Produktbild: Entropy Theory Applications in Hydrological and Environmental Sciences

Entropy Theory Applications in Hydrological and Environmental Sciences Engineerin

171,99 €

inkl. MwSt, Versandkostenfrei

Lieferung nach Hause

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

18.02.2013

Verlag

John Wiley & Sons

Seitenzahl

662

Maße (L/B/H)

24,1/19,6/3,8 cm

Gewicht

1266 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-1-119-97656-1

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

18.02.2013

Verlag

John Wiley & Sons

Seitenzahl

662

Maße (L/B/H)

24,1/19,6/3,8 cm

Gewicht

1266 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-1-119-97656-1

Herstelleradresse

Produktsicherheitsverantwortliche/r
Europaallee 1
36244 Bad Hersfeld
DE

Email: gpsr@libri.de

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • Produktbild: Entropy Theory Applications in Hydrological and Environmental Sciences
  • Preface, xv

    Acknowledgments, xix

    1 Introduction, 1

    1.1 Systems and their characteristics, 1

    1.1.1 Classes of systems, 1

    1.1.2 System states, 1

    1.1.3 Change of state, 2

    1.1.4 Thermodynamic entropy, 3

    1.1.5 Evolutive connotation of entropy, 5

    1.1.6 Statistical mechanical entropy, 5

    1.2 Informational entropies, 7

    1.2.1 Types of entropies, 8

    1.2.2 Shannon entropy, 9

    1.2.3 Information gain function, 12

    1.2.4 Boltzmann, Gibbs and Shannon entropies, 14

    1.2.5 Negentropy, 15

    1.2.6 Exponential entropy, 16

    1.2.7 Tsallis entropy, 18

    1.2.8 Renyi entropy, 19

    1.3 Entropy, information, and uncertainty, 21

    1.3.1 Information, 22

    1.3.2 Uncertainty and surprise, 24

    1.4 Types of uncertainty, 25

    1.5 Entropy and related concepts, 27

    1.5.1 Information content of data, 27

    1.5.2 Criteria for model selection, 28

    1.5.3 Hypothesis testing, 29

    1.5.4 Risk assessment, 29

    Questions, 29

    References, 31

    Additional References, 32

    2 Entropy Theory, 33

    2.1 Formulation of entropy, 33

    2.2 Shannon entropy, 39

    2.3 Connotations of information and entropy, 42

    2.3.1 Amount of information, 42

    2.3.2 Measure of information, 43

    2.3.3 Source of information, 43

    2.3.4 Removal of uncertainty, 44

    2.3.5 Equivocation, 45

    2.3.6 Average amount of information, 45

    2.3.7 Measurement system, 46

    2.3.8 Information and organization, 46

    2.4 Discrete entropy: univariate case and marginal entropy, 46

    2.5 Discrete entropy: bivariate case, 52

    2.5.1 Joint entropy, 53

    2.5.2 Conditional entropy, 53

    2.5.3 Transinformation, 57

    2.6 Dimensionless entropies, 79

    2.7 Bayes theorem, 80

    2.8 Informational correlation coefficient, 88

    2.9 Coefficient of nontransferred information, 90

    2.10 Discrete entropy: multidimensional case, 92

    2.11 Continuous entropy, 93

    2.11.1 Univariate case, 94

    2.11.2 Differential entropy of continuous variables, 97

    2.11.3 Variable transformation and entropy, 99

    2.11.4 Bivariate case, 100

    2.11.5 Multivariate case, 105

    2.12 Stochastic processes and entropy, 105

    2.13 Effect of proportional class interval, 107

    2.14 Effect of the form of probability distribution, 110

    2.15 Data with zero values, 111

