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Foreword

In the monograph proposed for the first time, an attempt was made to 
systematically present the scientific results obtained in the study of a 
single physical process of irreversible deformation and brittle fracture 
of metals within the framework of the structural phenomenological 
approach.

The essence of this approach is the integration of macro- and 
micro-representations, methods of macro- and micro-description 
of the process. Practical realization of this association took place 
in the form of a new theory, the exposition of which is the goal of 
this book.

The theory has a deductive character, that is, it is built on its own 
postulates. The generalization of the equations of the theory, obtained 
initially for a uniaxial stressed state, to a volume stress-strain state 
required further development of the foundations of the classical 
mathematical theory of plasticity. Two theorems are formulated and 
proved which are generalizations of the Drucker postulate and the 
von Mises maximum principle of the classical mathematical theory 
of plasticity (flow theory) to a viscoplastic medium. Consequently, 
the theory includes as a special case the classical mathematical 
theory of plasticity, which follows from the general theory under the 
assumption that there is no thermodynamic return during deformation.

A special feature of the theory is its construction in finite 
increments, which made it possible immediately to bypass a number 
of problems of the classical theory, for example, the problem of 
dividing large deformations into elastic and irreversible components.

This feature of the theory, together with the presence of evolution 
equations for the actual structural parameters-the scalar dislocation 
and microcrack densities-provides the formulation and solution of 
practical problems in which nonlinear processes of large irreversible 
deformations occurring under conditions of a nonstationary stress-
strain state and a temperature field are considered.
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The physico-mathematical theory of strength and plasticity for the 
first time consistently takes into account the continuous change in 
the structure of materials during deformation and the accumulation 
of deformation damage.

The novelty of the theory, in our opinion, is that, for the first time, 
a scheme for describing plastic deformation and viscous destruction, 
evolution of structure, creep processes, long-term strength of metals 
and stress relaxation is proposed in the framework of a unified 
approach and a unified model.

It is not difficult to see that on this basis it is possible to 
further expand this scheme and include in it a forecasting model 
for the residual resource, a model for determining the mechanical 
characteristics of quasi-samples of standard mechanical properties 
in deformed semi-finished products by the method of mathematical 
modeling.

To apply the theory to the development and study of processes 
of irreversible deformation and viscous destruction, it is necessary 
to create a specialized software product of a new generation 
for computer engineering analysis. Existing means, for example 
DEFORM-3D, can not in general be used to implement the model of 
the deformation process formulated within the framework of the new 
theory. This is due to the fundamental differences in the algorithms 
for solving the applied problems of the classical mathematical theory 
of plasticity and the new theory.



Introduction
Among scientific workers, it is considered a bad practice to go 
beyond the scope of one’s research (one’s science) with an attempt 
to ‘shift’ another scientific discipline. There are good reasons for 
this. The modern level of development of scientific disciplines, 
especially fundamental ones, in which mathematical methods of 
description and research are widely used, is very high. In order 
to master the results of the long-term development of a particular 
science, which is a prerequisite for bold attempts to contribute to its 
further development, it takes a lot of time and labour. At the same 
time, as a rule, each scientific discipline has its own characteristic 
way of thinking, connected with its methods.

Therefore, scientists are sometimes skeptical of attempts by 
their colleagues to contribute to the development of ‘not their own’ 
science.

On the other hand, it is well known that scientific research 
conducted at the junction of two related disciplines is often the 
most effective and is accompanied by a combination of scientific 
directions.

The process  of  combining discipl ines ,  a long with  their 
differentiation, is an objective law of the development of science. 
A vivid example is the creation of statistical physics, which is a 
synthesis of molecular–kinetic teaching and thermodynamics. This 
example demonstrates a synthetic approach to the development of 
a scientific problem – the unification of the phenomenological and 
statistical approaches to the study and description of phenomena and 
processes in macroscopic systems.

The fundamental scientific discipline – the mechanics of 
a deformable solid (MDS) consists of four sections: theories of 
elasticity, plasticity, creep, fracture mechanics of materials and their 
applications. At present, MDS is a highly developed science with a 
powerful mathematical apparatus that allows solving a wide range 
of applied problems related to the design of various designs and 
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technologies for processing materials. The applied value of the theory 
in recent years has increased significantly in connection with the 
intensive development of computational mechanics and computers.

