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Preface

The book is intended to provide students with a useful background in opti-
mization in Euclidean space. Its primary goal is to demystify the theoretical
aspect of the subject.

In presenting the material, we refer first to the intuitive idea in one dimension,
then make the jump to n dimension as naturally as possible. This approach
allows the reader to focus on understanding the idea, skip the proofs for later
and learn to apply the theorems through examples and solving problems. A
detailed solution follows each problem constituting an image and a deepening
of the theory. These solved problems provide a repetition of the basic princi-
ples, an update on some difficult concepts and a further development of some
ideas.

Students are taken progressively through the development of the proofs where
they have the occasion to practice tools of differentiation (Chain rule, Taylor
formula) for functions of several variables in abstract situation. They learn to
apply important results established in advanced Algebra and Analysis courses,
like, Farkas-Minkowski Lemma, the implicit function theorem and the extreme
value theorem.

The book starts, in Chapter 1, with a short introduction to mathematical
modeling leading to formulation of optimization problems. Each formulation
involves a function and a set of points. Thus, basic properties of open, closed,
convex subsets of Rn are discussed. Then, usual topics of differential calculus
for functions of several variables are reminded.

In the following chapters, the study is devoted to the optimisation of a function
of several variables f over a subset S of Rn. Depending on the particularity of
this set, three situations are identified. In Chapter 2, the set S has a nonempty
interior; in Chapter 3, S is described by an equation g(x) = 0 and in Chapter 4

ix



x Preface

by an inequality g(x) � 0 where g is a function of several variables. In each
case, we try to answer the following questions:

– If the extreme point exists, then where is it located in S? Here, we
look for necessary conditions to have candidate points for optimality.
We make the distinction between local and global points.

– Among the local candidate points, which of them are local maximum or
local minimum points? Here, we establish sufficient conditions to identify
a local candidate point as an extreme point.

– Now, among the local extreme points found, which ones are global ex-
treme points? Here, the convexity/concavity property intervenes for a
positive answer.

Finally, we explore how the extreme value of the objective function f is affected
when some parameters involved in the definition of the functions f or g change
slightly.
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Chapter 1

Introduction

Optimization problems arise in different domains. In Section 1.1 of this chapter, we
introduce some applications and learn how to model a situation as an optimization
problem.

The points where an optimal quantity is attained are looked for in subsets that can
be one dimensional, multi-dimensional, open, closed, bounded or unbounded, . . . etc.
We devote Section 1.2 to study some topological properties of such subsets of Rn.

Finally, since, the phenomena analyzed are often complex, because of the many pa-

rameters that are involved, this requires an introduction to functions of several vari-

ables that we study in Section 1.3.

1.1 Formulation of Some Optimization Problems

The purpose of this short section is to show, through some examples, the
main elements involved in an optimization problem.

Example 1. Different ways in modeling a problem.

To minimize the material in manufacturing a closed can with volume capacity
of V units, we need to choose a suitable radius for the container.

i) Show how to make this choice without finding the exact radius.

ii) How to choose the radius if the volume V may vary from one liter to
two liters?

1



2 Introduction to the Theory of Optimization in Euclidean Space

Solution: Denote by h and r the height and the radius of the can respectively.
Then, the area and the volume of the can are given by

area = A = 2πr2 + 2πrh, volume = V = πr2h.

i) * The area can be expressed as a function of r and the problem is reduced
to find r ∈ (0,+∞) for which A is minimum:⎧⎪⎨⎪⎩

minimize A = A(r) = 2πr2 +
2V

r
over the set S

S = (0,+∞) = {r ∈ R / r > 0}.
Note that the set S, as shown in Figure 1.1, is an open unbounded interval
of R.

interval r � 0

0.0 0.5 1.0 1.5 2.0 2.5
r

FIGURE 1.1: S = (0,+∞) ⊂ R

** We can also express the problem as follows:⎧⎨⎩
minimize A(r, h) = 2πr2 + 2πrh over the set S

S = {(r, h) ∈ R+ × R+ / πr2h = V }.
Here, the set S is a curve in R2 and is illustrated by Figure 1.2 below:

S

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5

2.0

h

FIGURE 1.2: S is a curve h = π−1/r2 in the plane (V=1 liter)

ii) In the case, we allow more possibilities for the volume, for example 1 �
V � 2, then we can formulate the problem as a two dimensional problem
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minimize A(r, h) = 2πr2 + 2πrh over the set S

S = {(r, h) ∈ R+ × R+ /
1

πr2
� h � 2

πr2
}.

