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Department of Chemistry, Northwestern University, 2145 Sheridan Road,  
Evanston, IL 60208, USA
chadnano@northwestern.edu
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A DNA-Based Method for Rationally Assembling Nanoparticles

Figure 1.2 Cuvettes with the Au colloids and the four DNA strands responsible 
for the assembly process. Left cuvette, at 80°C with DNA-modified colloids in 
the unhybridized state; centre, after cooling to room temperature but before 
the precipitate settles; and right, after the polymeric precipitate settles to the 
bottom of the cuvette. Heating either of these cool solutions results in the 
reformation of the DNA-modified colloids in the unhybridized state (shown in 
the left cuvette).
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A DNA-Based Method for Rationally Assembling Nanoparticles

Figure 1.4 TEM images of: (a) an aggregated DNA/colloid hybrid material; (b) 
a two-dimensional colloidal aggregate showing the ordering of the DNA-linked 
Au nanoparticles. Images were taken with a Hitachi 8100 Transmission Electron 
Microscope.



10 A DNA-Based Method for Rationally Assembling Nanoparticles

aggregates with uniform particle separations ~60 Å. This distance 
is somew
or colloids connect

hat shorter than 

sequences. 
f

But because of the nick
ed by rigid 

the maximum 
DNA hy

spacing 
brids with the select

(95 Å) expect
ed 
ed 

not 
principle, this is a 

rigid hybrids and 
variable 

are quit
that 

e flexible. 
s in the DN

can be contr
It should 

A duple
be not

x, these 
ed 

ar
, in 

e 

olled by r
that

number of nick
system from four overlapping strands to three (thereby r

educing the 

 This work gi
s) or b
ves entry int

y using triple
o a new class of 

xes instead of duple
DNA/nanoparticle

xes.
educing the 

materials and assemblies, which might have useful electrical, 
 hybrid 

of nanoparticle size 
and structural properties that 

and chem
should be 
ical composition, 

controllable 
and oligonucleotide 

through choice 
optical 

sequence and 
this strategy easil

length. 
y to other noble-metal 

We note that it should be possible to e

and semiconductor (for example, CdSe and CdS) 
(for example, 

[23, 24] colloidal 
Ag, Pt) 

xt
[22] 
end 

nanoparticles with well established surface coordination chemistry

de
Our 

veloping new types of 
initial results bode w

biosensing 
ell for the 

and sequencing schemes 
utility of this strategy for 

. 

f
DN
or 

A. 
the bands that 

The Au colloidal 
give rise 

particles 
to their 

ha
colours 
ve large 

(Fig. 
extinction 

for 

colours, which depend on particle size and concentr
1.2). These 

coefficients 

ation and 
intense 

interparticle distance, make these materials particularly attractive 
for new colorimetric sensing and sequencing strategies for DNA.

Acknowledgments

We thank I. M. Klotz for discussions, and V. Dravid for assistance 
with 
Y

the TEM experiments. 
or 

C.A.M. was seed-supported b an ONR 

DuP
oung In

ont Y
v
oung Pr
estigat

y 

and a Cammille Dr
of

e
essor 
award, an A. P

award, an NSF 
. Sloan F

Young In
oundation fellowship, a 

Materials Research Cent
yfus T

er 
eacher-
of North

Scholar A
western 

w
Uni

ar

ogr
v
d; C.A.M. thank

vestigator award 

a TEM, which was purchased by the MRSEC Pr
ersity for the use 

s the 

am of the National 
of 

Science Foundation; R.L.L. was supported by the NIGMS.

References

 

 2. Hayat, M. A. (ed.) (1991). 

Clusters and Colloids

Colloidal Gold: Principles, Methods, and 
Applications (Academic, San Diego).

1. Schmid, G. (ed.) (1994).  (VCH, Weinheim).

10 I A DNA-Based Method for Rationally Assembling Nanopartic/es 

aggregates with uniform particle separations -60 A. This distance 
is somewhat shorter than the maximum spacing (95 A.) expected 
for colloids connected by rigid DNA hybrids with the selected 
sequences. But because of the nicks in the DNA duplex, these are 
not rigid hybrids and are quite flexible. It should be noted that, in 
principle, this is a variable that can be controlled by reducing the 
system from four overlapping strands to three (thereby reducing the 
number of nicks) or by using triplexes instead of duplexes. 

This work gives entry into a new class ofDNAjnanoparticle hybrid 
materials and assemblies, which might have useful electrical, optical 
and structural properties that should be controllable through choice 
of nanoparticle size and chemical composition, and oligonucleotide 
sequence and length. We note that it should be possible to extend 
this strategy easily to other noble-metal (for example, Ag, Pt) [22] 
and semiconductor (for example, CdSe and CdS) [23, 24] colloidal 
nanoparticles with well established surface coordination chemistry. 
Our initial results bode well for the utility of this strategy for 
developing new types of bios en sing and sequencing schemes for 
DNA. The Au colloidal particles have large extinction coefficients 
for the bands that give rise to their colours (Fig. 1.2). These intense 
colours, which depend on particle size and concentration and 
interparticle distance, make these materials particularly attractive 
for new colorimetric sensing and sequencing strategies for DNA. 
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2.1.2 Why Nanomaterials?

Not all molecular fluorophores make for suitable probes in 
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because of their (1) small size (1–100 nm) and correspondingly 
large surface-to-volume ratio, (2) chemically tailorable physical 
properties, which directly relate to size, composition, and shape 

Introduction
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(Fig. 2.1), (3) unusual target binding properties, and (4) overall 
structural robustness. The size of a nanomaterial can be an 
advantage over a bulk structure, simply because a target binding 
event involving the nanomaterial can have a significant effect on 
its physical and chemical properties, thereby providing a mode of 
signal transduction not necessarily available with a bulk structure 
made of the same material. Tailorable physical properties are a 
very important aspect of nanomaterials. Indeed, in this regard, 
nanomaterials and biology have a long history as nanoparticles have 
been used in bioconjugation and as cellular labeling agents for the 
past four decades [15]. However, new synthesis, fabrication, and 
characterization methods for nanomaterials have evolved to the point 
that deliberate modulation of their size, shape, and composition is 
possible, thereby allowing exquisite control of their properties. The 
ability to carefully tailor the physical properties of nanomaterials is 
essential for their application in biodetection [1]. Specifically, the 
sizes, shapes, and compositions of metal nanoparticles and quantum 
dots can now be systematically varied to produce materials with 
specific emissive, absorptive, and light-scattering properties  
(Fig. 2.1), which make these materials ideal for multiplexed analyte 
detection [1, 16–19]; the composition of nanowires and nanotubes 
also can be controlled, thus allowing for measurement and variation 
of their conductive properties in the presence of target analytes 
[20]. Additionally, tools and techniques for surface modification 
and patterning have advanced to a point that now allows generation 
of nanoscale arrays of biomacromolecules and small molecules on 
surfaces [21–24]. Along with synthetic advances for varying the 
size, shape, and composition of nanostructured materials has come 
the ability to tailor their binding affinities for various biomolecules 
through surface modification and engineering [25–28]. Each of 
these capabilities allows researchers to design materials that can 
potentially be implemented into new assays having improved modes 
of signal transduction that can compete favorably with the molecular 
fluorophore-dominated methods of PCR and ELISA.
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Figure 2.1 Sizes, shapes, and compositions of metal nanoparticles can 
be systematically varied to produce materials with distinct light-scattering 
properties.

2.2 Nanoparticle-Based Detection Methods

2.2.1 Optical Detection

2.2.1.1 Nucleic acids

An early indication of the potential of nanomaterials as biodetection 
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Figure 2.2 In the presence of complementary target DNA, oligonucleotide-
functionalized gold nanoparticles will aggregate (A), resulting in a change of 
solution color from red to blue (B). The aggregation process can be monitored 
using UV–vis spectroscopy or simply by spotting the solution on a silica support 
(C). From Ref. [29]. Reprinted with permission from AAAS.
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Figure 2.3 Quantum dots can be employed for detecting multiple targets in a 
single assay. Specifically, varying the numbers and ratios of different quantum 
dots per target results in a unique fluorescent signal for each individual target. 
Reprinted by permission from Springer Nature Customer Service Centre GmbH: 
Springer Nature, Nature Biotechnology, Ref. [54], Copyright (2001).
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the MTHFR gene from a 20 µg sample of human genomic DNA (~200 
fM in target) without prior PCR amplification 

genomic 
advance, demonstr

DNA in samples 
ating the 

without 
ability 

PCR 
to use nanostructur

[67]. This w
es 

as 
to 

a 
det
major 

at concentrations r
ect 

to real 
elevant 

is 
is 

a 
the 

consequenc
ke

medical 
y to these 

diagnostic 
advances. 

applications. 
Indeed, the 

The 
selecti

use 
vity 

of 
of 

nanoparticles 

e of the sharp
this method 

pr
gold 

operties 
nanoparticles, 

of the gold 
and 

nanoparticles 
its sensiti

 melting 
vity 

tr
deri
ansitions 

ves from 
of DN

and 
the 

A-modified 

their ability to eff
catal

ect 
ytic 
the 

reduction of silver ions to amplify the detection signal.

Figure 2.4 Scanometric DNA assay. In this assay a surface-bound capture 
oligonucleotide binds one-half of the target of interest, and an oligonucleotide-
functionalized gold nanoparticle probe binds to the other half. Catalytic 
reduction of silver onto the capture/target/probe sandwich results in a signal 
that can be detected scanometrically. From Ref. [66]. Reprinted with permission 
from AAAS.
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Figure 2.5 If Raman dyes (blue spheres) are attached to the labeling probe in 
the scanometric assay, the targets can be encoded and detected via the Raman 
signal of their labels. From Ref. [68]. Reprinted with permission from AAAS.
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Figure 2.6 Nanostructure-based bio-barcode amplification scheme. In this 
assay magnetic microparticles capture either the target DNA or the protein. 
Gold nanoparticles loaded with barcode oligonucleotides and target capture 
molecules are added to the assay to form a sandwich system. The sandwich 
complexes are magnetically separated from the assay mixture and then washed 
with water to remove the barcode DNA that code for the target DNA or protein 
of interest. The barcodes are detected using the scanometric approach.
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Figure 2.7 When the capture/target/probe sandwich is positioned in the gap 
between two electrodes, catalytic reduction of silver onto the sandwich system 
results in a signal that can be detected electrically. From Ref. [93]. Reprinted 
with permission from AAAS.
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Figure 2.8 Magnetic microparticles (large brown spheres) labeled with DNA 
capture strands can bind target DNA, and then oligonucleotide-functionalized 
nanoparticle labels (small spheres) with different electrochemical signatures 
can be used to code for the specific target DNA of interest.
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surfaces. DPN can be used to both directly and indirectly pattern 
r
ont
eacti

o 
v
v

e 
arious 

protein 
surf

featur
aces 

es 
(A

and 
u, silica, 

directly pattern reactive DNA features 

Nanogr
processes.

afting and ion-beam methods 
Ni) 

r
with 
ely on 

nanoscale 
indirect 

r
deposition 
esolution. 

 
their 

The 
r

potential of nanoarrays for detection purposes hinges on 

DN
targets 

eacti
using 

vity 
con

with 
ventional 

targets 
tech

and 
niques. 

the ability 
To this 

to 
end, 

effectively 

A nanoarrays fabricated using DPN can recognize 
it 

complementary 
was sho

scr
wn 
een 

that 
for 

tar
oligonucleotide-functionalized 

get DNA labeled with either molecular fluorophores [114] or 

of 
114]. 

target 
In the 

nanoparticle 
can 

case of 
gold nanoparticles (Fig. 2.10B) [113, 

be 
labeling, 

detect
molecula

ed with 
r 

a 
fluor

fluor
ophor

escence 
e labeling, 

microscope, 
the pr

and 
esence 

target presence is assessed using 
for 

pr
which 

pr
obe 

measures the change 
AFM, 

obes, 
binding 

lig
events. For slig

in 
htl

heig
y lar

ht 
ger 

pr
spots 
ofile aft

with 
er 

nanoparticle 
nanoparticle 

binding 
by rinsing 

events. 
ht scattering can be used 

the substr
The r

at
eacti

es with 
vity of 

antibodies 
protein 

to measur
nanoarr

e 

specific 
a
and 
ys is 

pr

to the 
det

obe 
ermined 

target 

proteins. The antibodies, tagged 
patterned 

or a nanoparticle 
with either a molecular fluorophore 

also 
micr

can 
oscop

be 
y 
used

[117, 118] 
probe, 

or 
can 
AFM 

be 
[115, 

detect
116]. 

ed using 

[126] 
 

Lithogr
either fluorescence 

on surfaces. 
to f

Such 
abricat

featur
e nanoscopic 

es could 
w
be 

ells 
used 

[124, 
as 

125] 
aphic 

and 
techniques 

nanoconfinement 
channels 

vessels for recognition events between probes 

lo
allo

w
wing 
er det

f
ection 
or significant 

limits. While 
reduction 

these 
in 

nanopatt
sample 

erning 
volume 

and tar
and 
get anal

possibl
ytes, 

y 

miniaturization 
still in their infancy

of 
, 
biodet

they 
ection 
represent 

assa
the 

ys. 
ne

In 
xt step t

t
o
echniq
ward 

ues 
further 

are 

sensiti
require 

vities 
smalle

than 
r sample volum

principle, they will 

used to fabricate nanoarr
is achie

a
v
y
ed 

and thus may 

of 
with 

es 
microarrays. Recentl

result 

s monoclonal 
y, 

in 
DPN 

hig
w
her 

as 

1 
from 

p24 
human 

[127]. 
plasma 
These arr

samples. 
ays wer

Aft
e 

er 
used 

captur
to captur

antibodies 
e HIV p24 

against 
prot

HIV
eins 

-

rinsed 
determined 

with anti-p24-modified 
using AFM. To amplify 

gold nanoparticles, 
the signal, 

e, the pr
the 

esence 
nanoarr

of p24 
ay 

was 

spots only when p24 is present and increase the heig
which 

ht of 
bind 

the spots. 
to 

w
the 

as 

Importantl
critical in cases 

y, only 
w

1 
her

µL 
e 

of 
sample 

sample 
volumes 

is requir
ar

ed 
e small 

for this 
and 

assa
limit

y, w
ed. 
hich 

The 
is 

Nanofabrication



40 Nanostructures in Biodiagnostics

detection limit for p24 using this assay is 0.025 pg/mL, which is 
much better than conventional ELISAs (5 pg/mL).

