Oberstufenmathematik leicht gemacht 2 Bd.2 - Dörsam, Peter Dörsam, Peter
EUR 9,80
Portofrei*
Alle Preise inkl. MwSt.
Erscheint vorauss. April 2017

  • Broschiertes Buch

Jetzt bewerten

Dieses Buch erklärt die mathematischen Zusammenhänge möglichst anschaulich. Deshalb sind die Darstellungen sehr ausführlich und durch zahlreiche Abbildungen verdeutlicht. Aufgebaut wird nur auf den Mathematikkenntnissen, die die meisten Schülerinnen und Schüler in der Oberstufe tatsächlich besitzen. Bei der Darstellung des Stoffes wird also berücksichtigt, dass auch manch ein Begriff aus der Mittelstufe noch erklärungsbedürftig ist, wenn dieser benutzt wird. So wird z.B. das Lösen von linearen Gleichungssystemen, das die Grundlage für zahlreiche Aufgaben der analytischen Geometrie bildet, recht ausführlich behandelt.…mehr

Produktbeschreibung
Dieses Buch erklärt die mathematischen Zusammenhänge möglichst anschaulich. Deshalb sind die Darstellungen sehr ausführlich und durch zahlreiche Abbildungen verdeutlicht. Aufgebaut wird nur auf den Mathematikkenntnissen, die die meisten Schülerinnen und Schüler in der Oberstufe tatsächlich besitzen. Bei der Darstellung des Stoffes wird also berücksichtigt, dass auch manch ein Begriff aus der Mittelstufe noch erklärungsbedürftig ist, wenn dieser benutzt wird. So wird z.B. das Lösen von linearen Gleichungssystemen, das die Grundlage für zahlreiche Aufgaben der analytischen Geometrie bildet, recht ausführlich behandelt.
  • Produktdetails
  • Verlag: Pd-Verlag
  • Bd.2
  • 5., überarb. Aufl.
  • Seitenzahl: 318
  • 2017
  • Ausstattung/Bilder: 318 S. m. zahlr. Abb.
  • Deutsch
  • Abmessung: 211mm x 149mm x 20mm
  • Gewicht: 460g
  • ISBN-13: 9783867072656
  • ISBN-10: 3867072655
  • Best.Nr.: 30673237
Inhaltsangabe
Inhaltsverzeichnis Oberstufenmathematik leicht gemacht
Band 2: 1 Lineare Gleichungssysteme 1.1 Grundlagen aus der Mittelstufe 1.1.1 Einzelne lineare Gleichungen 1.1.2 Lineare Gleichungssysteme mit zwei Variablen 1.1.3 Lineare Gleichungssysteme mit drei Variablen 1.2 Einführungsbeispiel zum Gauß
Algorithmus 1.3 Grundlagen des Gauß
Algorithmus 1.3.1 Addition von Vielfachen 1.3.2 Addition von Vielfachen mit vorheriger Veränderung  der oberen Gleichung 1.3.3 Schema 1.3.4 Übungsaufgaben 1.4 Unlösbare und unterbestimmte lineare  Gleichungssysteme 1.4.1 Unlösbare lineare Gleichungssysteme 1.4.2 Unterbestimmte lineare Gleichungssysteme 1.4.2.1 Grundlagen 1.4.2.2 Der Gauß
Algorithmus bei unterbestimmten Gleichungssystemen 1.4.3 Schema für den Gauß
Algorithmus (Fortsetzung) 1.5 Weitere Zusammenhänge 1.6 Umgehen von Brüchen 1.7 Gleichungssysteme mit Konstanten 1.8 Berechnung mittels Matrizen 1.8.1 Grundlagen 1.8.2 Zusammenfassung zum Lösen mit Matrizen 1.8.3 Übungsaufgaben mit Matrizen 2 Vektorrechnung im Anschauungsraum 2.1 Grundlagen 2.2 Addition und S
Multiplikation 2.2.1 Addition und Subtraktion von Vektoren 2.2.2 S
Multiplikation 2.2.3 Linearkombinationen 2.3 Lineare Abhängigkeit 2.3.1 Zwei Vektoren 2.3.2 Drei Vektoren 2.3.3 Allgemeine Bedingung für lineare Abhängigkeit 2.4 Vektorraum (Teil 1) 2.4.1 Grundlagen 2.4.2 Basis und Dimension 2.5 Vektorraum (Teil 2: formale Betrachtung) 2.5.1 Definition 2.5.2 Abstraktere Vektorräume als der Anschauungsraum 2.5.3 Unterräume 2.6 Teilungsverhältnisse 2.6.1 Vektorzüge 2.6.2 Bestimmung von Teilungsverhältnissen 2.7 Vektoren in Koordinatenschreibweise 2.7.1 Grundlagen 2.7.2 Addition und S