The set S is the plane region, in the first quadrant, between the curves

h =
1

πr2
and h =

2

πr2
(see Figure 1.3).

S

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5

2.0

2.5

3.0

3.5
h

FIGURE 1.3: S is a plane region between two curves

A three dimensional formulation of the same problem is⎧⎪⎨⎪⎩
minimize A(r, h, V ) = 2πr2 +

2V

r
over the set S

S = {(r, h, V ) ∈ R+ × R+ × R+ / πr2h = V, 1 � V � 2}

where, the set S ⊂ R3 is the part of the surface V = πr2h located between
the planes V = 1 and V = 2 in the first octant; see Figure 1.4.

0.0

0.5

1.0

1.5

2.0

r

0

1

2

3
h

0.0

0.5

1.0

V

FIGURE 1.4: S is a surface in the space
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Example 2. Too many variables and linear inequalities.

Diet Problem. * One can buy four types of aliments where the nutritional
content per unit weight of each food and its price are shown in Table 1.1 [5].
The diet problem consists of obtaining, at the minimum cost, at least twelve
calories and seven vitamins.

type1 type2 type3 type4
calories 2 1 0 1

vitamins 3 4 3 5

price 2 2 1 8

TABLE 1.1: A diet problem with four variables

Solution: Let ui be the weight of the food of type i. The total price of the
four aliments consumed is given by the relation

2u1 + 2u2 + u3 + 8u4 = f(u1, u2, u3, u4).

To ensure that at least twelve calories and seven vitamins are included, we
can express these conditions by writing

2u1 + u2 + u4 � 12 and 3u1 + 4u2 + 3u3 + 5u4 � 7.

Hence, the problem would be

⎧⎨⎩ minimize f(u1, u2, u3, u4) over the set S =
{
(u1, u2, u3, u4) ∈ R4 :

2u1 + u2 + u4 � 12, 3u1 + 4u2 + 3u3 + 5u4 � 7
}
.

** The above problem is rendered more complex if more factors (fat,
proteins) and types of food (steak, potatoes, fish, ...) were to be considered.
For example, from Table 1.2, we deduce that the total price of the seven

type1 type2 type3 type4 type5 type6 type7

protein 3 1 2 7 8 5 10
fat 0 1 0 8 15 10 6

calories 2 1 0 1 5 7 9

vitamins 3 4 3 5 1 2 5
price 2 2 1 8 12 10 8

TABLE 1.2: A diet problem with seven variables
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aliments consumed is

2u1 + 2u2 + u3 + 8u4 + 12u5 + 10u6 + 8u7 = p(u1, u2, u3, u4, u5, u6, u7).

To ensure that at least twelve calories, seven vitamins, twenty proteins are
included, and less than fifteen fats are consumed, the problem would be for-
mulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize p(u1, u2, u3, u4, u5, u6, u7) over the set

S =
{
(u1, u2, u3, u4, u5, u6, u7) ∈ R7 :

3u1 + u2 + 2u3 + 7u4 + 8u5 + 5u6 + 10u7 � 20

u2 + 8u4 + 15u5 + 10u6 + 6u7 � 15

2u1 + u2 + u4 + 5u5 + 7u6 + 9u7 � 12

3u1 + 4u2 + 3u3 + 5u4 + u5 + 2u6 + 5u7 � 7.
}

Example 3. Too many variables and nonlinearities.

* A company uses x units of capital and y units of labor to produce x y
units of a manufactured good. Capital can be purchased at 3$/ unit and labor
can be purchased at 2$/ unit. A total of 6$ is available to purchase capital
and labor. How can the firm maximize the quantity of the good that can be
manufactured?

Solution: We need to maximize the quantity x y on the set of points (see
Figure 1.5)

S

L1

L2

L3

�1 1 2 3
x

�1

1

2

3

y

FIGURE 1.5: S is a triangular region in the plane

S = {(x, y) ∈ R2 : 3x+ 2y � 6, x � 0, y � 0}.
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The set S is the triangular plane region bounded by the sides L1, L2 and L3,
defined by: L1 = {(x, 0), 0 � x � 2},

L2 = {(0, y), 0 � y � 3}, L3 = {(x, (6− 3x)/2), 0 � x � 2}.

Here, the objective function f(x, y) = xy is nonlinear and the set S is described
by linear inequalities.