FFigure igure 2.102.10  In In a ca conventional onventional micrmicroarray oarray spot spot sizsizes es arare e typictypically ally 200 × 200 200 x 200 
µm2
Ilm2. . Using Using lolow-resolution w-resolution dip-pen dip-pen nanolithogrnanolithography aphy (DPN), 50 000 250-nm {DPN}, 50 000 250-nm 
prprotein otein spots spots ccan an be spotbe spotted ted in in an equivan equivalent alent ararea. ea. PPatterns atterns ccan an be further be further 
miniaminiaturized turized usingusing  high-rhigh-resolution esolution DPN DPN tto o ggenerate enerate a ta total otal of of 13 000 000 spots 13 000 000 spots in in 
a 200a 200  × 200 x 200 µm2

Ilm2  ararea ea (A). Similarly{A}. Similarly, , DPN DPN ccan an be used tbe used to o cconstruct onstruct nanopananopatterns tterns 
of oligof oligonucleotides onucleotides on on SiOSiOxx  surfsurfaces. aces. The rThe reactivity eactivity of of the pathe patterns tterns ccan an be be 
ininterrogated terrogated using using either either fluorfluorescence escence micrmicroscopy oscopy or or aatomic tomic fforce orce micrmicroscopy oscopy 
(AFM) (B). Fr{AFM} {B}. From om RRef. ef. [114]. R[114]. Reprinted eprinted with permission frwith permission from om AAAS.AAAS. 
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detection limit for p24 using this assay is 0.025 pgjmL, which is 
much better than conventional ELISAs (5 pgjmL). 
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ochemical 
assay, which 
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y

ht negate the impr
of 
ov

synthetic complexity 

because of their low 
s 
cost 
based 

and 
upon 

simplicity 
molecular 

[5]. 
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ement 

obes 
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sensiti
attracti

vity
ve 

. 
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DNA assay 
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in 
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w
ecting 
hich each 

electr
target 

ochemical 
recognition 

An 

signal 
ev

fr
ent 

electr

the om 
is 

ochemical 

a micr
indir

obead 
ectly 

imbedded 
[136]. This 
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repr

electr
esents 
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ve 
lo

molecules 
west detection 

exhibits 
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~100 
report

aM 
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for an electrochemical assay and one that competes favorably with 
molecular 
the best report

fluor
ed 
ophor

for 
e-based 
a nanostructur

assays; 
e-based 
however, it is 

Indirect protein amplification schemes also 
assa
have 

y 
still 
(500 

hig
zM) 
her 

[71]. 
than 

attention for the 
received much 

involves tagging 
sensiti

oligomers followed 
antibodies 

ve detection 
specific 

of 
t
pr
o 

ot
tar

eins. 
get 

Immuno-PCR, 

by PCR amplification after 
pr
the 

oteins 
detection 

with 
w

DN
hich 

step, 
A 

offers significantly higher sensitivities than ELISA [76, 

f
PCR 
avor

intr
able 

oduces
than 

 
the 
complications 

simpler and 
[13], 

mor
thus 

e user-friendl
making immuno-PCR 

77]. Howe
less 
ver, 

nanoparticle-based bio-barcode approach for 
y ELISAs. The 

eliminates 
detecting proteins 

W
or

ang 
ders 

and 
of magnitude 

the need for PCR amplification 

coworkers 
mor

adopt
e sensiti

ed a 
ve than ELIS

and is approximately 6 

code approach for pr
method similar 

As [75]. 
to 

V
the 
ery r

bio-bar-
ecently, 

det
detecting 

ected the 
bar

bases 
code DN

ot
A, 
ein 

the
det

y 
ection, 

fragment
but 

ed 
inst

ochemicall
the 

ead 
bar

of scanometricall
and then 

y 

electr y, resulting in a 
codes 

detection limit 
of ~13 fM [137].

Table 2.1 Detection limits of nucleic acid assaysa

PCR Genomic 
Assay ssDNA products DNA

Nanostructure- Colorimetric29 ~4210 nM
based methods (cross-linked Au 

nanoparticles)
Colorimetric36 60 nM
(non-cross-linked 
Au nanoparticles)
Magnetic 
relaxation97 

20 pM

(iron oxide 
nanoparticles)
Electrochemical96 

(nanoparticles)
270 pM

Scanometric35,66,67 50 fM 100 aMb 200 fM
(Au nanoparticles 
with Ag 
amplification)
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Assay ssDNA
PCR 
products

Genomic 
DNA

Other non-
enzymatic 
based methods

Raman 
spectroscopy68 (Au 
nanoparticles with 
Ag amplification)
Electrical93 (Au 
nanoparticles with 
Ag amplification)
Electrical99 (Si 
nanowire)
Electrical103 
(carbon nanotube)
Resonant light-
scattering61-66 
(metal 
nanoparticles)

Fluorescence56 
(ZnS and CdSe 
quantum dots)
Surface plasmon 
resonance41 (Au 
nanoparticles)
Quartz crystal 
microbalance94 (Au 
nanoparticles)
Laser diffraction42 
(Au nanoparticles)
Fluorescence45 
(fluorescent 
nanoparticles)
Bio-barcode 
amplification71 (Au 
nanoparticles with 
Ag amplification)
Fluorescence35 
(molecular 
fluorophores)

431 fM

500 fM

10 fM

54 aM

170 fMb

2 nM

10 pM

431 fM

4350 fM

431 fM

500 zM

~600 fMb

33 fM

(Continued)
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Table 2.1 (Continued)

PCR Genomic 
Assay ssDNA products DNA

Fuorescence 2.5 mg
(dendrimer 
amplification)134

Electrochemical 100 aM
amplification136 
(electroactive 
reporter 
molecules)

aDetection limits can vary based on target length and sequence; therefore, 
it is difficult to compare assays without testing them using identical targets 

band conditions. Values taken from Ref. [34].
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nanoconjugates. In recent years, focus has turned to therapeutic 
possibilities f
gene-r

or such materials. Structures which behave as 

photor
egulating 
esponsi

agents, drug carriers, 

the context of cells 
ve ther

and 
apeutics 

many debilitating 
have been 

diseases. 
dev

imaging 
eloped and 

agent
studied in 

s, and 

are not simply chosen as alternativ
These structures 

but rather for their new physical and chemical pr
es to molecule-based s

operties, 
yst

w
ems, 
hich 

confer substantive advantages in cellular and medical applications.

3.1 Introduction

Gold nanoparticles (AuNPs) have a rich history in chemistry, 
dating back to ancient R

beg
glasses f

an ov
or decor
er 150 y

ati
ears ago 

ve purpose
oman times w

s. The modern 
here the

er
y w
a of A

ere used 
uNP synthesis 

to stain 

pr
was 

operties 
possibl

that
y the 

 diff
first 

er fr
to 

om bulk 
observ

with the w
e that 

or
colloidal 

k of Michael 
gold solutions 

Faraday, 
ha
who 

gold [1, 2]. R
ve 

spherical and nonspherical shapes, ha
yielding methods for the synthesis of A

last 
as size- and shape-dependent optical 

uNP
v

uNPs, including 
eliable 

those with 
and high-

e been de

such 
half-century [3]. The resulting A s ha

a o v
and electr

ve unique pr
veloped over the 

high surface area t olume ratio, and surfaces that can 
onic 

operties, 

be r
featur

eadil
es, 

modified with ligands containing functional groups such as 
y 

B
phosphines, 

y using these functional 
and amines, w

gr
hich 

oups t
exhibit 

o anchor the lig
affinity for gold 

ands, additional 
surfaces 

thiols, 
[3]. 

moieties 
used to impart 

such as oligonucleotides, pr
even greater functionality

oteins, and antibodies can be 
. The r

including pr
gold nanoconjug

ogrammed assem
ates has enabled 

bly and cry
a broad r

stallization 
ange 

ealization 
of investig

of such 

of mat
ations, 

[4, 5], arr
erials 

11]. 
DNA templat

angement of nanoparticles into dimers and trimers ont

The 
es [6], bioelectronics [7–9], and detection methods [10, 

o 

application 

 
biodiagnostics ha

In recent years, gold 
ve been r

of gold nanoconjug
eviewed elsew

ates for biodetection and 

led to new and exciting 
nanoconjug

developments with 
ates and 

here [12–14].
their pr

enormous 
operties ha

potential 
ve 

in biology 

gold nanoconjug
direction that 

and medicine. 
gr

These investigations represent a new 

recent studies, as w
at
eatl

es as labels 
y deviates fr

for electr
om the mor

on micr
e established use of 

ell as those of several other r
oscop

esear
y [15]. Our 

ch groups, 
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have shown that gold nanoconjugates, when functionalized with 
appr
developments ha

opriate surface moieties, 
ve forged a new 

can r
frontier in nanoparticle 

eadily enter living cells. These 

including the broader use of gold 
research, 

 
and the pr

In this r
omise f

eview w
or their e

e describe 
ventual use as ther

nanoconjugat
apeutic agents.

es in cellular biology 

nanoconjugates for cellular and ther
the curr

apeutic uses. 
ent status of 

As surf
gold 

chemistry is one of the key features that controls the properties 
ace 

and functionali

nucleic acid, peptide, antibod
on the type of 

ty
surf

, w
ace functionalization, including citr
e have divided this review into sections 

ate, amine, 
based 

section, our discussion focuses 
y, and lipid ligands (Table 3.1). In each 

cells. 
chemical pr

In Section 
operties, 

3.8, w
as w

e also pr
ell as in

on chemical s
vestigations and applications 

ynthesis, physical and 
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These 
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should 
e yet to be addr
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k
b
e
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y opportunities and open 

inspire future inv
the scientific community

that 
ations and lead to 

. 

discoveries continue the development 
estig
of the rich chemistry of 

gold nanoparticles.

Table 3.1 AuNP surface functionalities

Surface functionality Application Reference
Citrate Cell uptake [18, 19]
Transferrin Cell uptake [20, 21]
CTAB Cell uptake [14, 94]
Amine Gene transfection [26, 30, 31]

Antiviral activity [34]
Drug delivery [34]
Oligonucleotide transfection [36]

Oligonucleotide Antisense gene regulation [25, 77, 88, 102]
mRNA detection [87, 88]
Small-molecule detection [89]
RNA interference [90]
Cancer cell detection [93]

Peptide Nuclear translocation [23, 100]
Antisense gene regulation [102]

Antibody Imaging [15, 106, 107, 110]
Photothermal therapy [108, 109, 110]

Lipid Imaging [112]
Cholesterol binding [111]

Introduction



58 Gold Nanoparticles for Biology and Medicine

3.2 Citrate and Transferrin

Citrate-functionalized gold nanoparticles can be prepared on a 
relatively large scale and with a high degree of monodispersity b

[17]. These 
using the methods 

methods 
of Fr

allo
ens [16] as w

w for the s
ell as Enustun and Turkevich 
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[16, 
spherical nanoparticles 

17]. This well-establishe
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d synthesis 
ers r

ynthesis 
anging fr

of 
om 5 t
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o 250 nm 
e-capped 

f
contr
orming 

ol size 
the basis of 

has contribut
recent in

ed to citr
vestig

ate-functionalized nanoconjug
and the ability to finel

ates 
y 

nanoparticles by cells [18]. In one such 
ations of 

study, Chan 
the uptak

and co
e of 

wor
gold 

determined 
kers 

that
ability 

, in a HeLa 
to be int

how 
ernalized 

the size and 
by cells [19]. 

shape of the 
Their 

particles 
study demonstr

influence their 

cell model, the amount of time that the citr
at
at
es 

particles remain int
e 

w
does 

hen 
aff
the

ect 
y ha

the t
ve diamet

ernalized 

otal 
ers betw

is independent 

number of nanoparticle 
een 14 and 74 nm. Ho

of the particle size 

during the experiment. By using inductively coupled plasma 
conjugates int

wever
ernalized 
, the size 

emission spectroscopy (ICP-AES) to determine the intr
atomic 

gold content, these 
acellular 

gold nanoconjug
internalized by HeLa 
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r
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esearchers det
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ermined 

of 50 nm ar
that 

e 
citr

most r
ate-capped 

cells (Fig. 3.1). They found that the maximum 
eadily 

number 
cell is 30

of citr
00, 6160, 

ate-stabilized gold 
and 2988 for 

nanoconjugates taken up by a HeLa 

 
of 14, 50, and 74 nm, r

The mechanism by w
especti

hich the citr
vel

gold nanoconjug
y.

ates with diameters 

enter cells has been the subject of inv
at
estig

e-capped gold nanoconjugates 

“bar
recorded transmission 

ation. Chan and co

e” citrate nanoconjug
electr

ates 
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and sho
oscop

wed 
y images 

that the particles w
of internalized 

workers 

mainly localized within vesicles inside of the cells [19]. The
ere 
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e-capped nanoparticle surf
cell uptake with the nonspecific 
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w
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y
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, atomic force micr
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y was used t
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The images obtained suggest vesicle f
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es on the cell 
o image transf
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errin-coat

ace [20]. 
ed 

and nanoconjugate internalization through endocyt
at the cell surf

osis. A series 
ace 

of experiments by Chithrani and Chan further determined that 



59

transferrin-coated citrate-functionalized gold nanoconjugates enter 
cells through the clathrin-mediated endocytosis pathway [21].

FFigure igure 3.13.1  TTransmission ransmission electrelectron on micrmicroscopy oscopy imaging imaging and and measurmeasurements ements of of 
ggold old nanonanoparticles particles in in cells. cells. (A) Gr(A) Graph aph of of number of number of ggold old nanopartnanoparticies icles per vpervesicie esicle 
diamediameter ter ffor or vvarious arious nanopartnanoparticie icle sisizes. zes. (B–F) TEM imag(B-F) TEM images es of gof gold old nanonanoparticies particles 
with sizwith sizes es of 14, of 14,30,50, 30, 50, 74, 74, and 100and 100  nm, nm, rrespectively, espectively, trtrapped apped inside inside vvesicles esicles of of 
a Hea HeLa La cecell. ll. AdapAdapted ted with permissiowith permission n frfrom om RRef. ef. [19]. [19]. CopCopyright yright (2006) (2006) AmericAmerican an 
ChemicChemical al SocieSociety. ty.

 Many investigations in cells use citrate-capped AuNPs as 
important 
functionality

Many investigations in cells use citrate-capped AuNPs as 

incr

important pr

ease uptak

precursors 
, because further 

of covalent conjugates with additional 

or 

functionality, because further derivatization has been shown 
increase 

impart functionality that 
uptake 

ecursors 

ability [22], 

of co

e ability [22], alt
can be used 

to 

[25, 26]. Indeed, citr

alter 

valent conjugates with 

or impart that can 

er intr
deri

intracellular localization 

additional 

[23, 24], 

structur

functionality be used 

vatization 

Indeed, 

acellular 
to affect 

has been sho

a cellular response 

o 

[25, 26]. citrate-coated particles are 

localization 

generally not 

[23, 24], 
wn t

The
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structures 
y ar

ideal 

be 

for investigations and internalization 

to affect a cellular 

studies 

r
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esponse 
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the major classes of gold nanoconjug

They are e susce
es f

susceptible 

or investig
ate-coat

quite difficult 
ptible 

to 
tto o en
ations 

w
environmentally 

ed particles 

or
vironmentall

and internalization studies on cells. 
are generally not ideal 

can be quite difficult to work 
the major of 

k with. with. In In the the 
classes gold nanoconjugates 

y induced 

ligands, 

ne
induced 
next 

aggreg

signer lig hich ha
at

w

ands, w
es that 

aggregation ation and and 

with with dedesigner which have 

xt sections e describe 

ve been been 
experiments on cells. 

de
that 

developed veloped and 

sections 
are functionalized 

we describe 
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and used fused for or 
experiments on cells.

3.33.3  AminesAmines 

In addition to the methods of Enustun and Turkevich and of 
F
In 
rens, alt

addition 
ernati

to 
v
the 
e methods 

methods 
for 

of 
the s

Enustun 
ynthesis 

and 
of gold nanoparticles 

Turkevich and of 
Frens, alternative methods for the synthesis of gold nanoparticles 

AminesAmines 159 

transferrin-coated citrate-functionalized gold nanoconjugates enter 
cells through the clathrin-mediated endocytosis pathway [21]. 
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have been developed. The Brust–Schiffrin method allows for the 
s
nm in diamet
ynthesis of monodisperse 

er 
gold nanoparticles ranging from 1 to 3 

a monolayer of alk
[27]. 

anethiolat
The resultant nanoparticles are stabilized b

can be changed through a substitution 
es. The composition 

reaction to 
of 

include 
the monola

specific 
yer 

y 

functionalities, 
[28]. According

depending on the int
ly, gold nanoconjug

ended use of the nanoparticles 

t
monola
o as 

y
amine-functionalized) 
er of amine-terminated alk

have been pr
anethiolat

ates functionalized with a 
es (her
epared 

eaft
for 

er r
v
ef
arious 
erred 

biological applications.