The main applied task of all four sections of the discipline is 
the calculation of stress fields, strains, strain rates and deformation 
damage of solids of arbitrary geometric shape loaded with an 
arbitrary system of external forces. Information about these fields 
is obtained as a solution of the initial-boundary value problem of 
mathematical physics.

Since deformation of continuous solids is one of the forms of 
their mechanical motion, the mathematical formulation of the initial-
boundary problem includes differential equations of motion and 
kinematic relations, which are closed by the defining equations. The 
latter are models of deformable solids: models of elasticity, plasticity, 
creep, material with damage. Therefore, the task of MDs is the 
development of these models – the laws of deformation of solids.

For centuries and now, despite the creation and increasing use of 
ceramics, plastics, glasses, composites, the main structural material 
in all branches of engineering industry are metals that have a unique 
combination of strength, elasticity, ductility and viscosity. Therefore, 
specialists of MDS pay great attention to the development of models 
of metallic materials. The subject of the study in this work are metals 
and their alloys.

MDS, like general mechanics, is a phenomenological science. The 
first hypothesis in the phenomenological approach to the study of 
the motion of matter is the hypothesis of a continuous medium, i.e., 
as a material model, a continuous deformable medium is assumed. 
However, it is well known that the deformation behaviour of 
materials (the properties of materials) is determined by their internal 
structure. In this case, during deformation, the structure changes 
significantly, and, consequently, at every stage of deformation we 
are dealing, generally speaking, with a new material.

The failure to take into account the structure of the material and 
its evolution under deformation is the cause of problems that have 
been clearly formulated by the second half of the last century, which 
have held back the development of MDS for years. These problems 
are associated with the non-linearity of the processes of large 
irreversible strains, taking into account the history of deformation 
and the evolution of the structure of the material. In more detail, 
these problems are formulated in the first and second chapters of the 
book, on the content and current state of the mathematical theories of 
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plasticity, creep, and ductile fracture of metals. Numerous attempts to 
solve these problems, undertaken for decades within the framework 
of a purely phenomenological approach, have so far not yielded 
meaningful results.

Irreversible deformation and destruction of metals are a subject 
of investigation of another fundamental discipline – the physics of 
strength and plasticity, which is a section of the physics of solids. 
This discipline uses microstructural and statistical approaches to 
the study of the motion of matter. It uses a discrete atomic model 
of the material, studies and takes into account the evolution of the 
structure under deformation. The laws of deformation of materials 
are established in the form of some model representations, based on 
the analysis of micromechanisms of processes occurring in the atomic 
model of a material when it is loaded by external forces.

The physics of strength and plastici ty develops uniaxial 
deformation laws. It lacks methods of obtaining generalized laws 
necessary for solving practical problems. The desire to construct a 
more accurate physical deformation model determines the presence in 
the equations of a large number of parameters, the physical meaning 
of which often remains unclear. This makes it practically impossible 
to use physical models to calculate real processes.

The natural direction of the further development of MDS and the 
physics of strength and plasticity is the unification of micro- and 
macro-representations about irreversible deformations and fractures, 
methods of micro- and macro-description of these physical processes. 
Therefore, in spite of the partial division of thoughts formulated at 
the beginning of this introduction, the author, with a small group of 
assistants (undergraduates and graduate students), began systematic 
research on the development of the formulated direction in the early 
1990s. The results obtained over the past years are generalized and 
presented to the reader in this monograph.

Taking into account the orientation of the book, the author found it 
necessary to preface a new material – the physical and mathematical 
theory of irreversible strainss of metals – with an exposition of the 
elementary foundations of mechanics and the physics of strength 
and plasticity of metals, believing that this should help mechanical 
engineers and physicists get acquainted with its content.



Fundamentals of mechanics of 
strength and plasticity of metals 

1.1. Basic concepts, postulates and method in the classical 
mathematical theory of plasticity (flow theory)

Metals and metallic alloys are the main structural materials 
in engineering. This is due to a rational combination of the 
characteristics of strength, elasticity, ductility and toughness. The 
ductility of metals is essential.

The physical process of plastic deformation underlies one of 
the oldest methods of metalworking – plastic forming of metals. 
The ability to plastic deformation determines the performance of 
metal structures, including parts of machines and mechanisms. 
The scientific basis for the design of metal structures and machine 
components, as well as the technological processes of plastic shaping 
(forging and stamping), along with theories of elasticity and creep, 
is the theory of plasticity.