** Such a model may work for a certain production process. However, it may
not reflect the situation as other factors involved in the production process
cannot be ignored. Therefore, new models have to be considered. For Exam-
ple [7]:

- The Canadian manufacturing industries for 1927 is estimated by:

P (l, k) = 33l0.46k0.52

where P is product, l is labor and k is capital.

- The production P for the dairy farming in Iowa (1939) is estimated by:

P (A,B,C,D,E, F ) = A0.27B0.01C0.01D0.23E0.09F 0.27

where A is land, B is labor, C is improvements, D is liquid assets, E is
working assets and F is cash operating expenses.

Each of these nonlinear production function P is optimized on a suitable set
S that describes well the elements involved.

As seen above, the main purpose, of this study, is to find a solution to the
following optimization problems

find u ∈ S such that f(u) = min
S

f(v)

or
find u ∈ S such that f(u) = max

S
f(v)

where f : S ⊂ Rn −→ R is a given function and S a given subset of Rn.

It is obvious that establishing existence and uniqueness results of the extreme
points, depends on properties satisfied by the set S and the function f . So,
we need to know some categories of subsets in Rn as well as some calculus on
multi-variable functions. But, first look at the following remark:
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Remark 1.1.1 The extreme point may not exist on the set S. In our study,
we will explore the situations where min

S
f and max

S
f are attained in S.

For example

min
(0,1)

f(x) = x2 does not exist.

Indeed, suppose there exists x0 ∈ (0, 1) such that f(x0) = min
(0,1)

f(x). Then,

0 <
x0

2
< x0 =⇒ x0

2
∈ (0, 1)

f is a strictly increasing function on (0, 1) =⇒ f(
x0

2
) < f(x0),

which contradicts the fact that x0 is a minimum point of f on (0, 1). However,
we remark that

f(x) > 0 ∀x ∈ (0, 1).

To include these limit cases, usually, instead of looking for a minimum or a
maximum, we look for

inf
S

f(x) = inf{f(x) : x ∈ S} and sup
S

f(x) = sup{f(x) : x ∈ S}

where inf E and supE of a nonempty subset E of R are defined by [2]

supE = the least number greater than or equal to all numbers in E

inf E = the greatest number less than or equal to all numbers in E.

If E is not bounded below, we write inf E = −∞. If E is not bounded above,
we write supE = +∞. By convention, we write sup ∅ = −∞ and inf ∅ = +∞.

For the previous example, we have

inf
(0,1)

x2 = 0, and sup
(0,1)

x2 = 1.
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1.2 Particular Subsets of Rn

We list here the main categories of sets that we will encounter and give the
main tools that allow their identification easily. Even though the purpose is
not a topological study of these sets, it is important to be aware of the precise
definitions and how to apply them accurately [18], [13].

Open and Closed Sets

In one dimension, the distance between two real numbers x and y is mea-
sured by the absolute value function and is given by

d(x, y) = |x− y|.

d satisfies, for any x, y, z, the properties

d(x, y) � 0 d(x, y) = 0 ⇐⇒ x = y

d(y, x) = d(x, y) symmetry

d(x, z) � d(x, y) + d(y, z) triangle inequality.

These three properties induce on R a metric topology where a set O is said to
be open if and only if, at each point x0 ∈ O, we can insert a small interval
centered at x0 that remains included in O, that is,

O is open ⇐⇒ ∀x0 ∈ O ∃ε > 0 such that (x0 − ε, x0 + ε) ⊂ O.

In higher dimension, these tools are generalized as follows:

The distance between two points x = (x1, · · · , xn) and y = (y1, · · · , yn) is
measured by the quantity

d(x, y) = ‖x− y‖ =
√
(x1 − y1)2 + . . .+ (xn − yn)2.

d is called the Euclidean distance and satisfies the three properties above. A
set O ⊂ Rn is said to be open if and only if, at each point x0 ∈ O, we can
insert a small ball

Bε(x0) = {x ∈ Rn : ‖x− x0‖ < ε}
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centered at x0 with ε that remains included in O, that is,

O is open ⇐⇒ ∀x0 ∈ O ∃ε > 0 such that Bε(x0) ⊂ O.

The point x0 is said to be an interior point to O.