3.3.1 Gene Transfection

The ability to induce control over biological systems at the genetic 
le
gr

v
eat 
el is a 

promise 
fundamental 

for developing new tr
concept in experimental biology, and holds 

Their 
search f

str
or the best method f

aightforward synthesis 
or controlling 

eatments 
gene expr

of disease 
ession is ongoing. 

[29]. The 
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and high-degree of chemical 

models [26, 30].
been developed 
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as 

ed in amine-functionalized nanoparticles 
a means to transfer genetic material int
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e positively charged at physiological 
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ostaticall

y Rotello 
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and co
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w
with 
orkers 
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ged nucleic 

ed that 2 nm gold 
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nanoparticles functionalized with a mix
quaternary 

ed monolayer containing 
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ged surf

these nanoconjug
DN plasmids 

amines and unchar
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ver 
e able

them 
 to tr

efficientl
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y to 293T 

oups ar
cells 

e able 
[26]. 

t
In 
o bind 

fact, 

agent 
efficiency 

polyeth
than 

ylenimine (PEI, 60 
the commonly used 

ansfect these cells 
ymer 

with 

kDa). These 
cationic 

resear
pol

chers 
tr

also f
ansf

a gr
ection 
eater 

that the efficiency of the nanoparticle-mediat
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t
w
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as aff
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ect

v
ed b
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y the r
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atio of positi
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vel

the r
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y charged quat
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transfection 

elative amount and length of the surf
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thiol chain. Building 
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on these 
gold nanoparticles functionalized with l

observations, these 
ace-bound unchar

researchers ha
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ve 

outperf
moieties 

orm a commer
are highly efficacious 

cial v
at delivering DNA plasmids, 

ysine 

ector by a factor of 28 [31].
and 
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 The utility of amine-functionalized nanoconjugates for gene 
deli
stud

v
y
ery 
, combinations 

was also demonstr
of thiol-modified 

ated by Thomas 

(2 kDa) were used as surfactants or comple
PEI (2 

and Klibano
kDa) and 

v [30]. 
dodecy

In this 

g A
l-PEI 

synthesis. The concentration of PEI 
xing agents durin uNP 

the functionaliz
resultant nanoconjug

ed nanoparticl
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es fr
er plasmid DN

om 2.3 t
was used t

o 4.1 nm in diamet
o control the size 

er. The 
of 

A to COS-7 cells more 
efficiently than PEI alone.

3.3.2 Drug Delivery

Site-specific delivery, stability, and the programmed release of 
the 
molecular 

drugs t
and macr
o physiological 

omolecular ther
targets have been major challen

and multivalent surface architectur
apeutics [32]. The 
e of gold nanoconjug

highl
at
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ges for 
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target and pr
apeutic agents as well as to 

and 
therapeutic pa

thus are 
ot

e
ect molecules on the surf

xpected to impro
ace of a sing

yloads. New gener
ve the delivery and 

le nanoparticle, 
efficacy of 

[33]. 
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A r
AuNP

ecent stud
s as their cor

y by F
es ha
eldheim 

ve been 
ations of 

designed 
novel nanoconjug

and synthesized 
ates 

multivalent AuNPs functionalized with 
and coworkers has shown how 

HIV antagonist 
cell model [34].

are highly effective at silencing vir
derivatives of an 

al production in a 
important 

 Rotello and coworkers have dev

that 
nanoconjug

clea
possess 

ate functionalized with 
eloped a cationic 2 nm gold 

photoactive o-nitrobenzy
thiol-modified alkyl amines 

the 
v
positi
ed with 

vel
near-UV irr
y charged alky

adiation 
l amine 

(Fig. 3.2) [35]. Irr
l ester linkages, w

adiation 
hich can 

releases 
be 

nanoparticle. 
resulting in a 
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net 

e
neg
versal in char

atively charged car
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boxylat
particle, 

e-functionalized 
thereby 

ge provides an effectiv

fr
releasing a negatively charged payload such as an oligonucleotide 

e means of 

phot
om the nanoparticle surf

ocleavable ligands wer
ace. These 
e sho

cationic nanoparticles with 

r
bound oligonucleotide; 
ecovered following the clea

however, the tr
wn to inhibit tr

anscription acti
anscription of 

vity can be 
the 

of the bound oligonucleotide w
vage r

as also demonstr
eaction. Intr

at
acellular delivery 
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Fluor

v
escence-based xperime

ed in MEF cells. 

age, the bound DN
e

A is released fr
nts sho

om the nanoparticle 
w that, upon phot

surf
oinduced 

ace to 

Amines



62 Gold Nanoparticles for Biology and Medicine

the intracellular environment where it then localizes in the nucleus. 
A similar strategy has been developed to deliver anticancer drugs 
[36].

Figure 3.2 (A) Schematic illustration of the release of DNA from a 
photocleavable AuNP complex (NP-PC) upon UV irradiation within the cell. 
(B) Schematic presentation of light-induced surface transformation of NP-PC. 
Adapted with permission from Ref. [35]. Copyright © 2006, John Wiley and 
Sons.

 Another study by Rotello and coworkers demonstrates an 
alt
drug carriers. 

ernative method 
In this method, gold 

of releasing molecules fr
nanoparticles 

om gold nanoparticle 
functionalized with 
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a mixed monolayer of amine-terminated and fluorophore-labeled 
alky
Exposur

l thiol 
e t

lig
o intr

ands w
acellular 

ere internalized by either HepG2 or MEF cells. 

glutathione concentration (a thiol-possessing 
environments containing 

peptide) r
an elevated 

substitution and the passive release of the nanoconjugate lig
esults 

ands 
in 

[37].

3.3.3 Stability
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nanoconjugates 

e t
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o the stabilit
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or their potential 
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y Rot
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of positi

escent 
v
y
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nanoparticle surf

ace. It was found that 
ace caused 

incr
a mor

easing the net positi
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3.4 Oligonucleotides
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A
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Figure 3.3 The synthesis of the oligonucleotide gold nanoconjugates: 
Alkanethiol-terminated oligonucleotides are added to citrate-stabilized AuNPs, 
thereby displacing the capping citrate ligands through formation of a gold–thiol 
bond. Subsequent addition of a salt shields repulsion between the strands, thus 
leading to a dense monolayer of oligonucleotides.
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emphasized when comparing DNA-AuNPs to other types of AuNPs. 
For example, HeLa cells internalize onl

under 
coated gold 

nearl
particles 
y identical 

[19], compar
conditions 

ed t
[65]. 

o ov
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er one million 

ew thousand citr
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ate-

Importantly, 
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spectroscopy studies reveal that the thiolated oligonucleotides 
fluorescence 

remain bound to the AuNPs after cellular internalization (Fig. 3.4).

Table 3.2 Cell types that internalize polyvalent DNA gold nanoconjugates. 
Cellular internalization was determined using mass spectrometry 
and cell-associated fluorescence measurements

Cell type Designation or source

Breast SKBR3, MDA-MB-321, AU-565
Brain U87, LN229
Bladder HT-1376, 5637, T24
Colon LS513
Cervix HeLa, SiHa
Skin C166, KB, MCF, 10 A
Kidney MDCK
Blood Sup T1, Jurkat
Leukemia K562
Liver HepG2
Kidney 293T
Ovary CHO
Macrophage RAW 264.7
Hippocampus neurons primary, rat
Astrocytes primary, rat
Glial cells primary, rat
Bladder primary, human
Erythrocytes primary, mouse
Peripheral blood mononuclear cell primary, mouse
T cells primary, human
Beta islets primary, mouse
Skin primary, mouse

 Given the surprising ability of DNA-AuNPs to enter cells, the 
mechanism of uptake is of great interest. Interestingly, biophysical 
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characterization of DNA-AuNPs after exposure to serum-containing 
media reveals changes in the charge and size of the nanoconjugates. 
Exposure to cell culture conditions results in greater positive charge 
and larger nanoparticle diameter (as measured by zeta potential 
and light scattering), which was further shown to be caused by 
the adsorption of proteins [65]. The interaction of polyvalent 
nanoparticle conjugates with proteins provides a possible 
mechanism of recognition and subsequent internalization of these 
highly negatively charged particles, the details of which are still 
under intensive investigation.

Figure 3.4 Fluorescent microscopy images of C166-EGFP cells incubated for 
48 h with gold nanoconjugates functionalized with dual-fluorophore-labeled 
oligonucleotides (3¢-Cy3 and 5¢-Cy5.5) only reveal fluorescence from Cy5.5 
(706–717 nm, upper left). Negligible fluorescence is observed in the emission 
range of Cy3 (565–615 nm, upper right). Transmission and composite overlay 
images are shown in the lower left and lower right quadrants, respectively. 
The arrows indicate the location of the cell. From Ref. [25]. Reprinted with 
permission from AAAS.

3.4.4 Applications in Cells

Methods based on nucleic acids for detecting and controlling gene 
expression have had a significant impact on fundamental studies 
of gene pathways and functions [29]. Methods for controlling gene 
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expression include the use of antisense oligonucleotides [66] and 
small interfering RNA (siRNA) [67], which can be directed against 
messenger RNA (mRNA) through Watson–Crick pairing. While the 
promise of “gene therapy” based on nucleic acids was recognized 
over 20 years ago, its development has faced challenges with 
regard to entry into cells, delivery of intact oligonucleotides, and 
efficacy [68]. Various transfection agents, such as cationic lipids and 
polymers [69], modified viruses [70], dendrimers [71], liposomes 
[72], and nanoparticles [26, 73], have thus been developed to 
shuttle nucleic acids into cells. Despite the use of these materials, the 
toxicity of these agents and their off-target effects limit the amount 
of oligonucleotides that can be delivered safely. An ideal gene 
regulation system—from a research standpoint—should feature 
high uptake efficiencies across all cell types, high intracellular 
stability, strong binding affinity for target nucleic acids, and very 
low toxicity. Recently DNA-AuNPs were used as agents to alleviate 
several of the challenges that are commonly associated with the 
application of nucleic acids in cells [25].
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with a suite of designer oligonucleotides that confer enhanced 
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Figure 3.5 (A) Representative Western blots showing the expression of 
glyceradlehyde 3-phosphate dehydrogenase (GAPDH) in HeLa cells treated with 
various concentrations and compositions of the gold nanoconjugates. GAPDH 
expression is reduced in a dose- and sequence-dependent manner. α-Tubulin is 
shown as the loading control. (B) Relative decrease in GAPDH expression in HeLa 
cells. α-Tubulin was used as a loading control and for subsequent normalization 
of GAPDH knockdown. The error bars represent the standard deviation from at 
least three Western blots. From Ref. [102], Copyright (2008) National Academy 
of Sciences.
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3.4.4.2 Intracellular detection and imaging

Oligonucleotide-based probes to visualize and detect intracellular 
RNA, including those used for in situ staining [79, 80], molecular 
beacons [81, 82], and fluorescence resonance energy transfer 
(FRET) probes [83, 84] are important biological tools to measure 
and quantify biological activity in living systems. However, cells do 
not readily internalize molecular probes, they require the use of 
transfection agents or microinjection for uptake. In addition, as a 
consequence of their oligonucleotide structure, such imaging agents 
can have limited stability to nuclease degradation, which can lead to 
a high background signal and decreased ability to specifically detect 
target structures.
 Much work has thus gone into the development of structures that 
overcome these limitations, including chemically modified molecular 
beacons [85] or their corresponding peptide conjugates [86]. Recently, 
our research group has developed novel intracellular detection 
probes termed “nanoflares” that take advantage of the properties of 
DNA-AuNPs [87–89]. Nanoflares are oligonucleotide-functionalized 
gold nanoparticles that are hybridized to short, fluorophore-labeled 
complements designed to provide an intracellular fluorescence 
signal that correlates with the concentration of a specific nucleic 
acid or molecular target. In the absence of a target, the fluorophore 
is close to the nanoparticle surface, which quenches its fluorescence. 
Target binding releases the fluorophore, thereby generating a signal 
that can be detected inside a live cell. Nanoflares can distinguish 
between different cell types on the basis of the expression profile, 
and give a semiquantitative real-time readout of gene expression in 
a living sample (Fig. 3.6).
 Several problems commonly associated with intracellular RNA 
detection, including the difficulty associated with cell entry, toxicity, 
and intracellular instability, are obviated as these nanoparticles 
are densely functionalized with oligonucleotides. These probes do 
not require microinjection or auxiliary reagents to enter cells and 
are more resistant than molecular nucleic acids towards enzymatic 
degradation, thus lowering background signal and improving 
detection ability.

Oligonucleotides
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Figure 3.6 “Nanoflares” are gold nanoconjugates functionalized with 
oligonucleotide sequences complementary to a specific nucleic acid target 
(messenger RNA) hybridized to short fluorescent sequences. In the absence of a 
target the nanoflares are dark, because of quenching by the gold nanoparticle. In 
the presence of a target binding displaces the short flare through the formation 
of a longer (more energetically favorable) duplex. The result is a fluorescence 
signal inside the cell, which indicates the target has been detected. Scale bar: 
20 µm. Adapted with permission from Ref. [87]. Copyright (2007) American 
Chemical Society.
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3.5.1 Peptide Nanoconjugates
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Figure 3.7 Images of nanoparticle–peptide complexes incubated with HepG2 
cells for 2 h. Complexes were: (A) nuclear localization peptide, (B) receptor-
mediated endocytosis peptide, (C) adenoviral fiber protein, and (D) both 
nuclear localization and receptor-mediated endocytosis peptides. Adapted with 
permission from Ref. [23]. Copyright (2003) American Chemical Society.
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3.5.2 Peptide/DNA-Gold Nanoparticle Conjugates
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3.6.2 Photothermal Therapy
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cancer
then irr

ous 
adiat

cells o
ed with near- IR lig

ver-e
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xpr
or r

essing 
eceptor 

HER2 
2 (HER2) 

receptors. 
were incubat

These 
ed with 

ht at a frequency that is resonant with 
cells were 

the 
leads t

surf
o heating, 

ace plasmon 
which causes cell 

resonance of the 
death [110]. Nanoshells conjug

nanoshell. Light absorption 

t
of 
o contr

nanoshell binding on the cell 
ol antibodies did not displa

surf
y this aff
aces. These 

ect, 
conjug
because 

at
of the lack 

ated 

being developed as materials that combine photothermal 
es ar

ther
e also 

apy 
with near-IR imaging capabilities [107, 110].

3.7 Lipids

Recently, lipids have joined oligonucleotides, peptides, and antibodies 
as biomolecules used 
others have synthesized 

to modify 
biomimetic hig

AuNPs. Our research group and 

nanostructur
AuNPs [111]. In this s

es by adsor
ynthesis,

bing lipids and pr
h-density lipopr

oteins to the surf
otein (HDL) 

 thiolated lipids or alkanethiols along 
ace of 

with apolipopr
adsorbed onto the surf

otein A1 (APO
ace of A

A1), a protein component of HDL, are 

ont
the lipid

o the A
 tails 

uNP surf
and thiolat

ace thr
ed species. Simple 

oug
uNP
h hy

s. Ne
drophobic int

xt, a second lipid is adsorbed 

HDL with control over the size, shape, and composition 
methods f

eractions betw
or synthesizing 

een 

been demonstrated prior to these studies. It is being increasing
had not 

l

on its in vi
appreciated that size, shape, and chemistry 

y 

vo physiology, and these structures ma
of HDL 

y pr
has 

ove useful as 
an impact 

therapeutics and imaging agents [111, 112].