Section I

Current State of Mechanics 
and Physics of Strength and 

Plasticity of Metals
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The applied task of these scientific disciplines is the calculation of 
the parameters of the above objects, ensuring their optimal or rational 
functioning. This problem is solved by determining the stresses and 
strains in the workpiece being machined, the structure, the part.
It is believed that the theory of plasticity originates from the work 
of Saint-Venant, published in 1871 [1]. The main stages in the 
formation and development of the theory of plasticity, as well as 
biographical information about scientists who contributed to the 
development of the theory, are given in the interesting concluding 
section ‘A Brief Historical Reference on the Chapters’ of the widely 
known textbook on the mechanics of plastic forming of metals by 
Prof. V.L. Kolmogorov [2].

The object of studying the theory of plasticity as a fundamental 
scientific discipline is a special form of mechanical motion of 
deformable solids – plastic deformation and its models. This form 
of motion is not considered by theoretical mechanics, in which the 
model of a solid non-deformable body is adopted [3]. The classical 
mathematical theory of plasticity is, like mechanics in general, a 
purely phenomenological discipline, has its own axiomatics, that is, 
the theory is built on the basis of its own postulates (principles). 
The construction is carried out within the framework of the classical 
mechanics of Galileo–Newton and the paradigm that is unified with 
analytical mechanics.

The main concepts are [4]: physical space, time, mass, force 
(primary concepts in mechanics), region V of physical space with 
boundary S, continuous medium, elementary volume (material particle); 
displacement vector, velocity and acceleration of particle motion, 
kinetic, internal and free energy, entropy and particle temperature; 
tensors of deformations, strain rates and stresses, loading processes 
in the stress space σij(t) and deformation in the strain space εij(t), 
where σij is the stress tensor, εij is the strain tensor, and t is the time.

Thermodynamic concepts and relations are introduced as applied 
to a particle of a continuous medium. The particle is identified with 
a mathematical point.

The loading process is called simple if the stress state of the 
particle changes over time in such a way that the end of the stress 
vector in the six-dimensional image space of the symmetrical stress 
tensor moves along the ray emanating from the origin, i.e., the 
straight line is the path of the stress vector. With other trajectories 
(curvilinear, broken) – the loading is complex. Cyclic loading is 
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characterized by a periodic change in the sign of the stress, can be 
simple and complex.

Definitions of the basic concepts are given a priori. Therefore, the 
relations between their quantitative measures (mathematical objects) 
derived on the basis of certain initial postulates can acquire the 
meaning of substantive (physical) laws only under the condition of 
experimental justification of the derivations derived or consequences 
arising from them.

Initial postulates: macroscopic continuity, homogeneity and 
isotropy of the deformed body, homogeneity of stress and strain 
states in an elementary (representative) volume ΔV (material particle) 
in which all the vector and scalar quantities characterizing the 
thermomechanical state are average (integral) in the sense of the 
averages in statistical physics, macrophysical definability [5], fluidity 
conditions, loading functions, a single curve.

The basic applied problem of the theory of plasticity by definition 
of the stress–strain state of a body, which in general has an arbitrary 
shape and is loaded with an arbitrary system of external forces, is 
solved by setting the initial-boundary value problem of plasticity 
theory [2]. It includes the following equations.

1. Equilibrium equations, into which the equations of motion of a 
continuous medium (Newton’s second law) are transformed, if mass 
forces are neglected:

1)
, 0 , , , .ij j i j x y zσ = = (1.1)

2. Geometric Cauchy relations for small strains:

, ,
1 ( ),
2ij i j j iu uε = + (1.2)

where e p
ij ij ijε ε ε= + , e

ijε , p
ijε  are the elastic and plastic components of 

the strain tensor; ui are the projections onto the coordinate axes of 
the displacement vector of the particle. The strains must satisfy the 
compatibility conditions [2]

2 22 2

.ij kjkl il

kl i j k j i lx x x x x x x
ε εε ε∂ ∂∂ ∂

+ = +
∂ ∂ ∂ ∂ ∂ ∂ ∂

3. The equation of heat conductivity
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, ,( ) ,i i ij ij
dTc T
dt

ρ λ σ ε= + 
(1.3)

where c ,  λ  are the coefficients of heat capacity and thermal 
conductivity of the material being deformed; ρ is its density; T is 
the thermodynamic temperature; ij ijd dtε ε=  is the plastic strain 
rate tensor.

