Beschreibung
Details
Format
ePUB
Kopierschutz
Ja
Family Sharing
Ja
Text-to-Speech
Ja
Erscheinungsdatum
30.10.2024
Verlag
GitforGitsSeitenzahl
(Printausgabe)
Dateigröße
239 KB
Sprache
Englisch
EAN
9798224169382
This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.
The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.
If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.
Key Learnings
- Get your calculations done faster by moving from NumPy to JAX's optimized framework.
- Make your training pipelines more efficient by profiling how long things take and how much memory they use.
- Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.
- Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.
- Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.
- Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.
- Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.
- Use advanced visualization techniques, like confusion matrices and learning curves, to make model evaluation more effective.
- Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.
- Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.
Unsere Kundinnen und Kunden meinen
Verfassen Sie die erste Bewertung zu diesem Artikel
Helfen Sie anderen Kund*innen durch Ihre Meinung
Kurze Frage zu unserer Seite
Vielen Dank für dein Feedback
Wir nutzen dein Feedback, um unsere Produktseiten zu verbessern. Bitte habe Verständnis, dass wir dir keine Rückmeldung geben können. Falls du Kontakt mit uns aufnehmen möchtest, kannst du dich aber gerne an unseren Kund*innenservice wenden.
zum Kundenservice