3.7.1 Therapeutics

Natural HDL is critical for transporting cholesterol from macrophages 
in ather
HDL lev

oscler
els ma

otic plaques and fr
y provide an appr

om the bod
oach to pre

y
v
, and incr
enting or r

easing the 
eversing 

Lipids
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atherosclerosis. To that end, our research group synthesized HDL 
mimics called HDL AuNPs whose size 

these nanostructur
contents are similar t

es can 
o those 

be 
of 

used t
natural 

as w
HDL 

ell as protein and lipid 

interactions between HDL and cholester
o det

ol. In 
ermine the str

(Fig. 3.8). Importantl
ength of 

y, 

these conjug
our first example using 

4 
a fluor

nm) [111]. 
escent 

at
cholest
es we showed that HDL AuNPs are capable of binding 

binding constant f
To the 

or 
best 
erol 

of 
analogue 

our know
with 

ledge, 
a hig

this 
h binding 

is the first 
affinity 

measur
(Kd

ed 
 = 

any form of 

e
This 

e futur
point fr

er

aluat
is important as it provides 

HDL 
a key data 

and a cholest
om w
ol deri

hich 
vativ

t
e. 

v e constructs and their ability to bind cholesterol as 
o 

well as their potential as new therapeutic candidates.

Figure 3.8 Templated synthesis of spherical HDL nanoparticles through use of 
thiol-terminated peptides and the protein (APOA1). Adapted with permission 
from Ref. [111]. Copyright (2009) American Chemical Society.

3.7.2 Imaging

In addition to cholesterol transport, HDL-AuNP mimics have been 
used to image macrophage cells in viv

an attr
is indicati

acti
v
v
e of 
e imaging tar

high-risk 
get
ather

. Mice f
oscler

ed hig
otic plaque, 
o [112]. Macr

thus making 
ophage density 

h cholesterol diets, an 
it 

established model f
A
of HDL-

uNPs. T

applied t
A

omography 
or ather
images of the 

osclerosis, 
mice aortas 

were inject
sho

ed with HDL-

uNPs, thereby indicating that the nanoparticles 
wed a 

could 
build-up 

o atherosclerotic imaging.
be 
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3.8 Summary and Outlook

Gold nanoconjugates are an important class of materials that have 
alr
the case with all 

eady proven useful in fundamental 
nanomat

cell biology applications. As is 

design 
of gold nanoconjug

criteria for r
at

formulated. In 
esear

es 
erials, little 
and cells at the molecular le

is known about the int
vel, and the 

eractions 

the field. In our opinion, these questions will 
the next sections, w

ch and ther
e discuss 

apeutic usage ar
emerging challenges 

e still being 

be the k
in 

further development of gold nanoconjugates into viable 
ey t

ther
owar

apeutic 
ds the 

agents.

3.8.1 Mechanism of Uptake in Cells

Several research groups have now confirmed the internalization of 
gold nanoconjug
cellular internalization 

ates in common cell-line 
is likely to differ for diff

models. The 

nanoconjugates because of differences in their surf
erent 

ace chemistry
classes of gold 
mechanism of 

size, 
modulat

and 
e the ability 

charge. Indeed, substitution 
of an AuNP to be int

reactions can 
ernalized by a cell 

be used t
[24, 

o 
, 

113]. 
amines or peptides, the mechanism lik

In the case of AuNPs functionalized with 

these positive moieties with the neg
ely involves the int

positivel
er
y char

action 
ged 

of 

int
In the case of 

ernalization 
antibod
signals, 

y conjug
interactions 

ates 
ati
or 

vel

betw
those 

y char
that 

ged cell 
possess 

surface [26]. 

een specific 
peptidic 

antigens are likely mechanistic 
cell-surface 

nanoconjug
by our resear

at
ch gr
es lik

oup and others 
ely follow yet another uptak

steps [23]. Negati
e path

vely char

suggest that internalization in the 
way. Studies 

ged gold 

cell may involve the interaction of 

char
surfaces [21, 65]. Identifying the pr

ged gold nanoconjugates to penetr
ot
pr

eins 
oteins 

that 
with the nanoparticle 

ate cells 
allow the neg

stands as a 
atively 

formidable challenge.

3.8.2 Targeting

The use of gold nanoconjugates provides a highly effective method 
f
unique ensemble pr
or introducing substances int

operties of 
o cells. W
these materials 

e have described 
allow for multi

ho
v
w the 

drug and antisense agents. These agents can be used to contr
alent 

ol 
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cellular function, regulate gene expression, and detect intracellular 
analytes with greater efficiency than molecular systems, w is in 

acr
part due t

hich 

dev
oss 
elopment 

div
o 
erse 

composit
cell 

e properties and proven cellular uptake ability 

cells and eventuall
of these 

types. An important 
materials 

challenge for the continued 

delivery may include the use of biomolecules such as antibodies 
y tissues and or

as ther
gans. Str

apeutics 
at

is 
egies 
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for 

get 
tar
specific 

geted 

[108], aptamers [114], peptides [23], or small molecule lig

 
[115].

ands 
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Tar

e multifun
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other therapeutic 
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ategies 

particl
need t
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v
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the other desir
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ates. In the case of polyvalen
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t DN
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A-

that 
properties 

does not limit the degr
that result from the density of DN

ee of DNA functionalization 
A. While this 
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is not 
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trivial, it is noteworthy that cofunctionalized 
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been s
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without compr
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complementary binding to nucleic acids [102]. These results ar
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promising steps towards the next generation of targeted polyvalent 
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nanoconjugate therapeutics.

3.8.3 Toxicity

The toxicity of several types and sizes of gold nanoconjugates has 
been investigated by a number of 
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Although r

a
esults 
wn from these 
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P
e, se
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y 

washed to remove excess ligand 
do not 

[18]. A
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xicity 
ork in this ar

if they ar
ea, 
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has shown how the toxicity of a ligand such as CTAB is reduced when 
complexed with an AuNP [116], presumably because of an 
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of the cellular 

ve also sho
localization 
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photothermal efficacy of PEG-coated nanoshells injected into 
tumors in a mouse model. These 
could be ablated by treatment with 

r
lig
esear

ht, and the animals 
chers found that 

remained 
tumors 

healthy after more than 

of 
nanoconjug

CTAB-functionalized gold nanor
ates in vivo [123]. 

90 da
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ys, thus 

esearch 
pointing 

group in
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toxicity of 
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l
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esting
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y, however, w
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ver 
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ver after 
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72 h [125]. 

o 

should moti
were cleared. These 
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initial 

e studies that 
animal studies are indeed 

after 72 
promisi

h, and 
ng, and 

most 

of gold nanoconjugates as a function 
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of size, shape, and 
estigate the biodistribution 

properties of the lig
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[25]. It 
 To date, no cytot

ands.
oxicity of the DN

unique 
is 
size, 

again important t
charge, and surf

o not
ace functionality

e that 
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these 
AuNPs has been observ

nanoconjugates ha
ed 

, with 
ve 

t
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oxicology scr

ved from the combination of 
eening of these unique mat

the DNA and the A
erials will 
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e 
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. 

first 
response, 

little 
path

(as 
e immune 
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b
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these nanomaterials 
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becoming 
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possible therapeutic agents.

3.8.4 Conclusion

Although the properties of colloidal gold have been investigated for 
over a century, their application as intracellular agents in living cells 
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emerged only prominently a few years ago. These investigations have 
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continues t

The preparation and use of functionalized gold nanoconjug

This field continues 
o be an extr

to 
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y activ
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the 

e and important area of resear
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disco
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ange of potential 
applications for gold nanoparticles in biology and medicine.

Acknowledgments

C.A.M. acknowledges a Cancer Center for Nanotechnology Excellence 
(C
Mat

CNE) 
erial Comm

award, the NSF
and Grant 

-NSEC, and a U
W81XWH-08-1-0766 

.S. Army Medical Research and 

w
was support

ork. C.A.M. is 
ed b

also gr
y the L

ateful f
UNGe

or a NIH 
vity F

Dir
oundation—

ector’s Pioneer 
for support of this 

American Cancer 
Award. D.S.S. 

Summary and Outlook



84 Gold Nanoparticles for Biology and Medicine

Society Postdoctoral Fellowship in Lung Cancer. P.C.P. was supported 
by a Ryan Fellowship.

RReferences eferences

 1. Hayat, M. A. (1989).  
(A

 

1. 

2. 

Hayat, 

E

M. A (1989). Colloidal Colloidal Gold: PrincipleGold: Principles, s, MetMethods, hods, and Aand Applications pplications
(Academic cademic Press, San Diego).

dwards, P
Press, 

. P
. 
. and Thomas, 

San 

2. 
. 

Diego). 

(2007). 

 

Edwards, P. P. and Thomas, 
, 5480.

J. J. M. M. (2007). Angew. Angew. ChemChem. . 119, 119 5576; 
Angew. Angew. ChemChem. Int. Int

M.-C. and Astruc, D. (2004). 

, 5576; 

 

. EEd. d 46, 46 5480. 

3. Daniel, Chem. Chem. RRev. ev 104, 104 293. 

 

4. 

3. 
4. 

5. 

Mirkin, C. A, Letsinger, R L., Mucic, R C. and Storhoff, J. J. (1996). 
Nature 

Daniel, M.-C. and Astruc, D. (2004). . , 293.

5. Park, 

Mirkin, Letsinger, R. L., Mucic, R. C. and Storhoff, J. J. (1996). 

Mirkin, Mir

Natur

k, 
e 382

C. A., 

Par
kin, C. A. (1996). 

S. Y

382, 607. 

 6. 

S. 

os, A. P

Y., Lytton-Jean, A K. R, Lee, E., Weigand, S., Schatz, G. C. 

Bruchez, M. P
Alivisat

and 
C. 

., L
A 

, 607.
ytt
(1996). 

P., 

on-Jean, A. K. R., Lee, B., 
Nature Nature 451, 451 553. 

 

6. 

7. 

Alivisatos, 

Park, S. J., T

A 

W

. and Schultz, P
., Johnsson, 

aton, T

Johnsson, K. K. 

. A. and Mir

P., Peng, X. G., 

eig

Wilson, 

and, S., Schatz, G. C. and 

T. E., Loweth, C. J., 

 8. 

Eruchez, 

Wang, J., Liu, G. D

M. P. and 

. and Mer

Schultz, 

k

P. 

 , 553.

7. Park, Taton, 

. G. (1996). G. 
P., P

(1996). 
eng, X. G., Wilson, T

Nature Nature

S. J., T. A and Mirkin, C. A (2002). Science Scienc

J. Am. Chem. Soc

 382,609. 382, 609.
e

. E., Lo

295,1503. 295

weth, C. J., 

8. Wang, J., Liu, G. D. and Merkoci, 

kin, C. A. (2002).  

Xiao, Y., 

oci, A. (2003). A (2003).]. Am. Chem. Soc. 

, 1503.

9. Patolsky, F., Katz, E., Hainfeld, J. F. and Willner, I. 
299,1877. 299

. , 3214.
 

10. 

9. 

He, 

Xiao, 

L., 

, 1877.
Y., 

Musick, 

Patolsky

M. 

, F., Katz, 

D., Nicewarner, 

E., Hainfeld, J. F

S. R, 

. and Willner

Salinas, F. G., 

, I. (2003). 
125, 125 3214. 

 

 10. He, L., Musick, M. D

(2003). Science Science

Natan, M. J. and K
 11. 

R

Natan, 

Liu, J. and Lu, Y

Eenkovic, S. J., 

 12. osi, N

M. J. and Keating, C. D. (2000).]. J. AAm. m. Chem. SocChem. Soc. 122,9071. 122

 

11. 

13. 

Liu, 

Katz, 

J. 

E. 

and Lu, Y. (2003).]. 

eating, C. D
., Nicew

J. AAm. m. Chem. Soc

. (2000). 
arner

Ch em. 

, S. R., Salinas, 

Soc. 125, 125 6642. 

F. G., Benk
. , 9071.

ovic, S. J., 

12. Rosi, N. . L. and MirL. and Mirkin, 

. (2003). 
kin, C. A. (2005). 

. 
and 

, 6042.
Willner, I. 

C. A (2005). Chem. Chem. R

. 

Rev. ev

, 6642.

105, 105 1547. 

 

13. 

14. 

Katz, E. and 

. , 1547.

Penn, S. G., H

Willner, 

e, L. and Natan, 

I. (2004). Angew. Angew. Chem. Chem 116, 116 6166; Angew. Angew. Chem. Chem

 15. 

Int. 

F

Int

aulk, W

. EEd. d 43, 43

. and T

6042. 

and 

aylor
 

14. 

16. 

Penn, 

Frens, G. (1973). 

S. G., 

. P
He, L. Natan, 

(2004). 

M. J. (2003). Curr. Curr

. 

. Opin. Opin. Chem. Biol

, 6166; 

Chem. Bioi. 7, 7 609. 

. 

 

15. Faulk, W. P. and Taylor, G. M. (1971). 

M. J. (2003). 

Immunochemistry Immunochemistry 8,1081. 8

. , 609.

 

16. Frens, G. (1973). Nat. Nat. PhPhys. 

, G. M. (1971). 
ys. SciSci. 241, 

J. (1963).]. 

, 20.20. 

J. AAm. m. Chem. Soc

 

Chem. Soc. 85, 85

, 1081.
. 241

17. Enustun, E. V and Turkevich, 3317. 

 

18. 

17. Enustun, B. V. and Turkevich, J. (1963). 
18. Connor, 

(2005). 
Connor, E. E., MwE. E., 

 
Mwamuka, 
, 325.

amuka, J., Gole, A., MurphJ., Gole, A, Murphy, y, C. 

19. Chithrani, B. D., Ghazani, A. A. and Chan, W. C. W

C. 

. (2006). 

J. and 

662.

S

. 

Wyatt, 

, 3317.

M. D. 
(2005). Small mall 1, 1 325. 

 

19. 

20. 

Chithrani, 

Yang, P. H., 

E. 

Sun, X. S., Chiu, 

D., Ghazani, A A and 

J. F., Sun, H. 

Chan, W. C. W. (2006). 

J. and W

Nano Nano Lett

yatt

Lett. 

, M. D

6, 6

. 

662. 

20. Yang, P. H., Sun, X. 
. 

S., 
, 494.

Chiu, J. F., Sun, H. Z. 
16,494. 

Z. and 

. 

and He, He, Q. Y. (2005). 

, 

Bioconjugate Bioconjugate ChemChem. 16
Q. Y. (2005). 

841 Gold Nanopartic/es for Biology and Medicine 

Society Postdoctoral Fellowship in Lung Cancer. P.c.P. was supported 
by a Ryan Fellowship. 

841 Gold Nanopartic/es for Biology and Medicine 

Society Postdoctoral Fellowship in Lung Cancer. P.c.P. was supported 
by a Ryan Fellowship. 

References 

1. Hayat, M. A (1989). Colloidal Gold: Principles, Methods, and Applications 

(Academic Press, San Diego). 