The paper deals with the theory of plastic deformation of compact 
metallic materials. If the incompressibility condition εx + εy + εz = 
0 and ρ = const is adopted, then the strain tensors and strain rates 
coincide with their deviators.

When the boundary-value problem is formulated in the velocities, 
equations (1.2) are replaced by the Saint-Venant geometric relations 
for the strain rates

, ,
1 ( ),
2ij i j j iε υ υ= +

(1.4)

where υi are the projections onto the coordinate axes of the velocity 
vector of the material particle.

The system of ten differential equations (1.1)–(1.3) contains 16 
unknown (sought) functions of coordinates and time: σij(xi, t), εij(xi, t), 
T(xi, t), ui(xi, t). It is closed by the defining equations describing the 
relationship of stresses to strains (or strain rates) and the mechanical 
properties of the material. To obtain a particular solution, the system 
is supplemented by boundary conditions.

The defining relations are a mathematical model of the plastic 
deformation of a material (the law of deformation). Therefore, one 
of the main tasks of the mathematical theory of plasticity as a 
fundamental discipline is the establishment of laws of deformation 
of materials in various thermomechanical conditions and structural 
states.

The most general formulation of the laws of deformation is given 
on the basis of certain extreme principles [6–8]. It is assumed that 
the loading process (the change in the state of the elementary volume 
of the deformed medium) can be described by a finite set of pairs of 
parameters σij, T, p

ijε , q, k, where q is the hardening parameter, which 
is usually taken to be the plastic strain, referred to the unit volume, 

p
ij ijq A dσ ε= = ∫ , or the plastic deformation intensity accumulated by 

the particle pq dε= ∫ (dεp is the intensity of the increment of plastic 
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deformations); k is the parameter associated with the yield strength 
of the material. Time implicitly enters through q.

Since the temperature T is a scalar quantity, it is excluded from 
the number of determining parameters and is taken into account by 
the dependence k(T), while, as a rule, an isothermal deformation 
process is considered. A mixed problem can also be posed, including 
the mechanical and thermal problems. The basis for the formulation 
and solution of the second problem is equation (1.3).

It is postulated that the current (actual) thermomechanical state 
of the elementary volume of a body under loading by its system of 
external forces can be described in a six-dimensional stress space 
by a certain function of the determining parameters

( , , , ) 0,p
ij ijf q kσ ε = (1.5)

which is called the loading function. It is also assumed that for small 
strains, the total strains can be represented as the sum of reversible 
(elastic) and irreversible (plastic) components. For fixed parameters, 
the function (1.5) describes a hypersurface in the six-dimensional 
space of a symmetric bivalent stress tensor σij (stress space). If the 
conditions for the commencement of the Huber–von Mises fluidity 
and the independence of f from the first and third invariants of the 
stress tensor are accepted, then the loading function takes a particular 
and specific form

23 0,
2 ij ij Tf s s σ= − = (1.6)

where σT is the yield strength of the isotropic material.
The surface described by (1.6) is called the surface of the 

beginning of plasticity, when 0p
ijε = , q = 0. In the case of an 

elastoplastic material, it separates the region of elastic stress states, 
where the stresses and strains are related by Hooke’s law (inside 
the area bounded by the surface) from the stress states at which the 
elementary volume passes into a plastic state (the stressed states 
are on the surface). Consequently, in the elastic region f < 0. For a 
rigid-plastic body in the inner region, bounded by the hypersurface of 
plasticity (1.6), the material is absolutely rigid. When the hardening 
material is deformed in (1.6), instead of σT, according to the Huber-
von Mises plasticity condition, the current stress intensity σ.

With hardening σ, the surface of plasticity, which in this case is 
called the loading surface, also increases and changes. The change 
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in the loading surface describes the hardening of the material to be 
deformed. In the general case of deformation of a material, it can 
change the shape and position in the space σij. In an ideal plastic 
material (σT = const), the loading surface does not change (fixed) 
during deformation and is called the yield surface.

The following properties of the loading surface are postulated: it 
is closed, but in some directions it can extend to infinity; does not 
pass through the origin; any ray drawn from the origin crosses it 
only once, that is, it does not have concave sections.

The loading surface, or part of it, at each point of which there is a 
single outward normal and, therefore, it is differentiable with respect 
to σij, is said to be smooth, and the loading points on it are regular.