Multiplikation in Koordinatenschreibweise 2.7.3 Lineare Abhängigkeit 3 Die Parameterform der Geraden und der Ebene 3.1 Grundlagen 3.2 Geradengleichung 3.3 Rechnen mit Geraden 3.3.1 Liegt ein Punkt auf einer Geraden? 3.3.2 Schnittpunkte von Geraden im Zweidimensionalen 3.3.2 Schnittpunkte von Geraden im Dreidimensionalen 3.4 Parametergleichung der Ebene 3.5 Rechnen mit Ebenen 3.5.1 Punkte auf Ebenen 3.5.2 Schnittpunkte: Gerade
Ebene 3.5.2.1 Grundlagen 3.5.2.2 Lösung mittels Gleichsetzen 3.5.2.3 Parallelität zwischen Ebene und Gerade 3.5.3.4 Spurpunkte 3.5.3 Schnittgerade: Ebene
Ebene 3.5.3.1 Grundlagen 3.5.3.2 Lösung mittels Gleichsetzen 3.5.3.3 Parallelität zwischen Ebenen 3.5.3.4 Spurgeraden 4 Koordinatenform 4.1 Koordinatenform der Geraden 4.2 Koordinatenform der Ebene 5 Metrischer Raum (Normalenform) 5.1 Skalarprodukt 5.1.1 Definition des Skalarproduktes 5.1.2 Wesentliche Eigenschaften des Skalarproduktes 5.1.3 Skalarprodukt für Vektoren in Koordinatenschreibweise 5.1.4 Erzeugen von orthogonalen Vektoren 5.1.5 Die Länge eines Vektors 5.1.6 Der Winkel zwischen zwei Vektoren 5.1.7 Übungsaufgaben 5.2 Normalenform der Geraden 5.2.1 Grundlagen 5.2.2 Punkt
Normalenform und allgemeine Normalenform 5.2.3 Zusammenhang zwischen Koordinaten
, Normalen
und Parameterform der Geraden 5.3 Normalenform der Ebene 5.3.1 Grundlagen 5.3.2 Punkt
Normalenform und allgemeine Normalenform 5.3.3 Zusammenhang zwischen Koordinaten
und Normalenform der Ebene 5.4 Schnittmengen
Berechnung für die Normalenform 5.4.1 Grundlagen 5.4.2 Schnitt zwischen Normalenform und Parameterform 5.4.3 Schnitt zwischen zwei Normalenformen 5.5 Schnittwinkel 5.5.1 Schnittwinkel zwischen Geraden 5.5.1.1 Beide Geraden in Parameterform 5.5.1.2 Beide Geraden in Normalenform 5.5.1.3 Eine Gerade in Parameterform und eine in Normalenform 5.5.2 Schnittwinkel zwischen Gerade und Ebene 5.5.3 Schnittwinkel zwischen zwei Ebenen 5.6 Hessesche Normalenform 5.6.1 Grundlagen 5.6.2 Beispiele zur Aufstellung der Hesseschen Normalenform 5.6.3 Abstandsberechnungen zu einem Punkt 5.6.4 Abstandsberechnungen zwischen Geraden und Ebenen 5.6.4.1 Abstand zwischen zwei Geraden im Zweidimensionalen 5.6.4.2 Abstand zwischen zwei Ebenen 5.6.4.3 Abstand zwischen Ebene und Gerade 5.6.4.4 Abstand zwischen zwei Geraden im Dreidimensionalen 5.6.5 Abstandsberechnungen eines Punktes zu einer Geraden im Dreidimensionalen 6 Vektorprodukt 6.1 Grundlagen 6.2 Vektorprodukt und Normalenvektor 6.3 Vektorprodukt und Flächenberechnung 6.4 Zusammenfassung der Eigenschaften des Vektorproduktes 6.5 Volumenberechnung 6.6 Abstand zwischen zwei windschiefen Geraden 7 Kreis und Kugel 7.1 Kreis
und Kugelgleichung 7.2 Schnittmengen mit Punkten, Geraden und Ebenen 7.2.1 Lage von Punkten 7.2.2 Schnittmenge mit Geraden und Ebenen 7.2.3 Koordinatenform für Kreis und Kugel 7.3 Tangente und Tangentialebene 8 Matrizen 8.1 Definition einer Matrix 8.2 Elementare Rechenregeln für Matrizen 8.2.1 Addition von Matrizen 8.2.2 Multiplikation einer Matrix mit einer reellen Zahl 8.2.3 Transposition von Matrizen 8.3 Multiplikation von Matrizen mit Matrizen 8.3.1 Grundlagen 9 Determinanten 9.1 Grundlagen zur Berechnung 9.2 Determinanten und lineare Abhängigkeit 9.2.1 Grundlagen 9.2.2 Anwendung auf Aufgaben zur linearen Abhängigkeit 9.2.3 Parallelität von Geraden und Ebenen 9.3 Die Cramersche Regel 9.3.1 Eindeutig lösbare Gleichungssysteme 9.3.2 Mehrdeutig lösbare Gleichungssysteme 9.4 Determinanten und Vektorprodukt 10 Anhang 10.1 Anhang aus Band 1 10.2 Quadratische Gleichungen 10.2.1 Quadratische Ergänzung 10.2.2 pq
Formel 10.2.3 Weitere Zusammenhänge 10.3 Schema zum Gauß
Algorithmus 10.4 Lineare Abhängigkeit 10.5 Geraden und Ebenengleichungen 10.6 Schnitt von Geraden/Ebenen 10.7 Skalarprodukt 10.8 Vektorprodukt 10.9 Kreis und Kugel 10.10  Mathematische Zeichen 10.11  Griechisches Alphabet