    2.16 Effect of measurement units, 113

    2.17 Effect of averaging data, 115

    2.18 Effect of measurement error, 116

    2.19 Entropy in frequency domain, 118

    2.20 Principle of maximum entropy, 118

    2.21 Concentration theorem, 119

    2.22 Principle of minimum cross entropy, 122

    2.23 Relation between entropy and error probability, 123

    2.24 Various interpretations of entropy, 125

    2.24.1 Measure of randomness or disorder, 125

    2.24.2 Measure of unbiasedness or objectivity, 125

    2.24.3 Measure of equality, 125

    2.24.4 Measure of diversity, 126

    2.24.5 Measure of lack of concentration, 126

    2.24.6 Measure of flexibility, 126

    2.24.7 Measure of complexity, 126

    2.24.8 Measure of departure from uniform distribution, 127

    2.24.9 Measure of interdependence, 127

    2.24.10 Measure of dependence, 128

    2.24.11 Measure of interactivity, 128

    2.24.12 Measure of similarity, 129

    2.24.13 Measure of redundancy, 129

    2.24.14 Measure of organization, 130

    2.25 Relation between entropy and variance, 133

    2.26 Entropy power, 135

    2.27 Relative frequency, 135

    2.28 Application of entropy theory, 136

    Questions, 136

    References, 137

    Additional Reading, 139

    3 Principle of Maximum Entropy, 142

    3.1 Formulation, 142

    3.2 POME formalism for discrete variables, 145

    3.3 POME formalism for continuous variables, 152

    3.3.1 Entropy maximization using the method of Lagrange multipliers, 152

    3.3.2 Direct method for entropy maximization, 157

    3.4 POME formalism for two variables, 158

    3.5 Effect of constraints on entropy, 165

    3.6 Invariance of total entropy, 167

    Questions, 168

    References, 170

    Additional Reading, 170

    4 Derivation of Pome-Based Distributions, 172

    4.1 Discrete variable and discrete distributions, 172

    4.1.1 Constraint E[x] and the Maxwell-Boltzmann distribution, 172

    4.1.2 Two constraints and Bose-Einstein distribution, 174

    4.1.3 Two constraints and Fermi-Dirac distribution, 177

    4.1.4 Intermediate statistics distribution, 178

    4.1.5 Constraint: E[N]: Bernoulli distribution for a single trial, 179

    4.1.6 Binomial distribution for repeated trials, 180

    4.1.7 Geometric distribution: repeated trials, 181

    4.1.8 Negative binomial distribution: repeated trials, 183

    4.1.9 Constraint: E[N] = n: Poisson distribution, 183

    4.2 Continuous variable and continuous distributions, 185

    4.2.1 Finite interval [a, b], no constraint, and rectangular distribution, 185

    4.2.2 Finite interval [a, b], one constraint and truncated exponential distribution, 186

    4.2.3 Finite interval [0, 1], two constraints E[ln x] and E[ln(1 ¿ x)] and beta distribution of first kind, 188

    4.2.4 Semi-infinite interval (0,¿), one constraint E[x] and exponential distribution, 191

    4.2.5 Semi-infinite interval, two constraints E[x] and E[ln x] and gamma distribution, 192

    4.2.6 Semi-infinite interval, two constraints E[ln x] and E[ln(1 + x)] and beta distribution of second kind, 194

    4.2.7 Infinite interval, two constraints E[x] and E[x2] and normal distribution, 195

    4.2.8 Semi-infinite interval, log-transformation Y = lnX, two constraints E[y] and E[y2] and log-normal distribution, 197