The concepts of loading, unloading and neutral loading for regular 
points are introduced. If the stress state of the material particle 
described by the six-dimensional vector σij belongs to the loading 
surface Σ (hence, the plasticity condition (1.6) is satisfied) and the 
loading vector dσij is directed outwards, this process is accompanied 
by an increase in the plastic deformation of the particle 0p

ijdε > , the 
change of the loading surface (in the case of the hardening body it 
assumes the position Σ') and is called the loading (Fig. 1.1). After 
loading, the stressed state of the particle is described by the vector 
σ'ij (shown by the dashed line).

With the direction of the vector dσij inside Σ, the resulting stress 
state (point A in Fig. 1.1) is in the elastic region. In this ij case,             
dεp

ij = 0, the stresses and strains are related by the generalized 
Hooke’s law, and we are dealing with the unloading process. The 
loading process is called neutral if dσij is directed along the tangent 

Fig. 1.1. Definition of the loading and unloading processes of an elastoplastic 
hardening body.

rE-:; - ....... , a;j 
--~~-~""'~ 

' I I L:' 
I 
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Fig. 1.2. Postulated loading and unloading cycle of the hardening elastoplastic 
body, on the basis of which the principle of maximum work of plastic deformation 
is formulated.

to the surface Σ. In the case of a hardening body dεp
ij = 0 and stresses 

are related with the strains also related by Hooke’s law.
The basis for constructing the plasticity model of a hardening 

body is the Drucker postulate (Drucker, D.C.) [6], which states 
that the work of additional stresses on the increments of plastic 
deformations caused by them during the loading and unloading cycle 
is positive. In the stress space we consider the cycle shown in Fig. 
1.2. The material particle from the original natural state, in which 
there are no stresses and deformations in the particle (the point O is 
the origin), is loaded along a certain path to the yield point (point 
C) and unloaded to point D. This state is accepted in the argument 
for the original. In this state, the particle is loaded to the point C, 
is loaded with the vector dσij (point B) and unloaded to the initial 
state (point D). In this case, the loading and unloading paths are 
arbitrary and lie in the elastic region except for the addition loading 
by the vector dσij.

From the considered cycle, taking into account the fact that 
the work of additional stresses on reversible elastic strains under 
conditions of a closed deformation path is zero, according to the 
postulate it follows that

( )0 0. p
ij ij ij ijd dσ σ σ ε − + >  (1.7)

If we take the point O as the initial and final states, that is, 0 0ijσ =   
then (1.7) takes the form



8 Physico-Mathematical Theory of High Irreversible Strains

( ) 0.p
ij ij ijd dσ σ ε+ > (1.7a)

If the initial state is taken as the state at the yield point (point C in 
Fig. 1.2), when 0

ij ijσ σ= , then it follows from (1.7) that

0.p
ij ijd dσ ε > (1.8)

This expression is considered as a condition for stable deformation 
beyond the elastic limit of a hardening elastoplastic body in the 
general case for a volume stress–strain state. We note at once that 
inequality (1.8) imposes a restriction on the possibility of describing 
plastic deformation. It excludes from consideration materials with 
an incident (non-monotonic) deformation diagram when dσ/dεp < 0. 
Therefore, the description of the deformation of materials with a 
non-monotonic diagram is one of the problems of the classical theory.

If 0
ij ijσ σ≠ , then the difference 0

ij ijσ σ−  can be arbitrarily greater 
than dσij, and then

( )0 0.p
ij ij ijdσ σ ε− > (1.9)

From this inequality follows the principle of the maximum work of 
plastic deformation for a hardening plastic body:

   
0 .p p

ij ij ij ijd dσ ε σ ε> (1.10)

For any given value of the components of the plastic deformation 
increment, the increment of the plastic deformation work p

ij ijdσ ε  has 
a maximum value for the actual stress state σij in comparison with all 
possible stress states 0

ijσ  satisfying the condition f(σij) < 0.
Like other differential principles of mechanics, the principle of 

the maximum work of plastic deformation allows in this case to 
separate the true stress states from all possible ones in deformation 
of the body.

