0.9) 2,x x x x y y y
=(1) 0y

The actual values might differ slightly due to round-off errors (Figure 1.10).

24    ◾    Fundamentals of Graphics Using MATLAB®

MATLAB Code 1.7

clear all; clc;
syms t;
x0 = -1; y0 = 2;
x1 = 0; y1 = 0;
x2 = 1; y2 = -2;
x3 = 2; y3 = 0;
m = 0.1; n = 0.9;
P = [x0 y0 ; x1 y1 ; x2 y2 ; x3 y3];
X = [x0 ; x1 ; x2 ; x3]; Y = [y0 ; y1 ; y2 ; y3];
C = [1, 0, 0, 0; 1, m, m^2, m^3; 1, n, n^2, n^3; 1, 1, 1, 1];
A = inv(C)*P;
ax = A(1,1); ay = A(1,2); bx = A(2,1); by = A(2,2);
cx = A(3,1); cy = A(3,2); dx = A(4,1); dy = A(4,2);
fprintf('Required equations : \n');
x = ax + bx*t + cx*t^2 + dx*t^3; x = vpa(x, 3)
y = ay + by*t + cy*t^2 + dy*t^3; y = vpa(y, 3)

%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
subplot(131), plot(tt,xx); grid;
xlabel('t'); ylabel('x'); title('t - x'); axis square;
subplot(132), plot(tt,yy); grid;
xlabel('t'); ylabel('y'); title('t - y'); axis square;
subplot(133), plot(xx,yy,'b-'); grid;
xlabel('x'); ylabel('y'); title('x - y'); axis square;
hold on;
scatter(X, Y, 20, 'r', 'filled');
axis([-2 3 -5 3]);
e = 0.5;
text(x0+e, y0, 'P_0');
text(x1+e, y1, 'P_1');

0 0.2 0.4 0.6 0.8 1
t

-1

-0.5

0

0.5

1

1.5

2

2.5

x

t - x

0 0.2 0.4 0.6 0.8 1
t

-5

-4

-3

-2

-1

0

1

2

y

t - y

-2 -1 0 1 2 3
x

-5

-4

-3

-2

-1

0

1

2

3

y

x - y

P0

P1

P2

P3

FIGURE 1.10  Plots for Example 1.7.

Interpolating Splines    ◾    25

text(x2+e, y2, 'P_2');
text(x3+e, y3, 'P_3');
hold off;

1.8 � PIECEWISE SPLINES (STANDARD FORM)
Complex curves cannot be appropriately modeled using cubic splines. They are typically
S-shaped curves while complex curves may contain a number of twists and turns. One
option is to model the curves using higher order splines; however, they need higher degree
equations to be solved, which increases the computational overhead and time delay of the
system. Moreover, higher degree splines are too sensitive to slight changes in CPs, which
is typically not desirable since we generally want slight changes of the splines to be made
by small adjustments of their CPs and do not favor drastic changes in shape. Such curves
are best modeled by using multiple cubic splines joined end to end. These are known as
piecewise splines.

Consider four given points P1, P2, P3, and P4 and it is required to find equations of piece-
wise splines through them. Essentially, this means that instead of a single cubic spline
passing through the four points it is required to find three separate splines passing through
each pair of points as shown in Figure 1.11.

Let the coordinates of the given points be P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4).
Let the three cubic curve segments be designated as A, B, and C between points P1 and P2,
P2 and P3, and P3 and P4, respectively. As before, let starting cubic equations be of the form

= + + +2 3y a bx cx dx . Since now there are three curve segments, there needs to be three
different sets of coefficients as follows:

0 1 2 3 4 5 6 7 8

x

-0.5

0

0.5

1

1.5

2

2.5

3

y

P1

P2

P3 P4

A

B

C

A
B
C

FIGURE 1.11  Piecewise splines.

26    ◾    Fundamentals of Graphics Using MATLAB®

	

= + + +

= + + +

= + + +

:

:

:

1 1 1
2

1
3

2 2 2
2

2
3

3 3 3
2

3
3

A y a b x c x d x

B y a b x c x d x

C y a b x c x d x

	 (1.36)

So altogether there are 12 different unknowns and at least 12 different equations are needed
to solve them.

In order to formulate these 12 equations, various constraints are used to ensure that three
separate spline segments join together to form a single smooth curve. The first constraint
is known as C0 continuity condition, which states that in order to form a smooth curve the
three splines should physically meet at their joining points (Hearn and Baker, 1996). In
other words, spline A should pass through points P1 and P2, spline B should pass through
points P2 and P3, and spline C should pass through points P3 and P4. Substituting the point
coordinates in the respective starting equations the following six equations are obtained.
If S(Pk) denotes segment S passing through point Pk, we can write:

	

()

()

()

()

()

()

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

:

:

:

:

:

:

1 1 1 1 1 1
2

1 1
3

1

2 2 1 1 2 1
2

2 1
3

2

2 2 2 2 2 2
2

2 2
3

2

3 3 2 2 3 2
2

3 2
3

3

3 3 3 3 3 3
2

3 3
3

3

4 4 3 3 4 3
2

4 3
3

4

A P y a b x c x d x

A P y a b x c x d x

B P y a b x c x d x

B P y a b x c x d x

C P y a b x c x d x

C P y a b x c x d x

	 (1.37)

The second constraint to be obeyed is known as C1 continuity condition, which states that
to form a smooth curve the slopes of the individual spline segments should be equal at
their meeting points (Hearn and Baker, 1996). Taking the derivative of the spline equations
the following are obtained:

	

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

: 2 3

: 2 3

: 2 3

1 1 1
2

2 2 2
2

3 3 3
2

A y b c x d x

B y b c x d x

C y b c x d x

	 (1.38)

In this case: slope of A at P2 = slope of B at P2. If S′(Pk) denotes slope of segment S at point
Pk we have:

	 A P B P b c x d x b c x d x() ()′ = ′ + ⋅ + ⋅ = + ⋅ + ⋅: 2 3 2 32 2 1 1 2 1
2

2 2 2 2 2
2

2 	

Rearranging:

	 = − − ⋅ − ⋅ + + ⋅ + ⋅0 2 3 2 31 1 2 1
2

2 2 2 2 2
2

2b c x d x b c x d x 	 (1.39)