Example 1. As n varies, the ball takes different shapes; see Figure 1.6.

n = 1 a ∈ R Br(a) = (a− r, a+ r) : an open interval

n = 2 a = (a1, a2) Br(a) = {(x1, x2) : (x1 − a1)
2 + (x2 − a2)

2 < r2} :

an open disk

n = 3 a = (a1, a2, a3)

Br(a) = {(x1, x2, x3) : (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2} :

set of points delimited by the sphere centered at a with radius r

n > 3 a = (a1, . . . , a3) Br(a) is the set of points delimited by

the hyper sphere of points x satisfying d(a, x) = r.

interval �2 � x � 2

�2 �1 0 1 2

disk

x2
� y2

� 4
�3 �2 �1 1 2 3

x

�3

�2

�1

1

2

3
y

sphere

x2
� y2
� z2

� 4

�4
�2

0
2

4
x

�4
�2

0
2

4
y

�4

�2

0

2

4

z

FIGURE 1.6: Shapes of balls in R, R2 and R3

Using the distance d, we define

Definition 1.2.1 Let S be a subset of Rn.

–
◦
S is the interior of S, the set of all interior points of S.

– S is a neighborhood of a if a is an interior point of S.
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– S is a closed set ⇐⇒ CS is open.

– ∂S is the boundary of S, the set of boundary points of S, where

x0 ∈ ∂S ⇐⇒ ∀r > 0, Br(x0)∩
(
S
)
= ∅ and Br(x0)∩

(
CS
)
= ∅.

– S = S ∪ ∂S is the closure of S.

– S is bounded ⇐⇒ ∃ M > 0 such that ‖x‖ � M ∀x ∈ S.

– S is unbounded if it is not bounded.

Example 2. For the sets, S1 = [−2, 2] ⊂ R

S2 = {(x, y) : x2+y2 � 4} ⊂ R2, S3 = {(x, y, z) : x2+y2+z2 < 4} ⊂ R3,

we have

S
◦
S ∂S S

S1 (−2, 2) {−2, 2} S1

S2 B2(0) C2(0) : circle S2

S3 S3 = B2(0) S2(0) : sphere S3 ∪ S2(0)

where

C2(0) = {(x, y) : x2 + y2 = 4}, S2(0) = {(x, y, z) : x2 + y2 + z2 = 4}.

We have the following properties:

Remark 1.2.1 – Rn and ∅ are open and closed sets

– The union (resp. intersection) of arbitrary open (resp. closed) sets is
open (resp. closed).

– The finite intersection (resp. union) of open (resp. closed) sets is open
(resp. closed).

– S is open ⇐⇒ S =
◦
S.

– S is closed ⇐⇒ S = S.
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– If f is continuous on an open subset Ω ⊂ Rn (see Section 1.3), then

f−1
(
(−∞, a]

)
= [f � a], [f � a], [f = a] are closed sets in Rn

f−1
(
(−∞, a)

)
= [f < a], [f > a] are open sets in Rn.

Example 3. Sketch the set S in the xy-plane and determine whether it is

open, closed, bounded or unbounded. Give
◦
S, ∂S and S.

S = {(x, y) : x � 0, y � 0, xy � 1}

x y � 1 x � 0 y � 0

�2 �1 1 2 3 4 5
x

�2

�1

1

2

3

4

5

y

FIGURE 1.7: An unbounded closed subset of R2

∗ Note that the set S, sketched in Figure 1.7, doesn’t contain the points on
the x and y axis. So

S = {(x, y) : x > 0, y > 0, xy � 1}
and can be described using the continuous function f : (x, y) �−→ xy on the
open set Ω = {(x, y) : x > 0, y > 0} as

S = {(x, y) ∈ Ω : f(x, y) � 1} = f−1
(
[1,+∞)

)
.

Therefore, S is a closed subset of R2. Thus S = S.

∗∗ The set is unbounded since it contains the points (x(t), y(t)) = (t, t) for
t � 1 (xy = t.t = t2 � 1) and

‖(x(t), y(t))‖ = ‖(t, t)‖ =
√

t2 + t2 =
√
2t −→ +∞ as t −→ +∞.
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∗ ∗ ∗ We have

◦
S = {(x, y) : x > 0, y > 0, xy > 1}

the region in the 1st quadrant above the hyperbola y =
1

x

∂S = {(x, y) : x > 0, y > 0, xy = 1}
the arc of the hyperbola in the 1st quadrant.

Example 4. A person can afford any commodities x � 0 and y � 0 that
satisfies the budget inequality x+ 3y � 7.

Sketch the set S described by these inequalities in the xy-plane and determine

whether it is open, closed, bounded or unbounded. Give
◦
S, ∂S and S.