2. Edwards, P. P. and Thomas, J. M. (2007). Angew. Chem. 119, 5576; 
Angew. Chem. Int. Ed. 46, 5480. 

3. Daniel, M.-C. and Astruc, D. (2004). Chem. Rev. 104, 293. 

4. Mirkin, C. A, Letsinger, R L., Mucic, R C. and Storhoff, J. J. (1996). 
Nature 382, 607. 

5. Park, S. Y., Lytton-Jean, A K. R, Lee, E., Weigand, S., Schatz, G. C. and 
Mirkin, C. A (1996). Nature 451, 553. 

6. Alivisatos, A P., Johnsson, K. P., Peng, X. G., Wilson, T. E., Loweth, C. J., 
Eruchez, M. P. and Schultz, P. G. (1996). Nature 382,609. 

7. Park, S. J., Taton, T. A and Mirkin, C. A (2002). Science 295,1503. 

8. Wang, J., Liu, G. D. and Merkoci, A (2003).]. Am. Chem. Soc. 125, 3214. 

9. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F. and Willner, I. (2003). Science 

299,1877. 

10. He, L., Musick, M. D., Nicewarner, S. R, Salinas, F. G., Eenkovic, S. J., 
Natan, M. J. and Keating, C. D. (2000).]. Am. Chem. Soc. 122,9071. 

11. Liu, J. and Lu, Y. (2003).]. Am. Ch em. Soc. 125, 6642. 

12. Rosi, N. L. and Mirkin, C. A (2005). Chem. Rev. 105, 1547. 

13. Katz, E. and Willner, I. (2004). Angew. Chem. 116, 6166; Angew. Chem. 

Int. Ed. 43, 6042. 

14. Penn, S. G., He, L. and Natan, M. J. (2003). Curr. Opin. Chem. Bioi. 7, 609. 

15. Faulk, W. P. and Taylor, G. M. (1971). Immunochemistry 8,1081. 

16. Frens, G. (1973). Nat. Phys. Sci. 241, 20. 

17. Enustun, E. V and Turkevich, J. (1963).]. Am. Chem. Soc. 85, 3317. 

18. Connor, E. E., Mwamuka, J., Gole, A, Murphy, C. J. and Wyatt, M. D. 
(2005). Small 1, 325. 

19. Chithrani, E. D., Ghazani, A A and Chan, W. C. W. (2006). Nano Lett. 6, 

662. 

20. Yang, P. H., Sun, X. S., Chiu, J. F., Sun, H. Z. and He, Q. Y. (2005). 
Bioconjugate Chem. 16,494. 



85

 21. Chithrani, B. D. and Chan, W. C. W. (2007). . , 1542.
 22. Cho, E. C., Xie, J. W., Wurm, P. A. and Xia, Y. N. (2009). . , 1080.
 23. 

F
Tk
., F

achenk
ranzen, S. and F

o, A. G., Xie, H., Coleman, D., Glomm, 

Nano Lett

W., Ryan, 

7

eldheim, D. L. (2003). 

Nano Lett

J., Anderson, 
. 

9

, 4700.
M. 

 24. Nativo, P., Prior, I. A. and Brust, M. (2008). 
 25. Rosi, N. L., Giljohann, D. A., Thaxton, C. S., 

J. A

kin, C. A. (2006). 
L

m. Chem. Soc 125

ACS Nano 2, 1639.

S. and Mir  , 1027.
ytton-Jean, A. K. R., Han, M. 

 26. Sandhu, K. K., McIntosh, C. M., Simar
Science

, 3.

312

d, J. M., Smith, S. W. and Rotello, V

 27. 
Bioconjugat

Brust
M. (2002). 

J. Chem. Soc. Chem. C
, M., W

e Chem. 13
. 

alker, M., Bethell, 
. 801.

D., Schiffrin, D. J. and Whyman, R. (1994). 

 28. Host
, 3782.

etler, M. J., Templet
ommun

on, A. C. and Murray, R. W. (1999). Langmuir 

 29. Patil, S. D., Rhodes, D. G. and Burgess, D. J. (2005). . , E61.
 30. 

15

Thomas, M. and Klibanov, A. M. (2003). 
AAPS J 7

 , 

A

9138.
 31. Ghosh, 

CS Nano
P. 

 
S., 
2, 2213.

Kim, C. K., Han, G., Forbes, N

Pr

. 

oc. Nat

S. and 

l. A

Rot

cad. Sci. 

ello, V. M. 

U.S.A.

(2008). 

100

 32. T

129

orchilin, V. P. (2006). 
J. 

A ev. 
 Gibson, 

dv. Drug Delivery R 58, 1532.
 33.

, 11653.
D., Khanal, B. P. and Zubarev, E. R. (2007). . 

 34. Bowman, M. C., Ballard, T. E., Ackerson, C. J., Feldheim, D

J. Am. Chem. Soc

D. M. and Melander, C. (2008). . , 6896.
. L., Margolis, 

 35. Han, G., Y
and R
Ed 45

otello, 
ou, C. 

V. M. (2006). 
C., Kim, B. J., Turing

J. Am. Chem. Soc

an, R. S., F
. , 3237; 

or
130

bes, N. S., Martin, C. 
. 

T. 

. , 3165.
 36. 

M. (2009). 
Kim, C. K., Ghosh, 

J. Am. Chem. Soc
P., Pagliuca, 

Ang

C., Zhu, Z. J., Menichetti, 

ew. Chem 118 A

S. 

ng

and R

ew. Chem

. 131, 1360.
otello, 

Int

V. 

. 

 37. Hong, R., 
M. (2006). 

Han, G., F
J. Am. Chem. Soc

ernandez, 
. 128

J. M., 
, 1078.

Kim, B. J., Forbes, N. S. and Rotello, V. 

 38. Chompoosor
19, 1342.

, A., Han, G. and Rotello, V. M. (2008). 

St

Bioconjug e Chem. 

 39. orhoff, J. J., Lazarides, A. A., Mucic, R. C., Mirkin, C. A., Letsinger

at

and Schatz, G. C. (2000). . , 4640.
, R. L. 

 40. Lytton-Jean, A. K. and Mir
J. A

kin, 
m. Chem. Soc

C. A. (2005). 
122

J. Am. Chem. Soc. 127, 12754.
 41. Jin, R. C., Wu, G. S., Li, Z., Mir

, 1643.
kin, C. A. and Schatz, G. C. (2003 J. Am. 

Chem. Soc. 125
). 

ReferencesReferences 185 

21. Chithrani, B. D. and Chan, wc. W (2007). Nano Lett. 7, 1542. 

22. Cho, E. c., Xie, J. W, Wurm, P. A and Xia, Y. N. (2009). Nano Lett. 9, 1080. 

23. Tkachenko, A G., Xie, H., Coleman, D., Glomm, W, Ryan, J., Anderson, M. 
E, Franzen, S. and Feldheim, D. L. (2003).]. Am. Chem. Soc. 125,4700. 

24. Nativo, P., Prior, I. A and Brust, M. (2008). ACS Nano 2,1639. 

25. Rosi, N. L., Giljohann, D. A, Thaxton, C. S., Lytton-Jean, A K R, Han, M. 
S. and Mirkin, C. A (2006). Science 312,1027. 

26. Sandhu, K K, Mclntosh, C. M., Simard, J. M., Smith, S. Wand Rotello, V. 

M. (2002). Bioconjugate Chem. 13, 3. 

27. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. and Whyman, R (1994). 
]. Chem. Sac. Chem. Commun. 801. 

28. Hostetler, M. J., Templeton, A C. and Murray, R W (1999). Langmuir 

15,3782. 

29. Patil, S. D., Rhodes, D. G. and Burgess, D. J. (2005). AA PS ]. 7, E61. 

30. Thomas, M. and Klibanov, AM. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 

9138. 

31. Ghosh, P. S., Kim, C. K, Han, G., Forbes, N. S. and Rotello, V. M. (2008). 
ACS Nano 2, 2213. 

32. Torchilin, V. P. (2006). Adv. Drug Delivery Rev. 58, 1532. 

33. Gibson, J. D., Khanal, B. P. and Zubarev, E. R (2007).]. Am. Chem. Soc. 

129,11653. 

34. Bowman, M. c., Ballard, T. E., Ackerson, C. J., Feldheim, D. L., Margolis, 
D. M. and Melander, C. (2008).]. Am. Chem. Soc. 130, 6896. 

35. Han, G., You, C. c., Kim, B. J., Turingan, R S., Forbes, N. S., Martin, C. T. 
and Rotello, V. M. (2006). Angew. Chem. 118, 3237; Angew. Chem. Int. 

Ed. 45,3165. 

36. Kim, C. K, Ghosh, P., Pagliuca, c., Zhu, Z. J., Menichetti, S. and Rotello, V. 

M. (2009).]. Am. Chem. Soc. 131, 1360. 

37. Hong, R, Han, G., Fernandez, J. M., Kim, B. J., Forbes, N. S. and Rotello, V. 
M. (2006).]. Am. Chem. Soc. 128, 1078. 

38. Chompoosor, A, Han, G. and Rotello, V. M. (2008). Bioconjugate Chem. 

19,1342. 

39. Storhoff, J. J., Lazarides, A A, Mucic, R c., Mirkin, C. A, Letsinger, R L. 
and Schatz, G. C. (2000).]. Am. Chem. Soc. 122,4640. 

40. Lytton-Jean, A K and Mirkin, C. A (2005).]. Am. Chem. Soc. 127, 12754. 

41. Jin, R c., Wu, G. S., Li, Z., Mirkin, C. A and Schatz, G. C. (2003). J. Am. 

Chem. Soc. 125, 1643. 



86 Gold Nanoparticles for Biology and Medicine

 42. Hurst, S. J., Hill, H. D. and Mirkin, C. A. (2008). . , 
12192.

 43. Demers, 

J. Am. Chem. Soc 130

Natur

L., Elg

e

hanian, R. and Vis
L. M., Mirkin, C. A., Mucic, R. C., R

wanadham, G. (2000). 
eynolds III, R. A., Lets

. , 5535.
inger, R. 

 44. Nykypanchuk, 
 451, 549.

D., Maye, M. M., van der Lelie, D
Anal. Chem

. and Gang, O
72

. (2008). 

 45. P
Mir

ark, S. Y
kin, C. A. (2008). 

., Lytton-Jean, 
Natur

A. K., Lee, 

 
e 451, 553.

B., Weigand, S., Schatz, G. C. and 

46. Hill, 
A. (2008). 

H. D., Macfarlane, 
. 

R. 
, 2341.

J., Senesi, A. J., Lee, B., Park, S. Y. and Mir

 47. Nam, J.-M., Thaxt
 48.

Nano Lett

on, C. S. and Mir
8

kin, C. A. (2003). 
 Stoeva, S. I., Lee, 

. 
J. S., Smith, J. E., R

, 8378.
osen, S. T. and Mir

Scienc

kin, C. 
e 301

kin, C. 

128
A. (2006). J. 

Am. Chem. Soc

 , 1884.

 49. Elg
(1997). 

hanian, R., St
 
orhoff, 

, 1078.
J. J., Mucic, R. C., Letsinger, R. L. and Mirkin, C. A. 

 50. St
(1998). 

orhoff, J. J., 
Scienc

Elg
e 277

hanian, 
. 
R., Mucic, R. 

, 1959.
C., Mirkin, C. A. and Letsinger, R. L. 

 51. Taton, T. A., Mirkin, C. A. and Letsinger, R. L. (2000).  , 1757.
 52. Cao, Y. W

J. A

. C., Jin, R. C. and Mir

m. Chem. Soc 120

kin, C. A. (2002).  , 1536.
 53. Hurst

8313.
, S. J., Lytton-Jean, A. K. and Mirkin, C. A. 

Science 289

Scienc

(2006). 
e 297

. , 

 54. Lee, 
Chem. Soc

J.-S., Sef
. 130

eros, D

Anal. Chem

, 5430.
. S., Giljohann, D. A. and Mirkin, C. A. (2008). 

78

 55. 
8313.
Hurst, S. J., Lytton-Jean, A. K. R. and Mirkin, C. A. (2006). 

J. 

. 

Am. 

, 

 56. 
(2005). 
Bao, Y. P., Huber, M., Wei, T

. 
. F., 

, 7.
Marla, S. S., Storhoff, J. J. and Muller

Anal. Chem

, U

78

. R. 

 57. Long, H., Kudlay, A. and Schatz, G. C. (2006).  , 2918.
 58. Lytton-Jean, A. K. 

Nucleic Acids R

R. and Mir

es 33

kin, C. A. (2005). 
J. Phys. Chem. B 110

. , 

A

12754.
 59. Cazena

cids Re
v
s
e, C
. 15

., Che

Nuc

, 10507.
vrier, M., Thuong, N. T. and Helene, C. (1987). 

J. Am. Chem. Soc 127

 60. Woolf, T. M., Jennings, C. G. B., 

Nucleic 

leic Acids Res

J. Biol. Chem

. , 1763.
Rebagliati, M. and Melton, D. A. (1990). 

 61. Pan, C. Q. and Lazarus, R. A. (1997).  , 6624.
 62. Shack, J. (1959). 

18

. 
Biochemistry 36

234, 3003.
 63. Sef

A. (2009). 
eros, D. S., Prigodich, 

Nano Lett. 9, 308.
A. E., Giljohann, D. A., Patel, P. C. and Mirkin, C. 



87

 64. Niidome, T. and Huang, L. (2002). . , 1647.
 65. Giljohann, 

Mirkin, C. A. (2007). 
D. A., Seferos, D. S., P

. 
at

, 3818.
el, 
Gene Ther

P. C., Millst
9

one, J. E., Rosi, N. L. and 

 66. Uhlmann, E. and Peyman, A. (1990). . , 543.
 67. Dorsett, Y. and Tuschl, T

Nano Lett

. (2004). 

7

 68. 

Chem. Rev 90

403.
Lebedeva, I. and Stein, C. A. (2001). 

Nat. Rev. Drug Discovery

 

A

 3
nnu. Rev. Pharmacol. T

, 318.
oxicol. 41, 

69. Hwang, S. J. and Da
 70. 

Drug De
Kamiya, 

liv
H., T

ery R

vis, M. E. (2001). . 
suchi

ev

, 183.
ya, 

J. Pharm. Sci

. 52, 153.
H., Yamazaki, 

C

J. and Har
urr. Opin. Mol. Ther

ashima, H. (200
3

1). 

 71. Braun, C. S., Vetro, J. A., Tomalia, D

Adv. 

C. R. (2005). . 94, 423.
. A., Koe, G. S., Koe, J. G. and Middaugh, 

 72. Hughes, M. D., Hussain, 
 , 303.

M., Nawaz, Q., Sayyed, P. and Akhtar, S. (2001). 

 73. 
Drug Disc

Bhar
Berge

ali, D
y, E. J., Pr

o

. J., Klejbor
very T

asad, P

oday

. N
, I., Stacho
6

. and Stacho
wiak, 

wiak, 
E. K., Dutta, 

M. K. (2005). 
P., Roy, I., Kaur, N., 

 , 11539.
 74. Kubo, T., Zhelev, Z., Ohba, H. and Bakalova, R. (2008). 

Proc. Natl. Acad. 
Sci. U.S.A. 102

. , 54.
 75. Singh, S. K., Nielsen, P., Koshkin, A. A. and Wengel, J. 

Bioc

(1998). 

hem. Biophys. 
Res. Commun 365

Commun. 455.
 76. 