    4.2.9 Infinite and semi-infinite intervals: constraints and distributions, 199

    Questions, 203

    References, 208

    Additional Reading, 208

    5 Multivariate Probability Distributions, 213

    5.1 Multivariate normal distributions, 213

    5.1.1 One time lag serial dependence, 213

    5.1.2 Two-lag serial dependence, 221

    5.1.3 Multi-lag serial dependence, 229

    5.1.4 No serial dependence: bivariate case, 234

    5.1.5 Cross-correlation and serial dependence: bivariate case, 238

    5.1.6 Multivariate case: no serial dependence, 244

    5.1.7 Multi-lag serial dependence, 245

    5.2 Multivariate exponential distributions, 245

    5.2.1 Bivariate exponential distribution, 245

    5.2.2 Trivariate exponential distribution, 254

    5.2.3 Extension to Weibull distribution, 257

    5.3 Multivariate distributions using the entropy-copula method, 258

    5.3.1 Families of copula, 259

    5.3.2 Application, 260

    5.4 Copula entropy, 265

    Questions, 266

    References, 267

    Additional Reading, 268

    6 Principle of Minimum Cross-Entropy, 270

    6.1 Concept and formulation of POMCE, 270

    6.2 Properties of POMCE, 271

    6.3 POMCE formalism for discrete variables, 275

    6.4 POMCE formulation for continuous variables, 279

    6.5 Relation to POME, 280

    6.6 Relation to mutual information, 281

    6.7 Relation to variational distance, 281

    6.8 Lin's directed divergence measure, 282

    6.9 Upper bounds for cross-entropy, 286

    Questions, 287

    References, 288

    Additional Reading, 289

    7 Derivation of POME-Based Distributions, 290

    7.1 Discrete variable and mean E[x] as a constraint, 290

    7.1.1 Uniform prior distribution, 291

    7.1.2 Arithmetic prior distribution, 293

    7.1.3 Geometric prior distribution, 294

    7.1.4 Binomial prior distribution, 295

    7.1.5 General prior distribution, 297

    7.2 Discrete variable taking on an infinite set of values, 298

    7.2.1 Improper prior probability distribution, 298

    7.2.2 A priori Poisson probability distribution, 301

    7.2.3 A priori negative binomial distribution, 304

    7.3 Continuous variable: general formulation, 305

    7.3.1 Uniform prior and mean constraint, 307

    7.3.2 Exponential prior and mean and mean log constraints, 308

    Questions, 308

    References, 309

    8 Parameter Estimation, 310

    8.1 Ordinary entropy-based parameter estimation method, 310

    8.1.1 Specification of constraints, 311

    8.1.2 Derivation of entropy-based distribution, 311

    8.1.3 Construction of zeroth Lagrange multiplier, 311

    8.1.4 Determination of Lagrange multipliers, 312

    8.1.5 Determination of distribution parameters, 313

    8.2 Parameter-space expansion method, 325

    8.3 Contrast with method of maximum likelihood estimation (MLE), 329

    8.4 Parameter estimation by numerical methods, 331

    Questions, 332

    References, 333

    Additional Reading, 334

    9 Spatial Entropy, 335

    9.1 Organization of spatial data, 336

    9.1.1 Distribution, density, and aggregation, 337

    9.2 Spatial entropy statistics, 339

    9.2.1 Redundancy, 343

    9.2.2 Information gain, 345

    9.2.3 Disutility entropy, 352

    9.3 One dimensional aggregation, 353

    9.4 Another approach to spatial representation, 360

    9.5 Two-dimensional aggregation, 363

    9.5.1 Probability density function and its resolution, 372

    9.5.2 Relation between spatial entropy and spatial disutility, 375

    9.6 Entropy maximization for modeling spatial phenomena, 376

    9.7 Cluster analysis by entropy maximization, 380

    9.8 Spatial visualization and mapping, 384

    9.9 Scale and entropy, 386

    9.10 Spatial probability distributions, 388

    9.11 Scaling: rank size rule and Zipf's law, 391

    9.11.1 Exponential law, 391

    9.11.2 Log-normal law, 391

    9.11.3 Power law, 392

    9.11.4 Law of proportionate effect, 392

    Questions, 393

    References, 394

    Further Reading, 395

    10 Inverse Spatial Entropy, 398

    10.1 Definition, 398

    10.2 Principle of entropy decomposition, 402

    10.3 Measures of information gain, 405

    10.3.1 Bivariate measures, 405

    10.3.2 Map representation, 410

    10.3.3 Construction of spatial measures, 412

    10.4 Aggregation properties, 417

    10.5 Spatial interpretations, 420

    10.6 Hierarchical decomposition, 426

    10.7 Comparative measures of spatial decomposition, 428

    Questions, 433

    References, 435

    11 Entropy Spectral Analyses, 436

    11.1 Characteristics of time series, 436

    11.1.1 Mean, 437