S

2 4 6
x

�1

1

2

3

4
y

FIGURE 1.8: Closed set as intersection of three closed sets of R2

∗ Figure 1.8 shows that S is the triangular region formed by all the points in
the first quadrant below the line x+ 3y = 7 :

S = {(x, y) : x+ 3y � 7, x � 0, y � 0}

and can be described using the continuous functions

f1 : (x, y) �−→ x+ 3y, f2 : (x, y) �−→ x, f3 : (x, y) �−→ y

on R2 as

S = {(x, y) ∈ R2 : f1(x, y) � 7, f2(x, y) � 0, f3(x, y) � 0}

= f−1
1

(
(−∞, 7]

) ⋂
f−1
2

(
[0,+∞)

) ⋂
f−1
3

(
[0,+∞)

)
.

Therefore, S is a closed subset of R2 as the intersection of three closed subsets
of R2. Thus S = S.
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∗∗ The set S is bounded since

x+ 3y � 7, x � 0, y � 0 =⇒ 0 � x � 7, 0 � y � 7

3

from which we deduce

‖(x, y)‖ =
√
x2 + y2 �

√
72 +
(7
3

)2
=

7

3

√
10 ∀(x, y) ∈ S.

∗ ∗ ∗ We have

◦
S = {(x, y) : x > 0, y > 0, x+ 3y < 7} the region S excluding its three sides

∂S = the three sides of the triangular region.

Convex sets

The category of convex sets, deals with sets S ⊂ Rn where any two points
x, y ∈ S can be joined by a line segment that remains entirely into the set.
Such sets are without holes and do not bend inwards. Thus

S is convex ⇐⇒ (1− t)x+ ty ∈ S ∀x, y ∈ S ∀t ∈ [0, 1].

We have the following properties:

Remark 1.2.2 – Rn and ∅ are convex sets

– A finite intersection of convex sets is a convex set.

Example 5. “Well known convex sets” (see Figure 1.9)

∗ A line segment joining two points x and y is convex. It is described by

[x, y] = {z ∈ Rn : ∃t ∈ [0, 1] such that z = x+ t(y−x) = (1− t)x+ ty}.
∗∗ A line passing through two points x0 and x1 is convex. It is described by

L = {x ∈ Rn : ∃t ∈ R such that x = x0 + t(x1 − x0)}.
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line
A

B disk
line segment

�4 �2 2 4 6
x

�1

1

2

3

4

5
y

FIGURE 1.9: Convex sets in R2

∗ ∗ ∗ A ball Br(x0) = {x ∈ Rn : ‖x− x0‖ < r} is convex.

Indeed, let a and b in Br(x0) and t ∈ [0, 1], we have

‖[(1− t)a+ tb]− x0‖ = ‖(1− t)(a− x0) + t(b− x0)‖

� ‖(1− t)(a− x0)‖+ ‖t(b− x0)‖ = |1− t|‖a− x0‖+ |t|‖b− x0‖

< |1− t|r + |t|r = r since ‖a− x0‖ < 1 and ‖b− x0‖ < 1.

Hence (1− t)a+ tb ∈ Br(x0) for any t ∈ [0, 1]; that is, [a, b] ⊂ Br(x0).

closed disk

x2
� y2

� 4

�2 �1 1 2
x

�2

�1

1

2

y

FIGURE 1.10: A closed ball is convex

∗ ∗ ∗∗ A closed ball Br(x0) = {x ∈ Rn : ‖x− x0‖ � r} is convex.

For example, in the plane, the set in Figure 1.10, defined by

{(x, y) : x2 + y2 � 4} = B2((0, 0)) is convex.
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The set is the closed disk with center (0, 0) and radius 2. It is closed since it
includes its boundary points located on the circle with center (0, 0) and radius
2. This set is bounded since ‖(x, y)‖ � 2 ∀(x, y) ∈ B2((0, 0)).

Example 6. “Convex sets described by linear expressions”

∗ For a = (a1, . . . , an) ∈ Rn, b ∈ R, the set of points

x = (x1, . . . , xn) ∈ Rn : a1x1 + a2x2 + . . .+ anxn = a.x = b

is convex and called hyperplane.

Indeed, consider x1, x2 in the hyperplane and t ∈ [0, 1], then

a.[(1− t)x1 + tx2] = (1− t)a.x1 + ta.x2 = (1− t)b+ tb = b

thus (1− t)x1 + tx2 belongs to the hyperplane.