ChemBioChem

McKenzie, F., Faulds, K. and Graham, D. (2007). Small 3, 1866.

Chem. 

 77. Seferos, D. S., Giljohann, D
 , 1230.

. A., Rosi, N. L. and Mirkin, C. A. (2007). 

 78. 
and W
Koshkin, A. 

engel, J. (1998). 
A., 

8

Nielsen, P., Meldgaard, M., 
. 

Rajw
, 13252.

anshi, V. K., Singh, S. K. 

 79. F
585.

emino, A. M., Fay, F. S., F
J. A

og
m. Chem. Soc

arty, K. and Singer
120

, R. H. (1998). Science , 

 80. 
Plast
Kloost

er
erman, W. P., Wienholds, E., 

280

k, R. H. (2006). 

 82. 

Nat. Methods 
 81. Tyagi, S. and Kramer, F. R. (1996). 

Sokol, D. L., Zhang, X., Lu, P. and Gewirtz, A. 

3

 

Nat

de Bruijn, E., 
, 27.
. Biotechnol

Kauppinen, S. and 

. 14, 303.

, 11538.
M. (1998). 

 83. Sando, S. and Kool, E. T. (2002). . , 9686.

Proc. Natl. Acad. 

 84. 

Sci. U

Santangelo, 

.S.A. 95

, e57.
P. J., Nix, B., Tsourkas, A. and Bao, 

J. Am. Chem. Soc

G. (2004). 
124

85. W
Re . 

 
J. A

ang, 
32

L., Y

Nuc
s

ang, C. Y. J., Medley

leic Acids 

m. Chem. Soc. 127, 15664.
, C. D., Benner, S. A. and Tan, W. H. (2005). 

ReferencesReferences 187 

64. Niidome, T. and Huang, L. (2002). Gene Ther. 9, 1647. 

65. Giljohann, D. A, Seferos, D. S., Patel, P. c., Millstone, J. E., Rosi, N. L. and 
Mirkin, C. A (2007). Nano Lett. 7, 3818. 

66. Uhlmann, E. and Peyman, A (1990). Ch em. Rev. 90, 543. 

67. Dorsett, Y and Tuschl, T. (2004). Nat. Rev. Drug Discovery 3,318. 

68. Lebedeva, I. and Stein, C. A (2001). Annu. Rev. Pharmacal. Toxicol. 41, 

403. 

69. Hwang, S. J. and Davis, M. E. (2001). Curr. Opin. Mol. Ther. 3, 183. 

70. Kamiya, H., Tsuchiya, H., Yamazaki, J. and Harashima, H. (2001). Adv. 

Drug Delivery Rev. 52, 153. 

71. Braun, C. S., Vetro, J. A, Tomalia, D. A, Koe, G. S., Koe, J. G. and Middaugh, 
C. R. (2005).]. Pharm. Sci. 94, 423. 

72. Hughes, M. D., Hussain, M., Nawaz, Q., Sayyed, P. and Akhtar, S. (2001). 
Drug Discovery Today 6, 303. 

73. Bharali, D. J., Klejbor, I., Stachowiak, E. K, Dutta, P., Roy, I., Kaur, N., 
Bergey, E. J., Prasad, P. N. and Stachowiak, M. K (2005). Proc. Nat!. Acad. 

Sci. U.S.A. 102, 11539. 

74. Kubo, T., Zhelev, Z., Ohba, H. and Bakalova, R. (2008). Biochem. Biophys. 

Res. Commun. 365, 54. 

75. Singh, S. K, Nielsen, P., Koshkin, A A and Wengel, J. (1998). Chem. 

Commun.455. 

76. McKenzie, F., Faulds, K and Graham, D. (2007). Small 3, 1866. 

77. Seferos, D. S., Giljohann, D. A, Rosi, N. L. and Mirkin, C. A (2007). 
ChemBioChem 8, 1230. 

78. Koshkin, A A, Nielsen, P., Meldgaard, M., Rajwanshi, V. K, Singh, S. K 
and Wengel, J. (1998).]. Am. Chem. Soc. 120, 13252. 

79. Femino, A M., Fay, F. S., Fogarty, K and Singer, R. H. (1998). Science 280, 

585. 

80. Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S. and 
Plasterk, R. H. (2006). Nat. Methods 3,27. 

81. Tyagi, S. and Kramer, F. R. (1996). Nat. Biotechnol. 14, 303. 

82. Sokol, D. L., Zhang, X., Lu, P. and Gewirtz, AM. (1998). Proc. Nat!. Acad. 

Sci. U.S.A. 95, 11538. 

83. San do, S. and Kool, E. T. (2002).]. Am. Chem. Soc. 124,9686. 

84. Santangelo, P. J., Nix, B., Tsourkas, A and Bao, G. (2004). Nucleic Acids 

Res. 32, e57. 

85. Wang, L., Yang, C. Y J., Medley, C. D., Benner, S. A and Tan, W. H. (2005). 
]. Am. Chem. Soc. 127, 15664. 



88 Gold Nanoparticles for Biology and Medicine

 86. Nitin, N., Santangelo, P. J., Kim, G., Nie, S. and Bao, G. (2004). 

 

s. 

87. Sef

Acids Re 32, e58.

 
A. (2007). 

eros, D. S., Giljohann, D
J. Am. Chem. Soc

. A., Hill, H. D
. 

., Prigodich, A. E. and Mir

Nuc

kin, C. 

leic 

129, 15477.

 88. Prigodich, 
and Mirkin, C. A. (2009). 

A. E., Seferos, D. S., Massich, M. 
 , 2147.

D., Giljohann, D. A., Lane, B. C. 

 89. 
(2009). 
Zheng, D., Seferos, D. S., Giljohann, D

ACS Nano 3

Nano Lett. 9, 3258.
. A., Patel, P. C. and Mirkin, C. A. 

 90. Giljohann, D
A. (2009). J. A

. A., Sef
m. Chem. Soc

eros, D. S., Prigodich, 
. , 2072.

A. E., Patel, P. C. and Mirkin, C. 

 91. Chiu, Y.-L. and Rana, T. M. (2003). 

131

 , 1034.

 92. Soutschek, J., Akinc, A., Br
Donoghue, M., Elbashir, S., Geick, A., Had

amlage, 

RNA

B., Charisse, 

9

K., Constien, R., 

I., T
M., K

oudjarsk
esavan, 

a, I., W
V., Lavine, G., P

ang, G., W
ande

wiger, P., Harborth, J., John, 

Limmer, S., Manoharan, M. and V
uschk

y, R. 
o, S., Bumcr

K., Racie, T
ot

., 
, D
Rajee

., Kot
v, K. 

eliansky
G., Rohl, 

ornlocher, H.-P. (2004). 
, V., 

173.
 , 

 93. Medley, C. D., Smith, J. E., Tang, Z., Wu, Y., Bamrungsap, S. and T

Natur

an, W

e 432

(2008). Anal. Chem
. H. 

 94. Vives, E., Schmidt

80

 95. 

Biochim. Biophys. Acta Rev. 
C

Goldf

ancer

. 

 1786

, 1067.

, 126.
, J. and Pelegrin, A. (2008). 

ar
 
b, D. S., Gariep

, 641.
y, J., Schoolnik, G. and Kornberg, R. D. (1986). 

 96. 

Natur

Biju, 
and Ishik

V

e

., 

322

Mur
aw

aleedhar
a, M. (2007). 

an, D
Langmuir
., Nakayama, 

 23
K., 
, 10254.

Shinohara, Y., Itoh, T., Baba, Y. 

 97. Derfus, 
(2007). 

A. M., Chen, 

 98. Lanford, R. E., Kanda, P

Bioconjugate Chem
A. A., Min, D

. 18, 1391.
. H., Ruoslahti, E. and Bhatia, S. N. 

Bioconjugat

. and Kennedy, R. C. (1986).  , 575.

 99. 
(2007). 
Oyelere, A. K., Chen, 

e Chem
P. C., Huang, X., El-

. 18, 1490.
Sayed, I. H. and El-

Cell 46

Sayed, M. A. 

 100. Tk
Shipt

achenk
on, M. 

o, A. G., Xie, H., 
K., Franzen, S. 

Liu, Y
and F

. L., 
eldheim, D
Coleman, D

. , 482.
. L. (2004). 

., Ryan, J., Glomm, W
Bioconjug

. R., 

 101. Liu, Y. L., Shipton, M. K., Ryan, J., Kaufman, E. D., Franzen, S. and 

ate 
Chem

Feldheim, D

15

Natl. Ac

. L. (2007). . , 2221.

 102. Patel, P. C., Giljohann, 
ad. Sci. U.S.A. 105

D. A., 

Anal. Chem

, 17222.
Seferos, D

79

. S. and Mirkin, C. A. (2008). Proc. 

881 Gold Nanopartic/es for Biology and Medicine 

86. Nitin, N., Santangelo, P. J., Kim, G., Nie, S. and Bao, G. (2004). Nucleic 

Acids Res. 32, e58. 

87. Seferos, D. S., Giljohann, D. A, Hill, H. D., Prigodich, A E. and Mirkin, C. 
A (2007).]. Am. Chem. Soc. 129, 15477. 

88. Prigodich, A E., Seferos, D. S., Massich, M. D., Giljohann, D. A, Lane, B. C. 
and Mirkin, C. A (2009). ACS Nano 3, 2147. 

89. Zheng, D., Seferos, D. S., Giljohann, D. A, Pate I, P. C. and Mirkin, C. A 
(2009). Nano Lett. 9, 3258. 

90. Giljohann, D. A, Seferos, D. S., Prigodich, A E., Patel, P. C. and Mirkin, C. 
A (2009).]. Am. Chem. Soc. 131, 2072. 

91. Chiu, Y.-1. and Rana, T. M. (2003). RNA 9, 1034. 

92. Soutschek, J., Akinc, A, Bramlage, B., Charisse, K, Constien, R, 
Donoghue, M., Elbashir, S., Geick, A, Hadwiger, P., Harborth, J., John, 
M., Kesavan, V, Lavine, G., Pandey, R K, Racie, T., Rajeev, KG., Rohl, 
I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V, 
Limmer, S., Manoharan, M. and Vornlocher, H.-P' (2004). Nature 432, 
173. 

93. Medley, C. D., Smith, J. E., Tang, Z., Wu, Y., Bamrungsap, S. and Tan, W. H. 
(2008). Anal. Chem. 80, 1067. 

94. Vives, E., Schmidt, J. and Pelegrin, A (2008). Biochim. Biophys. Acta Rev. 

Cancer 1786,126. 

95. Goldfarb, D. S., Gariepy, J., Schoolnik, G. and Kornberg, R D. (1986). 
Nature 322, 641. 

96. Biju, V, Muraleedharan, D., Nakayama, K, Shinohara, Y., Itoh, T., Baba, Y. 
and Ishikawa, M. (2007). Langmuir 23,10254. 

97. Derfus, A M., Chen, A A, Min, D. H., Ruoslahti, E. and Bhatia, S. N. 
(2007). Bioconjugate Chem. 18, 1391. 

98. Lanford, RE., Kanda, P. and Kennedy, R C. (1986). Cell 46, 575. 

99. Oyelere, A K, Chen, P. c., Huang, X., El-Sayed, I. H. and El-Sayed, M. A 
(2007). Bioconjugate Chem. 18, 1490. 

100. Tkachenko, A G., Xie, H., Liu, Y. 1., Coleman, D., Ryan, J., Glomm, W. R, 
Ship ton, M. K, Franzen, S. and Feldheim, D. 1. (2004). Bioconjugate 

Chem. 15,482. 

101. Liu, Y. 1., Shipton, M. K, Ryan, J., Kaufman, E. D., Franzen, S. and 
Feldheim, D. 1. (2007). Anal. Chem. 79, 2221. 

102. Pate I, P. c., Giljohann, D. A, Seferos, D. S. and Mirkin, C. A (2008). Proc. 
Natl. Acad. Sci. U.5.A. 105, 17222. 



89

 103. Qian, X., Peng, X. H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., Shin, D. M., 
Yang, L., Young, A. N., Wang, M. D. and Nie, S. (2008). 

y

Nat. Biotec
26, 83.

. 

 104. Niemeyer, C. M. and Ce han, B. (2001). . , 3798; 

hnol

. 
 105. Hermanson, 

A

San Diego, CA).

ng . 
A

ew. Chem Int. Ed 40, 3685.
G. T. (1996). 

ngew. Chem

 (Academic Pr

113

ess, 

106.  Nitin, N., Javier, D. J. and Richar

Bioconjug

ds-K

at

ortum, R. (2007). 

e Techniques

, 2090.
107. El-

Chem. 
 

829.
Sayed, I. H., Huang, X. H. and El-Sayed, M. A. (2005). 

Bioconjugate 
18

Nano Lett. , 

 108. 
129.
El-Sayed, I. H., Huang, X. H. and El-Sayed, M. A. (2006). 

5

Cancer Lett. 

 109. Hirsch, L. R., Stafford, R. J., Ba

239, 

U
R. E., 

.S.A.
Hazle, J. D
 100, 13549.

., Halas, N. J. and W
nkson, J. A., Sershen, 

est, J. L. (2003). 
S. R., Rivera, B., Price, 

 110. 
5
Loo, 

, 709.
C., Lowery, A., Halas, N., West, J. and Drezek, R. (2005). 

Proc. Natl. Acad. Sci. 

. 

 111. 
C. A. (2009). 
Thaxton, C. S., 

J. A
Daniel, 

m. Chem. Soc
W. L., Giljohann, 

. , 1384.
D. A., Thomas, A. D. and Mir

Nano Lett

kin, 

 112. 
P
Cormode, 

., Lobatto, M. 
D. P., 

E., Calcagno, 
Skajaa, T., van Schoone

131

veld, M. M., Koole, R., Jarzyna, 

Fisher

Langmuir

, E. A., F

23

ayad, Z. A. and Mulder
C., Barazza, A., Gor

, W. J. (2008). 
don, R. E., Zanzonico, 

. , 3715.
P., 

 113. Huff, T. B., 
 

Hansen, M. 
, 1596.

N., Zhao, Y., Cheng, J. X. and W
Nano Lett

ei, A. (2007). 
8

 114. Ja
(2008). 

vier, D
Bioc
. J., Nitin, N

onjugate Chem
., Levy, M., 

Andr onjug

. 19, 1309.
Ellington, A. and Richards-Kortum, R. 

 115. Dixit, V
es, R. P

., Van den 
. (2006). 

Bossche, 
Bioc

J., Sherman, D
ate Chem. 17

. M., Thompson, 
, 603.

Small 4

D. H. and 

 116. Hauck, T
 117. Goodman, C. M., 

 118. 
Bioc

P
Sok

ernodet
olo

onjug

. S., Ghazani, A. A. and Chan, W

ate Chem

, 153.
McC

. 15

. C. W. (2008).  
usk

, 897.
er, C. D., Yilmaz, T. and Rotello, V. M. (2004). 

v, J., Ulman, A. and R
, N., Fang, X. H., Sun, 

afailovich, M. (2006). 
Y., Bakhtina, A., Ramakrishnan, 

 , 766.
A., 

119.  
A
Li, J. J., Zou, L., Hart

dv. Mater. 20, 138.
ono, D., Ong, C. N., Bay, B. H. and Y

Small

ung, 
2

L. Y. L. (2008). 

 120. Bhattachary
Mukherjee, P

a, R., P
. (2007). 

atr
A
a, C. 
dv. Mat

R., V
er

erma, R., K
. 19, 711.

umar, S., Greipp, P. R. and 

References



90 Gold Nanoparticles for Biology and Medicine

 121. Pan, Y., Neuss, S., Leifert, A., Fischler, M., Wen, F., Simon, U., Schmid, G., 
Br

Nanot

andau, W

ec

. and Jahnen-Dechent, W. (2007).  , 1941.
 122. Jiang, W., Kim, 

, 145.
B. Y. S., Rutka, J. T. and Chan, W

Small

. C. W
3

. (2008). 