The increment in the work of plastic deformation is a function 
of the stress components. The latter are not independent arguments, 
since during plastic deformation they must simultaneously satisfy the 
plasticity condition (1.6). Therefore, the maximum of the function of 
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increment of the work of plastic deformation, declared by the above-
stated principle, is conditional. In mathematics, several methods 
for solving problems on the conditional extremum of a function of 
several variables have been developed. In the theory of plasticity, 
the condition for the maximum of the function p

ij ijdA dσ ε= , in the 
presence of the coupling equation f(σij) = 0 (plasticity condition), is 
written using the Lagrange multiplier method [9] as

( ) 0,p
ij ij

ij

d d fσ ε λ
σ
∂

− =
∂

(1.11)

where dλ is the Lagrange multiplier.
After differentiation, an equation is obtained which is one of the 

vertices of the mathematical theory of plasticity and is called the 
associated flow law (with the plasticity condition):

.p
ij

ij

fd dε λ
σ
∂

=
∂

(1.12)

It follows from (1.12), firstly, that the loading function f is a plastic 
potential in the stress space and, secondly, that the vector p

ijdε  is 

directed along the normal to the loading surface, since 
ij

f
σ
∂

=
∂

n  (n is 

is the unit vector of the normal to the surface f), and dλ is a scalar.
It is proved that if the first invariant of the stress tensor is 

included explicitly or implicitly as arguments in f, then the plastic 
deformation proceeding according to the law (1.12) satisfies the 
incompressibility condition 03 0p

iid dε ε= = , that is, the tensor p
ijdε  

coincides with its deviator.
Substitution of the components of the increment of plastic 

deformations (1.12) into the expression for the intensity of the 
increment of plastic strains

( )1/2
2 / 3p p p

ij ijd d d=ε ε ε

the value of dλ is defined as

      

1
23 .

2
p

ij ij

f fd dλ ε
σ σ

 ∂ ∂ = ⋅ ∂ ∂ 
(1.13)

Taking into account the decomposition of the stress tensor into a 
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deviator and spherical tensors:

1 ,
3
1 ,
3

ij ij ij kl kl

ij ij ij kl kl

s

s

σ δ δ σ

σ δ δ σ

 
= +  

 
 

= −  
 

the derivative of the loading function with respect to the components 
of the tensor σ ij is replaced by the derivative with respect to the 
components of the stress deviator sij:

       

1 ,
3

ij
ij kl

ij ij ij ij kl

sf f f f
s s s

δ δ
σ σ

 ∂∂ ∂ ∂ ∂
= = −  

∂ ∂ ∂ ∂ ∂ 
(1.14)

where δij is the Kronecker symbol (δij = 1 for i = j and δij = 0 for 
i ≠ j).

The equation of the associated flow law (1.12) takes the form

    

1 .
3

p
ij ij kl

ij kl

f fd d
s s

ε λ δ δ
 ∂ ∂ = − ∂ ∂ 

(1.15)

If a certain loading function f is adopted for a particular material, 
then (1.15) are the equations (law) of its plastic deformation in the 
general case of a volume stress–strain state.

Instead of the principle (1.10), for the formulation of the plasticity 
model of a hardening body in stress space one can also use the 
principle of the maximum dissipation rate of mechanical work 

p
ij ijD σ ε= ⋅  . For fixed parameters p

ijε , q of the loading function f, 
for any given value of the velocity components of the deformation 

p
ijε , we have the inequality

         
0 ,p p

ij ij ij ijσ ε σ ε>  (1.16)

where σij are the real values of the stress components corresponding 
to a given value p

ijε ; 0
ijσ  are the components of any possible stress 

state allowed by the given loading function ( )0 , , , 0p
ij ijf q kσ ε < .

This is the von Mises maximum principle. It can be seen that 
(1.16) can be obtained by differentiating (1.10) with respect to time 
at constant stresses. In this case, the associated flow law will be 
written as
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0 ,p
ij

ij

fε µ
σ
∂

=
∂

 (1.17)

where 0
p p

hk hk

mn mn

d
f f dt

ε ε λµ
σ σ

= =
∂ ∂ ∂ ∂

 

.