As illustrated in Figure 1.11, the graph of an hyperplane is reduced to the
point x1 = b/a1 when n = 1, to the line a1x1 + a2x2 = b in the plane when
n = 2, and to the plane a1x1 + a2x2 + a3x3 = b in the space when n = 3.

hyperplane

�3 �2 �1 0 1 2 3
x hyperplane

�2 �1 1 2
x

�0.5

0.5

1.0

1.5

2.0
y

hyperplane

�4
�2

0
2

4
x

�4
�2

0
2

4
y

�4

�2

0

2

4

z

FIGURE 1.11: Hyperplane in R, R2 and R3

∗∗ The set of points in x = (x1, . . . , xn) ∈ Rn defined by a linear inequality

a1x1 + a2x2 + . . .+ anxn = a.x � b (resp. �, <, >) is convex.

Indeed, as above, consider x1, x2 in the region [a.x � b] and t ∈ [0, 1], then

a.x1 � b =⇒ (1− t)a.x1 � (1− t)b since (1− t) � 0

a.x2 � b =⇒ ta.x2 � tb since t � 0
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Adding the two inequalities, we get

a.[(1− t)x1 + tx2] = (1− t)a.x1 + ta.x2 � (1− t)b+ tb = b

thus (1− t)x1 + tx2 belongs to the region [a.x � b].

The set a.x � b describes the region of points located below the hyperplane
a.x = b.

∗ ∗ ∗ A set of points in Rn described by linear equalities and inequalities
is convex as it can be seen as the intersection of convex sets described by
equalities and inequalities.

For example, in Figure 1.12, the set

S = {(x, y) : 2x+3y � 19, −3x+2y � 4, x+ y � 8, 0 � x � 6, x+6y � 0}

can be described as S = S1 ∩ S2 ∩ S3 ∩ S4 ∩ S5 ∩ S6 where

S1 = {(x, y) ∈ R2 : x+ 6y � 0} S2 = {(x, y) ∈ R2 : x � 6}

S3 = {(x, y) ∈ R2 : x+ y � 8} S4 = {(x, y) ∈ R2 : 2x+ 3y � 19}

S5 = {(x, y) ∈ R2 : −3x+ 2y � 4} S6 = {(x, y) ∈ R2 : x � 0}.

L1

S

L2

L3

L4

L5

L6

2 4 6
x

2

4

6

y

FIGURE 1.12: A convex set described by linear inequalities
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S is the region of the plan xy, bounded by the lines

L1 : x+ 6y = 0 L2 : x = 6, L3 : x+ y = 8,

L4 : 2x+ 3y = 19, L5 : −3x+ 2y = 4 L6 : x = 0.

Often, such sets are described using matrices and vectors;

S =
{[

x
y

]
∈ R2 :

⎡⎢⎢⎢⎢⎢⎢⎣
2 3
−3 2
1 1
1 0
−1 −6
−1 0

⎤⎥⎥⎥⎥⎥⎥⎦
[

x
y

]
�

⎡⎢⎢⎢⎢⎢⎢⎣
19
4
8
6
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
}
.

Example 7. “Well-known non convex sets”

∗ The hyper-sphere (see Figure 1.13 for an illustration in the plane)

∂Br(x
∗) = {x ∈ Rn : ‖x− x0‖ = r} is not convex.

circle

�x� 1�2 � �y� 1�2 � 4

�1 1 2 3
x

�1

1

2

3

y

FIGURE 1.13: Circle ∂B2((1, 1)) is not convex

Indeed, we have

(x∗1, . . . , x
∗
n ± r) ∈ ∂Br(x

∗) since ‖(0, . . . ,±r)‖ = r∥∥∥1
2
(x∗1, . . . , x

∗
n + r) + (1− 1

2
)(x∗1, . . . , x

∗
n − r) − x∗

∥∥∥
=
∥∥∥1
2
(2x∗1, . . . , 2x

∗
n + r − r)− x∗

∥∥∥ = ‖x∗ − x∗‖ = 0 = r

=⇒ 1

2
(x∗1, . . . , x

∗
n + r) + (1− 1

2
)(x∗1, . . . , x

∗
n − r) = x∗ ∈ ∂Br(x

∗).

∗∗ The domain located outside the hyper-sphere, described by

S = {x ∈ Rn : ‖x− x∗‖ > r} = Rn \Br(x∗) is not convex.