 123. 

Nat. 

C
Neal, D

anc
. P

hnol. 
. O., Hirsch, 

3

er Lett. 209, 171.
L. R., Halas, N. J., Payne, J. D. and West, J. L. (2004). 

 124. W
J. X. (2005). 

ang, H. F., Huff, 
Proc. Nat

T. B., 
l. A
Zw

c
eif
ad. Sci. U

el, D. A., He, 
.S.A. 102

W., Lo
, 15752.

w, P. S., Wei, A. and Cheng, 

 125. 

114

Niidome, 
Kaw

T., Yamag
yama, 

ata, 
Y. 

M., Ok
and Niidome, 

amoto, Y

, 343.
ano, T., Kata Y

., Aki
. (2006). 

yama, Y., Takahashi, H., 
 

 126. 
M. and Mir
Massich, M. 

kin, C. A. (2009). 
D., Giljohann, D. 

Mol. Pharm
A., Seferos, D

. 6
. 

J. A

, 1934.
S., Ludlo

J. 

w

C

, L. E., 

ontrolled 

Horv

R

ath, 

elease

C. 

 127. Dhar
(2009). 

, S., Daniel, W
m. Chem. Soc

. L., Giljohann, D
. 131, 14652.

. A., Mirkin, C. A. and Lippard, S. J. 



A hist
acid (SN

orical 
A) conjug

perspective of the development of spherical nucleic 

methods 
nanostructur

for 
es 
pr

is pr
ates and other 

ovided. This Perspecti
three-dimensional 

b
ve details the s

nucleic acid 

eparing them, followed y a discussion 
ynthetic 

unique properties and theoretical and experimental models 
of their 

understanding them. Important examples 
for 

made 
of chemistry

possible 
, molecular 

by their fundamental 
diagnostics, gene r

properties 
of technological advances 

materials science are also presented.
egulation, 

spanning 
medicine, and 

the fields 

Spherical nucleic 
*Reprinted with permission 

acids, j. Am. Chem. Soc.
from Cutler, J. I., A

 134
u

American Chemical Society
(3), 1376–1391. 
yeung, E. and Mirkin, C. A. (2012). 

Spherical Nucleic Acids, Volume 1

.
Copyright (2012) 

Edited by Chad A. Mirkin
Copyright © 2020 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4800-35-8 (Hardcover), 978-0-429-20015-1 (eBook)
www.jennystanford.com

Chapter 4

Spherical Nucleic Acids*

Joshua I. Cutler, Evelyn Auyeung, and Chad A. Mirkin
Department of Chemistry, Northwestern University, 2145 Sheridan Road,  
Evanston, IL 60208, USA
International Institute for Nanotechnology, Northwestern University,  
2145 Sheridan Road, Evanston, IL 60208, USA
chadnano@northwestern.edu



92 Spherical Nucleic Acids
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much to be learned from the use of these materials, an important 
goal of this Perspective is to inspire future investigations of spherical 
and other three-dimensional (3D) nucleic acid-based structures.

Introduction

much to be learned from the use of these materials, an important 
goal of this Perspective is to inspire future investigations of spherical 
and other three-dimensional (3D) nucleic acid-based structures. 

Figure Figure 4.14.1  {A} (A) ExisExisting ting sstructural tructural fforms orms of of nucleic nucleic acids acids include include linear linear 
duplexes, duplexes, circular circular plasmid plasmid DNA, DNA, and and 3D SNA3D SNA. . (B) Nucleic acid s{B} Nucleic acid structures tructures with with 
well-defined well-defined shapshapes es are are made made naturally naturally thrthrough ough sequence selectsequence selection ion and base and base 
pairing pairing interactions interactions or thror through ough synthetic synthetic means (lemeans {left}. ft). Alternatively, Alternatively, ttemplates emplates 
such such as pras proteins oteins or sor synthetic ynthetic nanostructures nanostructures can can be used tbe used to o makmake e highly highly 
functional functional architectures architectures based based upon upon the sizthe size e and and shape shape of of the the ttemplate emplate (righ{right}. t). 
Figures Figures arare e not not drawn drawn to to scale. scale. Transfer Transfer RNA RNA image image adapadapted ted bby y permission permission from from 
Springer Springer Nature Nature CusCustomer tomer SerService vice CenCentre tre GmbH: SpringGmbH: Springer er NaNature, ture, Nature, Nature, RRef. ef. 
[33]. [33]. Copyright Copyright (2011). Nucleosome c{2011}. Nucleosome core ore adapadapted ted bby y permission permission from from SpringSpringer er 
Nature Nature CusCustomer tomer Service Service Centre Centre GmbH: SpringGmbH: Springer er Nature, Nature, Nature Nature Structural Structural & & 
Molecular Molecular BiologyBiology, , Ref. Ref. [32]. [32]. Copyright Copyright {1997}. (1997). DNA DNA origami origami imagimage e adapted adapted 
by by permission permission from from SpringSpringer er Nature Nature Customer Customer Service Service Centre Centre GmbH: SpringGmbH: Springer er 

Nature, Nature, Nature, Nature, RRef. ef. [36]. Cop[36]. Copyright yright (2003).{2003}. 
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4.2 The Emergence of DNA as a Surface Ligand 
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Figure 4.2 The anatomy of SNA nanostructures. An inorganic core is densely 
functionalized with oligonucleotides containing three segments: a recognition 
sequence, a spacer segment, and a chemical-attachment group. Additionally, 
other functional groups such as dye molecules, quenchers, modified bases, and 
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phosphoramidite chemistry (usually at the 5  or 3  ends, but in 
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of thiols on gold allo

¢
the sequence). 

¢
The 

for the functionalization reaction to proceed for as long as desired, 
ws 

and yields 
the AuNPs. 
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is available 
technological use and is gener

er 
for further base pairing with other 

ally the acti

strands with sticky ends, target strands 
strands 

ve 

detection assays, or complementary strands for the formation of 
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of negative charge on the peptide 
have unusual 
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Table 4.1

Property Spherical nucleic acids Linear nucleic acids

Melting 
transition
Cellular uptake

Immune 
response

Stability

Properties 
from inorganic 
core

Binding 
strengthb

Cooperative and narrow 
(~2−8°C)
Transfection agents not 
required, (1−1.5) × 106 
NPs per cella

Minimal141

Nuclease resistance 
due to high local salt 
concentration41

Plasmonic, catalytic,5,20 
magnetic,43 
luminescent44

Keq = 1.8 × 1014, activated 
binding motifs150

Broad (~20°C)

Transfection agents 
required (e.g., Dharma 
FECT, Lipofectamine, Ca2+)
Elevated interferon-β 
levels (25-fold increase 
compared to DNA-AuNP 
conjugates)141

Subject to degradation 
by nucleases (e.g., DNase 
degradation 4× higher rate 
than SNA)

n/a

Keq = 1.8 × 1012

aNumbers vary depending on cell type and nucleic acid sequence. 
b 39

eqK  values for 15-mer AT-rich strand.
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functionality

and sequences 
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example, 

ed with groups that provide 

number of str
fluorescein or 
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cyanine dyes, allow for quantification 

fluorescent 
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intracellular 
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4.10). 
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drug delivery vehicles 
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copper ion det
hav

environmental monitoring purposes [69]. Antibodies have been 
ection f
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adsor
to creat

bed with 
e multifunctional 
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detection assays [70, 71]. The high stability of the nucleic acid-
modified 
drugs 
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inherentl
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e. Indeed, 

aclitaxel 
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such fields w
4.9, 
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as 
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is 
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oligonucleotides 
concentration of the r

have been studied 
eaction solution, 
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, the bases closest to the particle surface, 
the 
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moiety
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 The 

.
first gener

uNP
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s that 
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wer
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e functionalized with 
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¢
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oligonucleotides 
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thr
w
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A is 

lthiol (e.g., 3 -prop
vel

y
y short 

negativ y charged 
lthiol-

pack y without electrostatic screening, onl
el

y a lo
and 

density 
stable on the or

monolay
der 
er w

of 
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w
ormed
eeks. In a r

, and the r

[73], 
eport 

esulting particles were onl
w

y 
-

we developed a method 
published soon thereafter 

intr
packing 

oduced the concept 
of oligonucleotides on the NP’s surf

of salt aging, 
to prepar

which allo
e robust conjug

ws for high-density 
ates that 

preferred method for synthesizing such conjug
ace, and is no

ates (Fig. 4.3). 
w the 
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Increasing the sodium ion concentration of the reaction solution 
to >0.15 M (up to ~2.0 M with actants) screens the repulsive 

hig
inter

surf

of the A
her 

actions betw
densities as the oligonucleotides assemble on the surf

een neighboring strands, thereby promoting 

oligonucleotide densities 
uNPs; higher salt concentr

until steric 
ations gener

constraints pr
ally result in hig

ohibit further 
her 
ace 

adsorption. 
method 

The monolayer of oligonucleotides f

interaction 
is espe

(com
ciall
par

y stable because of the relativel
ormed 
y strong 

by this 
Au−S 

the combined neg
of the NPs confers 

ati
ed 
ve char

to the Au−citrate interaction). Furthermore, 

helps stabilize the colloid 
a high 

from 
neg
ge of the oligonucleotides on the surf

ative zeta potential (<−30 mV) that 
ace 

functionalized in this way e
flocculation [21, 74]. Indeed, particles 

conditions. 
in solutions o

Alt
v
houg
er a wide r

h DNA disassociation 
ange 

xhibit 
of pH, sol

long-t
v
erm 
ent, and ionic str

(months) stability 
ength 

certain 
we have 

cases 
not observ

[25], at 
ed 

room 
evidenc

temper
e 

ature or ph
has 

ysiological 
been observ

conditions, 
ed in 

stability is important for their use in intr
of significant 

acellular 
dissociation 

gene regula
[15]. 

tion, in 
This 

vitro molecular diagnostic, and materials assembly applications.

Figure 4.3  Synthesis of SNA−AuNP conjugates. Citrate-stabilized particles are 
incubated with alkylthiol-functionalized oligonucleotides in water to form a low-
density monolayer. By incubating the nanoparticles in aqueous solutions with 
successively higher concentrations of salt (typically 0.15−1.0 M) and surfactants 
over 12 h, a high-density SNA shell is formed.~

 The maximum possible surface density of DNA is dependent on 
the particle 
particles can support hig

size and shape. In 
her 

the case of spherical particles, 
densities, 

smaller 

can 
values 

typicall
obtained 

y support 
on planar 

~2.0 
surf

× 10
aces. F

13
or e

substantiall
xample, 10 nm 

y great
particles 

er than 

 oligos/cm2, while the surface 
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coverage for oligonucleotides of the same sequence assembled 
under identical conditions 
5.8 

on a macr
al, 

oscopic 

a hig
× 

her oligonucleotide density than 
1012 oligos/cm2 [75]. In gener a smaller 

planar 
particle 

gold 
can 

surf
support 

ace is 

ang
radius 

le betw
of curv

een neig
ature 

hboring str
is higher, which conf

larger particles 
ers a natural 

because the 
deflection 

particles incr
around individual 

ease in size; 
strands (Fig. 4.4A). This eff

ands that creat
ect 

es additional 
diminishes as 

space 

in fact, at diamet
the 

the surface coverage of DN
ers of 200 nm or larger, 

hig
and ther

h-curv
ef

atur
ore minimized 

e particles r
st
esult in surf
A approaches 

aces 
that 

with gr
of planar 

eater 
gold 

free 
[75]. 

volume 
The 

allowing 
eric and electronic repulsion constraints, 

allo
concentr

wing 
ation 
for hig

in the r
her DN

eaction solution, 
A surface densities. 

this scr
By 

eening is incr
increasing the 

eased, 
salt 

that 
Finall

b
y
y combining 
, a geometric 

for a greater 
model de

number 
veloped b

of strands 
y Hill et al. 

per particle 
demonstr

(Fig. 4.4B). 
ated 

anisotr
flat surf

opic particles, such as gold nanor
aces, one could 

the experimental 
accurately pr

density v
edict the 

alues 
natur

for curv
al loading 

ed and 

ods and triangular prisms 
for 

[75].

Figure 4.4 (A) The oligonucleotides that comprise SNAs are arranged in a 
dense, oriented fashion. On a nanoparticle surface, the geometric configuration 
confers a natural deflection angle between strands. On smaller particles, this 
angle is greater due to their higher relative curvatures. Ultimately, this results 
in reduced Coulombic repulsion at the termini of the strands, and hence 
higher densities in the overall structure. (B) The density of oligonucleotides 
of SNA−AuNP conjugates is controlled in part by the salt concentration of the 
NP/DNA incubation solution. A higher salt concentration results in a higher 
oligonucleotide density. For 15 nm particles, this range spans ~50−200 strands/
particle. Reprinted with permission from Ref. [75]. Copyright (2009) American 
Chemical Society.
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 Another variable that controls the loading of oligonucleotides on 
A
surf

uNP
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s is the composition 
general, 

of 
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A bases closest t
egion of appro
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Alternatively, one can 

of the oligonucleotides on the surf
get higher loadings and incr

ace of the particle. 
eased adsorption 

rates at elevated temperatures [64].

4.5 Cooperative Binding with High-Density SNA 
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raised above the melting point ( m). The same holds true for SNA 
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e of the 

surface gives rise 
surf

t
ace 

greater number of interparticle connections that 
o a 

stronger and pr
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Figure 4.5 (A) Schematic illustration of the aggregation and dispersion of SNA−
AuNP conjugates and the corresponding SPR shift of the Au cores. Dispersed 
particles are red, whereas aggregated particles are purple. Targets can be 
DNA, me

~

tal ions, or any molecule that the SNA shell has been programmed to 
recognize and bind. (B) Aggregation results in the red shift of the SPR (from 520 
nm to 600 nm) and a visible red-to-purple color transition of the particles in 
solution. Reproduced with permission from Ref. [78]. Copyright © 2011, John 
Wiley and Sons. (C) Compared to duplexes of free-strand DNA, which dissociates 
over a broad temperature range, the melting transitions of SNAs are sharp and 
occur over a very narrow temperature range due to the cooperative binding 
of the nucleic acids in the SNA shells. Reprinted with permission from Ref. 
[6]. Copyright (2005) American Chemical Society. (D) Melting temperatures of 
duplexes labeled with

~
 a quencher (green) and a fluorophore (purple), duplexes 

on silica particles ( 100 nm  in diameter), and SNA−AuNP conjugates  (13 nm 
in diameter). The melting transition of free and silica particle-bound duplexes 
are similar because the density achieved on silica particles is typically low 
(1/30th that of the SNA−AuNP conjugates). The melting transition of SNA−AuNP 
conjugates occurs at higher temperatures due to the properties of the dense 
SNA shell.
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important consideration for sequence design of SNA conjugates. 
F
application 

or instance, 
in gene r

if a resear
egulation 

cher int
or diagnostics, the sequence should 
ends to synthesize particles for an 

be check
cause unanticipat

ed for self-complementarity; indeed, 
ed and undesirable particle aggr

even a 

 
egation.

few bases can 

binding. 
Interesting

DNA binding 
ly, cooper

modes 
ative binding is not limit

that rely on G-quadruple
ed to canonical 

x f
DNA 

e
can also be accessed 

xpect sequences, 
by the SNA structur

ormation 

melting 
the 

transition. Ho
two 

wever
5
, 
¢-
because the G-rich 
CCCC-3¢ and 

e [87]. 
5¢- GGGG-3

One would normall
, to have one 

y 

sequence can 

tw
quadruple

o melting 
xes, 

tr
particles functionalized 
ansitions [88]. Furthermor

with these 
e, this has 

str

¢

ands exhibit 
form 

for sequence design; one should not synthesize 
implications 

oligonucleotides t
SNAs with 

ar
 

e t
In some r
o SNA conjug

espects, DN
erminat

A bases ar
ed with G bases.

e t

hybridization possible that 
ates. This 

ar
hier

e not 
arch

expect
y mak

o DN
es int
A str

er
ands as DN

esting 3D 
A str
modes 

ands 
of 

ar
dynamics of 

e exceeding
sing

fundamental 
l

le linear strands in isolation. These 
ed if one only consid

consider
ers 
ations 

the 

pol
y important

new ways of making 
yvalent int

, and onl
eractions of 

y thr
SN

oug
As can r

h understandin
esearchers

g 

nanoscale 
ealize 
these 

macroscopic materials from these 
 r

building blocks.