The construction of a model of a hardening plastic body can also 
be based on the definition of a dissipative function [6]

    ( , , , ),ij ij ij ijD D q kσ ε ε ε= =  (1.18)

which in the six-dimensional space of the symmetric strain rate 
tensor for fixed parameters εij, q and k describes the surface of an 
equal level of dissipation of mechanical work per unit volume per 
unit time. In this case, for fixed parameters εij, q, along with the real 
values ijε , we introduce into consideration possible 0

ijε , for which

( ) ( )0 , , , , , , .ij ij ij ijD q k D q kε ε ε ε≤  (1.19)

Similarly to the von Mises maximum principle (1.16), we formulate 
the principle of the maximum dissipation rate in the strain rate space 
– the Ziegler principle:

0.ij ij ij ijσ ε σ ε≥  (1.20)

The associated flow law in this case has the form

   
,    .ij ij

ijij

D DDσ λ λ ε
εε

 ∂ ∂ = =  ∂∂  




(1.21)

Specific material models, as in the case of determining the loading 
function f, are determined by the assumption of the structure of 
the function D. Using the defining relations of the form (1.21), the 
boundary problem of plasticity is posed and solved at velocities.

Thus, the plastic body model is introduced in two ways: either 
through the definition of the loading function f, or through the 
definit ion of the dissipative function D .  In both cases,  the 
corresponding extreme principles – the principles of maximum – 
are formulated.
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It is important to note that the indicated paths are equivalent, 
since the definition of the function D is possible if the model of the 
plastic body is given by the relations (1.5), (1.17) [8].

In conclusion of a brief review of the basics of the mathematical 
theory of plasticity, let us draw the reader’s attention to the following 
fact which has an epistemological significance. There are clear 
parallels between the method of constructing Lagrange’s analytical 
mechanics, which deals with the study of general laws of motion of 
systems of solids, and the method of plastic deformation mechanics 
(the mathematical theory of plasticity), which deals with the study 
of general laws of deformation of deformable bodies: the Lagrange 
function is a loading function; the principle of least action, for 
example Hamilton – the principle of maximum work of plastic 
deformation; the Lagrange motion equations are the equations of the 
associated flow law. These parallels clearly indicate a certain unity 
of the methodology of mechanics as a whole as a phenomenological 
science having a deductive character.

The material presented is the basis of one direction of the general 
mathematical theory of plasticity, called the flow theory. A second 
trend is developing – the theory of processes [10], the founder of 
which is one of the most outstanding mechanics scientists of the 20th 
century, A.A. Il’yushin [5]. The main difference between the theory 
of processes and the flow theory lies in the method of geometric 
interpretation of the deformation process and in the method of 
constructing the defining relations. The account and analysis of the 
theory of processes is not included in the tasks of this book.

Particular models of the plasticity theory are a consequence of 
different formulations of the plasticity condition and, respectively, 
the loading functions.

Let us consider in retrospect some of these models that have great 
practical importance.

1.2. The defining relations of the theory of plasticity              
(particular laws of metal deformation)

1.2.1. The tensor defining relations

Widely used in calculations and mathematical modelling, including 
technological shaping operations of pressure metal working (PMW), 
are the defining relationships of the theory of plasticity of isotropic 
material with isotropic hardening.
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In this theory, the Huber–von Mises plasticity condition and, 
accordingly, the loading function are taken in the form

    
[ ]23( ) ( ) 0,

2ij ij ijf s s qσ = − Φ = (1.22)

where q is the Udquist hardening parameter, pq dε= ∫ (integration 
is carried out along the strain path).

The differentiation of the function (1.22) with respect to the 
components sij and multiplication by δij leads to the result

  
3 0.ij ij ij

ij

f s
s

δ δ∂
= =

∂

Then, substituting (1.22) into the associated flow law (1.15), we 
obtain

3 .p
ij ij

ij

fd d d s
s

ε λ λ∂
= =

∂
(1.23)

A comparison of (1.23) with (1.12) yields

3 .ij
ij ij

f f s
sσ

∂ ∂
= =

∂ ∂
(1.24)

Thus, in the case of a loading function of the form (1.22), (1.24) 
holds and, according to (1.13), the Lagrange multiplier is defined as

1 ,
2

pdd ελ
σ

= (1.25)

where 3
2 ij ijs sσ =  is the stress intensity.

The substitution of (1.24) and (1.25) into the equation of the 

associated flow law (1.12) gives the defining equations of the 
isotropic flow theory, having the form

  
3 .
2

p
p

ij ij
dd sεε
σ

= (1.26)

Characteristics of the mechanical properties of a particular material 
enter the flow law (1.26) by means of the ratio dεp/σ, which, in fact, 
is a phenomenological coefficient in the phenomenological equation 