    11.1.2 Variance, 438

    11.1.3 Covariance, 440

    11.1.4 Correlation, 441

    11.1.5 Stationarity, 443

    11.2 Spectral analysis, 446

    11.2.1 Fourier representation, 448

    11.2.2 Fourier transform, 453

    11.2.3 Periodogram, 454

    11.2.4 Power, 457

    11.2.5 Power spectrum, 461

    11.3 Spectral analysis using maximum entropy, 464

    11.3.1 Burg method, 465

    11.3.2 Kapur-Kesavan method, 473

    11.3.3 Maximization of entropy, 473

    11.3.4 Determination of Lagrange multipliers ¿k, 476

    11.3.5 Spectral density, 479

    11.3.6 Extrapolation of autocovariance functions, 482

    11.3.7 Entropy of power spectrum, 482

    11.4 Spectral estimation using configurational entropy, 483

    11.5 Spectral estimation by mutual information principle, 486

    References, 490

    Additional Reading, 490

    12 Minimum Cross Entropy Spectral Analysis, 492

    12.1 Cross-entropy, 492

    12.2 Minimum cross-entropy spectral analysis (MCESA), 493

    12.2.1 Power spectrum probability density function, 493

    12.2.2 Minimum cross-entropy-based probability density functions given total expected spectral powers at each frequency, 498

    12.2.3 Spectral probability density functions for white noise, 501

    12.3 Minimum cross-entropy power spectrum given auto-correlation, 503

    12.3.1 No prior power spectrum estimate is given, 504

    12.3.2 A prior power spectrum estimate is given, 505

    12.3.3 Given spectral powers: Tk = Gj, Gj = Pk, 506

    12.4 Cross-entropy between input and output of linear filter, 509

    12.4.1 Given input signal PDF, 509

    12.4.2 Given prior power spectrum, 510

    12.5 Comparison, 512

    12.6 Towards efficient algorithms, 514

    12.7 General method for minimum cross-entropy spectral estimation, 515

    References, 515

    Additional References, 516

    13 Evaluation and Design of Sampling and Measurement Networks, 517

    13.1 Design considerations, 517

    13.2 Information-related approaches, 518

    13.2.1 Information variance, 518

    13.2.2 Transfer function variance, 520

    13.2.3 Correlation, 521

    13.3 Entropy measures, 521

    13.3.1 Marginal entropy, joint entropy, conditional entropy and transinformation, 521

    13.3.2 Informational correlation coefficient, 523

    13.3.3 Isoinformation, 524

    13.3.4 Information transfer function, 524

    13.3.5 Information distance, 525

    13.3.6 Information area, 525

    13.3.7 Application to rainfall networks, 525

    13.4 Directional information transfer index, 530

    13.4.1 Kernel estimation, 531

    13.4.2 Application to groundwater quality networks, 533

    13.5 Total correlation, 537

    13.6 Maximum information minimum redundancy (MIMR), 539

    13.6.1 Optimization, 541

    13.6.2 Selection procedure, 542

    Questions, 553

    References, 554

    Additional Reading, 556

    14 Selection of Variables and Models, 559

    14.1 Methods for selection, 559

    14.2 Kullback-Leibler (KL) distance, 560

    14.3 Variable selection, 560

    14.4 Transitivity, 561

    14.5 Logit model, 561

    14.6 Risk and vulnerability assessment, 574

    14.6.1 Hazard assessment, 576

    14.6.2 Vulnerability assessment, 577

    14.6.3 Risk assessment and ranking, 578

    Questions, 578

    References, 579

    Additional Reading, 580

    15 Neural Networks, 581

    15.1 Single neuron, 581

    15.2 Neural network training, 585

    15.3 Principle of maximum information preservation, 588

    15.4 A single neuron corrupted by processing noise, 589

    15.5 A single neuron corrupted by additive input noise, 592

    15.6 Redundancy and diversity, 596

    15.7 Decision trees and entropy nets, 598

    Questions, 602

    References, 603

    16 System Complexity, 605

    16.1 Ferdinand's measure of complexity, 605

    16.1.1 Specification of constraints, 606

    16.1.2 Maximization of entropy, 606

    16.1.3 Determination of Lagrange multipliers, 606

    16.1.4 Partition function, 607

    16.1.5 Analysis of complexity, 610

    16.1.6 Maximum entropy, 614

    16.1.7 Complexity as a function of N, 616

    16.2 Kapur's complexity analysis, 618

    16.3 Cornacchio's generalized complexity measures, 620

    16.3.1 Special case: R = 1, 624

    16.3.2 Analysis of complexity: non-unique K-transition points and conditional complexity, 624

    16.4 Kapur's simplification, 627

    16.5 Kapur's measure, 627

    16.6 Hypothesis testing, 628

    16.7 Other complexity measures, 628

    Questions, 631

    References, 631

    Additional References, 632

    Author Index, 633

    Subject Index, 639