4.6 Nanoparticle Assembly and Crystallization 
Programmed with Spherical and Other 3D 
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the non-close-packed bcc lattice if the particles are added in equal 
amounts 
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Figure 4.6 (A) Schematic illustration of DNA-programmable nanoparticle 
assembly into ordered superlattices (fcc lattice shown). TEM images show the 
transition from disordered aggregate (10 nm AuNPs shown) to ordered lattices 
(30 nm AuNPs shown) after annealing at a temperature slightly below the 
melting temperature of the aggregate. TEM image of the ordered NPs from Ref. 
[95]. Reprinted with permission from AAAS. The programmable parameters that 
can be controlled using this technique are (B) the lattice parameter, which can 
be tuned by using different linker lengths and NP diameters (figure not to scale), 
(C) NP shape, where directional bonding of different anisotropic NPs leads to a 
variety of one-, two-, and three-dimensional lattices, and (D) crystallographic 
symmetry, which can be controlled by linker lengths, linker sequences, and 
molar ratios of particles. Panel B is reprinted by permission from Springer 
Nature Customer Service Centre GmbH: Springer Nature, Nature Materials, Ref. 
[85]. Copyright (2011).

 This system has evolved to one that offers a high level of 
predictability based upon a set of design rules that we recently 
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introduced [95]. The seven rules, which are summarized below but 
explained in detail elsewhere [95, 153], are as follows:
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in the 
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4.7 Moving beyond Spherical Conjugates to 
Other Forms of 3D Nucleic Acids

In addition to size-dependent properties, many physical and optical 
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operties 
o NP
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of DNA-functionalized anisotropic particles in the formation of 
nonspherical 3D nucleic acids (Fig. 4.7A).

Figure 4.7 (A) Illustration of 3D SNA conjugates formed from different particle 
templates: spheres, rods, and triangular prisms. (B) Schematic demonstrating 
the difference between anisotropic 3D nucleic acid hybridization and SNA 
hybridization. Reprinted with permission from Ref. [115]. Copyright (2011) 
American Chemical Society.

 Because the synthesis conditions for anisotropic particles are 
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immobilization must be tailor
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4.8 Diagnostics

During the initial studies of the SNA−AuNP conjugates, we 
r
a narr
ecognized 

ow temper
immediat

ature 
el

r
y that 
ange and 

their reversible melting behavior over 

dependent 
detection platf

optical changes 
orms (vide infra

could be useful f
their corresponding 

or 
hybridization-

have been used to develop a wide 
). Since that 

variety of 
time, 

in vitr
SN

o and intr
A 

hig
nanostructur

h-selectivity 

acellular 
es 

molecular diagnostic systems for a range of analytes. These include 



115
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strategies can be used to detect any target that has the ability to 
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Figure 4.8 (A) Schematic illustration of a scanometric detection assay. A 
chip is synthesized with capture strands for a number of different targets. The 
targets will hybridize to the appropriate spots if they are present. The chip is 
then exposed  to a  solution of SNA−AuNP probes, which will hybridize  to  the 
appropriate  targets  if  they  are  on  the  chip.  The  binding  of  the  SNA−AuNP 
probes can be visualized by reducing metal ions (Ag or Au) on the NP cores, 
which creates a macroscopic structure. The SNA probes can be modified with 
many recognition elements, such as antibodies, which allows for the detection 
analytes beyond nucleic acid targets. (B) Large macroscopic structures created 
by reduction of Ag (left) and Au (right). The Au is a better signal enhancer due 
to its mechanism of reduction, which results in larger macroscopic particles. 
(C) Read-out of a scanometric detection assay. If the target is present, the 
macroscopic structure can be detected via light scattering and a conventional 
optical flat-bed scanner. A bright spot indicates that target is present, and the 
signal intensity permits quantification of target concentration. Panels B and C 
reprinted with permission from Ref. [71]. Copyright (2009) American Chemical 
Society.
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Figure 4.9 (A) Synthesis of hollow SNAs. Alkyne-modified oligonucleotides 
are adsorbed onto AuNPs, which then catalyze the cross-linking of the alkyne 
groups. After purification from excess oligonuceotides, the cores are dissolved 
with potassium cyanide, which yields hollow SNAs. (B) Schematic of hollow 
SNAs interacting with scavenger receptors in the cell membrane, which induces 
endocytosis of the particles. Reprinted with permission from Ref. [20]. Copyright 
(2011) American Chemical Society.

 Beyond being able to enter cells easily without transfection 
agents, SN
within a cell. 

As also possess important properties for function 

deacti
the hig

v
h 
ating 

local 
enzymes 

The SNA
in close pr
’s dense oligonucleotide shell is 

oximity to the conjugat
capable 

e due t
of 
o 

ability 
exhibit 

t
r
o 
emar

deacti
k
sodium 
able serum 

ion 
and intr
concentr

acellular 
ation [79, 

stability 
147]. SNA conjugates 

is exceedingly important 
vate many nucleases in this 

in the context of nucleic 
way [41]. 

because of their 

acid deli
This pr

very and 
operty 

gene r
degraded 

egulatio
by such 

n because oligonucleotides ar
nucleases. In buff

e otherwise rapidly 

SN
free duple

A (duple
x
x
es, primaril
es) by man

y due t
y nucleases is ~4 times slo

er, the rate of 
w

degr
er than 

adation of 

o a decreased rate of hydroly
that 
sis. In 

of 



121

serum, however, this rate difference is drastically increased because 
nonspecific 
w
accessing 

hich is h
the 
ypothesized 

serum prot
to bloc
eins can 

k and further 
adsorb to 

inhibit nucleases fr
the particles’ surface, 

surface 
om 

mat
conjug

erial, ther
ates can e

eby a
vade pr

strands 
oteins 

(Fig. 
that 

4.10B) 
recognize 

[148]. 
for

F
eign nucleic acid 
urthermore, SNA 

otherwise be activat
voiding 

ed by for
the innat

eign nucleic acids [141]. Thus, despit
e immune response that would 

the very high 
e 

response 
number of NP

lower (~25 
(as 

times 
measur

low
ed 
er) 

b
as 

y the int
s that can ent

erfer
er the cells, the immune 

conventional polymeric agents (Fig. 4.10C).
compared to 

on-
that 

β 
of 
lev

DN
el) 

A 
is 
transf

significantl
ected by 

y 

 
relat

Once inside
ed to their 

 the cell, 
chemicall

SN

F
y pr

A conjugates can carry out tasks 

or example, if the shell is composed 
ogrammed oligonucleotide shell. 

the structures can 
of DNA targeted for mRNA, 

can r
pathw

egulat
ay [15]. 

e gene e
RNA conjug

regulat
at

e gene e
es also ha

xpr
ve 

ession 
been s

via the antisense 

xpression through the RN
ynthesized, 
Ai pathway [17]. 

which 

These 
only picomolar concentr

conjugates have been sho
ations needed 

wn to be 

cases. Interestingly, the knockdown of mRN
to see 

extr
knock

emely pot
down in some 

ent, with 

SNAs is more persist
A and protein levels by 

intr
with 

acellular 
cationic 

stability 
agents 

ent than 
(Fig. 4.10

knock
D) [15, 

down 
17]. 

via nucleic acids delivered 

stability of the nucleic acid shells allo
of SNAs discussed 

ws for 
abo
This 

ve. A
is lik

dditionall
ely due t

y
o 
, the 

the 

platinum(IV) 
of other chemical agents, 

prodrugs ha
such as metal 
ve been covalentl

comple
attachment 

xes. F
and deli
or example, 

very 

y attached to SN

int
AuNPs to create a potent delivery vehicle f

A−

comple
ernalized 

xes are r
in 

educed 
the cells 

to a cyt
with 

ot
the 
oxic Pt(II) species 

SNA−AuNP
or cisplatin 

s, the platinum(IV) 
[67]. Once 

the cytosol through r
and released into 

platinum 
ve elimination of 

mor
per 

educti

e effectiv
basis, 
e than cisplatin 

the Pt−SNA−A
or 

uNP 
the pr

conjug
their 
ates 

axial 
were 

lig
significantl

ands. On a 

odrug alone. A
y 

P
drugs 

aclitax
that 

el, can be conjug
are not soluble 

at
and 
ed to the SN

thus difficult 
A shell [72]. This 

to administ
dditionall
er, such as 

y, 

strat

SN
tak

As. The solubility 
es advantage of the hig

of 
h stability and high cellular uptake of 

egy 

and 
IC50 

w
valu

hen 
es 

attached 
(4−10 times) 

to SN
P

A−A
aclitax

uNP 
el 

conjug
can be 

at
incr

es, 
eased 
the drug 

by o

drugs 
compar

exhibits 
ver 50 times, 

ed to free drugs. 
lower 

other chemical agents f
to SNAs may become a gener

or disease applications.
al method to deli

The 
v
attachment 
er drugs and 

of 

Spherical Nucleic Acids as Single-Entity Gene Regulation Constructs



122 Spherical Nucleic Acids

Figure 4.10 (A) Oligonucleotide density determines the cellular uptake 
numbers of SNA−NP conjugates; higher densities result  in more particles per 
cell. Reprinted with permission from Ref. [74]. Copyright (2007) American 
Chemical Society. (B) SNAs are degraded much more slowly by nonspecific 
serum nucleases compared to duplexes of the same sequence. In an in vitro 
experiment where the concentration of nuclease was at elevated levels to 
shorten experimental time windows, less than 10% of the SNA duplexes were 
degraded after 300 min. In contrast, all of the free duplexes are completely 
degraded in 200 min. Reprinted with permission from Ref. [148]. Copyright 
(2011) American Chemical Society. (C) Relative amounts of interferon-β 
produced after  transfection with  SNA−AuNP conjugates  and  lipoplexed DNA. 
Reprinted with permission from Ref. [141]. Copyright (2009) American Chemical 
Society. (D) Gene knockdown of siRNA-based SNA conjugates is more persistent 
than with lipoplexed siRNA. Studies show that this effect is likely due to the 
higher stability of SNAs in biological media as compared to free duplexes. 
Reprinted with permission from Ref. [17]. Copyright (2009) American Chemical 
Society.
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Figure 4.11 SNAs offer a different paradigm for gene regulation. Negatively 
charged nucleic acids do not need to be precomplexed with synthetic positively 
charged carriers to enter cells and effect gene regulation. If the nucleic acids 
are densely oriented at the nanoscale, they enter cells in high numbers, resist 
degradation, exhibit nuclease resistance, show no apparent toxicity, and do not 
activate the innate immune response.
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4.10  Combined Intracellular Diagnostics and 
Imaging
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of the sequence complementary to the target exhibit much higher 
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Figure 4.12  (A)  Schematic  of  nanoflares.  Short  fluorophore-labeled  “flare” 
sequences are hybridized to SNAs targeted for a disease gene of interest. 
Upon flare particle binding to its mRNA complement, the short flare sequence 
is displaced and released from the gold core. The flare is no longer quenched 
when it is released, and therefore a large signal increase is observed. (B) SKBR3 
cells, which overexpress survivin, are treated with nanoflare probes targeted for 
survivin (left) and a nonsense control (right). Samples treated with the survivin 
flare  show  3  times  the  fluorescence  of  cells  treated  with  the  control  flare 
particles. Reprinted with permission from Ref. [11]. Copyright (2007) American 
Chemical Society.
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Figure 5.1 (a) The table of “programmable atom equivalents” arranges nucleic 
acid–nanoparticle conjugates across multiple dimensions: composition, shape, 
and size. In reality, this table extends nearly infinitely in the size dimension 
within the nanoscale regime, and for many material compositions, further into 
the shape dimension. Not all particles in this nanoscale ‘periodic table’ have 
been experimentally realized, and some (semi-transparent images in the table) 
represent potential building blocks that may be discovered in future synthetic 
efforts. This table merely presents a representative concept to demonstrate 
that the table of PAEs has an inherently larger number of variables than the 
corresponding Periodic Table of the elements, rather than imply that there is a 
specific relationship between different blocks in the table. Thus, it is best used 
as an empirical guide to aid in materials development, rather than an inherent 
representation of the intrinsic properties and characteristics of these materials. 
(b) The core composition and manner of bonding are compared between 
atoms and PAEs. Note that the comparison being drawn is only in the structural 
sense—DNA strands are the “glue” holding the nanoparticles in place and are 
not expected to directly mimic all of the inherent properties of electrons (such 
as band structure or orbital shape). In this sense, bonds between spherical 
PAEs could be considered more analogous to metallic-type bonds, while 
more covalent-like interactions can be observed by imparting anisotropy to 
nanoparticle interactions.
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sub-nm level precision in interparticle distances (i.e., “bond 
lengths”), can be attained, simply by synthesizing a DNA strand of a 
specified number of nucleobases.

 In addition to altering superlattice symmetry by controlling the 

DiscussionDiscussion 1147 

sub-nm level preClslOn in interparticle distances (i.e., "bond 
lengths"), can be attained, simply by synthesizing a DNA strand of a 
specified number of nucleobases. 
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Figure 5.3 By varying the length and sequence of the nucleic acid “bonds,” as 
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each with their corresponding TEM image. Over 100 different crystal structures, 
spanning 17 different crystal symmetries, have been made.
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Figure 5.4 The distinct crystallographic facets of anisotropic nanoparticles 
enable directional hybridization (covalent-like) interactions between 
nanoparticles. Six-sided cubes, five-sided triangular prisms, and eight-sided 
octahedra are shown with DNA strands that demonstrate the directional 
bonding interactions for each particle shape. Note, however, that in this 
assembly strategy, each surface is densely functionalized with oligonucleotides. 
Below each nanoparticle is the corresponding ball-and-stick model of its 
bonding pattern and an electron microscopy image of synthesized particles. 
Scale bars in electron microscopy images are 100 nm.
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Figure 6.1 Differentiating nanoscale DNA bonds. (A) Multiple strand crossover 
events and DNA hybridization produce a conformationally constrained molecule 
with a rigid core. (B) A rigid nanoparticle acts as a scaffold for the immobilization 
and organization of DNA strands in a surface-normal direction.
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