• Produktbild: Soft Computing and Fractal Theory for Intelligent Manufacturing
  • Produktbild: Soft Computing and Fractal Theory for Intelligent Manufacturing
  • Produktbild: Soft Computing and Fractal Theory for Intelligent Manufacturing
Band 117

Soft Computing and Fractal Theory for Intelligent Manufacturing

139,99 €

inkl. MwSt, Versandkostenfrei

Lieferung nach Hause

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

22.01.2003

Verlag

Physica

Seitenzahl

283

Maße (L/B/H)

24,1/16/2,1 cm

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-3-7908-1547-4

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

22.01.2003

Verlag

Physica

Seitenzahl

283

Maße (L/B/H)

24,1/16/2,1 cm

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-3-7908-1547-4

Herstelleradresse

Physica
Tiergartenstr. 17
69121 Heidelberg, Neckar
Deutschland
Email: sdc-bookservice@springer.com
Url: www.springer.com
Telephone: +49 6221 4878345
Fax: +49 6221 3454229

Weitere Bände von Studies in Fuzziness and Soft Computing

Weitere Bände von Studies in Fuzziness and Soft Computing

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

  • Produktbild: Soft Computing and Fractal Theory for Intelligent Manufacturing
  • Produktbild: Soft Computing and Fractal Theory for Intelligent Manufacturing
  • Produktbild: Soft Computing and Fractal Theory for Intelligent Manufacturing
  • 1 Introduction.- 2 Type-1 Fuzzy Logic.- 2.1 Type-1 Fuzzy Set Theory.- 2.2 Fuzzy Rules and Fuzzy Reasoning.- 2.2.1 Fuzzy Relations.- 2.2.2 Fuzzy Rules.- 2.3 Fuzzy Inference Systems.- 2.4 Fuzzy Modelling.- 2.5 Summary.- 3 Type-2 Fuzzy Logic.- 3.1 Type-2 Fuzzy Sets.- 3.2 Operations of Type-2 Fuzzy Sets.- 3.3 Type-2 Fuzzy Systems.- 3.3.1 Singleton Type-2 Fuzzy Logic Systems.- 3.3.2 Non-Singleton Fuzzy Logic Systems.- 3.3.3 Sugeno Type-2 Fuzzy Systems.- 3.4 Summary.- 4 Supervised Learning Neural Networks.- 4.1 Backpropagation for Feedforward Networks.- 4.1.1 The Backpropagation Learning Algorithm.- 4.1.2 Backpropagation Multilayer Perceptrons.- 4.1.3 Methods for Speeding up Backpropagation.- 4.2 Radial Basis Function Networks.- 4.3 Adaptive Neuro-Fuzzy Inference Systems.- 4.3.1 ANFIS Architecture.- 4.3.2 Learning Algorithm.- 4.4 Summary.- 5 Unsupervised Learning Neural Networks.- 5.1 Competitive Learning Networks.- 5.2 Kohonen Self-Organizing Networks.- 5.3 Learning Vector Quantization.- 5.4 The Hopfield Network.- 5.5 Summary.- 6 Genetic Algorithms and Simulated Annealing.- 6.1 Genetic Algorithms.- 6.2 Modifications to Genetic Algorithms.- 6.2.1 Chromosome Representation.- 6.2.2 Objective Function and Fitness.- 6.2.3 Selection Methods.- 6.2.4 Genetic Operations.- 6.2.5 Parallel Genetic Algorithm.- 6.3 Simulated Annealing.- 6.4 Applications of Genetic Algorithms.- 6.4.1 Evolving Neural Networks.- 6.4.1.1 Evolving Weights in a Fixed Network.- 6.4.1.2 Evolving Network Architectures.- 6.4.2 Evolving Fuzzy Systems.- 6.5 Summary.- 7 Dynamical Systems Theory.- 7.1 Basic Concepts of Dynamical Systems.- 7.2 Controlling Chaos.- 7.2.1 Controlling Chaos through Feedback.- 7.2.1.1 Ott-Grebogi-Yorke Method.- 7.2.1.2 Pyragas’s Control Methods.- 7.2.1.3 Controlling Chaos by Chaos.- 7.2.2 Controlling Chaos without Feedback.- 7.2.2.1 Control through Operating Conditions.- 7.2.2.2 Control by System Design.- 7.2.2.3 Taming Chaos.- 7.2.3 Method Selection.- 7.3 Summary.- 8 Plant Monitoring and Diagnostics.- 8.1 Monitoring and Diagnosis.- 8.2 Fractal Dimension of a Geometrical Object.- 8.3 Fuzzy Estimation of the Fractal Dimension.- 8.4 Plant Monitoring with Fuzzy-Fractal Approach.- 8.5 Experimental Results.- 8.6 Summary.- 9 Adaptive Control of Non-Linear Plants.- 9.1 Fundamental Adaptive Fuzzy Control Concept.- 9.2 Basic Concepts of Stepping Motors.- 9.2.1 Variable Reluctance Motors.- 9.2.2 Unipolar Motors.- 9.2.3 Bipolar Motors.- 9.2.4 Dynamics of the Stepping Motor.- 9.2.5 Control of the Stepping Motor.- 9.3 Fuzzy Logic Controller of the Stepping Motor.- 9.4 Hardware Implementation of ANFIS.- 9.5 Experimental Results.- 9.6 Summary.- 10 Automated Quality Control in Sound Speaker Manufacturing.- 10.1 Introduction.- 10.2 Basic Concepts of Sound Speakers.- 10.2.1 Sound Basics.- 10.2.2 Making Sound.- 10.2.3 Chunks of the Frequency Range.- 10.2.4 Boxes of Sound.- 10.2.5 Alternative Speaker Designs.- 10.3 Description of the Problem.- 10.4 Fractal Dimension of a Sound Signal.- 10.5 Experimental Results.- 10.6 Summary.- 11 Intelligent Manufacturing of Television Sets.- 11.1 Introduction.- 11.2 Imaging System of the Television Set.- 11.2.1 The Cathode Ray Tube.- 11.2.2 Phosphor.- 11.2.3 The Black-and-White TV Signal.- 11.2.4 Adding Color.- 11.3 Breeder Genetic Algorithm for Optimization.- 11.3.1 Genetic Algorithm for Optimization.- 11.4 Automated Electrical Tuning of Television Sets.- 11.5 Intelligent System for Control.- 11.6 Simulation Results.- 11.7 Summary.- 12 Intelligent Manufacturing of Batteries.- 12.1 Intelligent Control of the Battery Charging Process.- 12.1.1 Problem Description.- 12.1.2 Fuzzy Method for Control.- 12.1.3 Neuro-Fuzzy Method for Control.- 12.1.4 Neuro-Fuzzy-Genetic Method for Control.- 12.2 Hardware Implementation of the Fuzzy Controller for the Charging Process.- 12.2.1 Introduction.- 12.2.2 Fuzzy Control.- 12.2.3 Implementation of the Fuzzy Controller.- 12.2.4 Experimental Results.- 12.3 Automated Quality Control of Batteries.- 12.3.1 Introduction.- 12.3.2 Fuzzy Controller.- 12.3.3 Fuzzy Control Implementation.- 12.4 Summary.